ON DOUBLE-FRAMED SOFT SETS OF NON-ASSOCIATIVE ORDERED SEMIGROUPS

Mohammed M. Khalaf, Asghar Khan*, Tauseef Asif* and Faisal Yousafzai**
Higher Institute of Engineering and Technology, King Mariout, Alexandria, EGYPT
E-mail : khalfmohammed2003@yahoo.com
* Department of Mathematics, Abdul Wali Khan University, Mardan, KPK, PAKISTAN
E-mail : azhar4set@yahoo.com, tauseefmath@yahoo.com
**Military College of Engineering, National University of Sciences and Technology, Islamabad, PAKISTAN
E-mail : yousafzai@mce.nust.edu.pk

(Received: Nov. 30, 2020 Accepted: Dec. 26, 2020 Published: Dec. 30, 2020)

Abstract: In this note, the authors introduce the notion of double-framed soft sets (briefly, DFS-sets) in an ordered $\mathcal{A G}$-groupoid. An ordered $\mathcal{A \mathcal { G }}$-groupoid can be referred to as a non-associative ordered semigroup, as the main difference between an ordered semigroup and an ordered $\mathcal{A \mathcal { G }}$-groupoid is the switching of an associative law. We define and give the examples of DFS l-ideals, DFS r-ideals and DFS biideals in an ordered \mathcal{A}-groupoid and also investigate the relationship between them. We give an alternate definition for a strongly regular element of a unitary ordered $\mathcal{A G}$-groupoid and show that how a strongly regular ordered $\mathcal{A} \mathcal{G}$-groupoid becomes an ordered $\mathcal{A} \mathcal{G}^{* *}$-groupoid and a completely inverse ordered $\mathcal{A \mathcal { G }}$-groupoid. As an application of our results we get characterizations of a strongly regular ordered $\mathcal{A G}$-groupoid in terms of DFS one-sided (two-sided) ideals and DFS biideals. These concepts will help in verifying the existing characterizations and will
help in achieving new and generalized results in future works.
Keywords and Phrases: DFS-sets, ordered $\mathcal{A} \mathcal{G}$-groupoid, pseudo-inverse, left invertive law and DFS ideals.
2010 Mathematics Subject Classification: 20M10 and 20N99.

1. Introduction

The concept of soft set theory was introduced by Molodtsov in [17]. This theory can be used as a generic mathematical tool for dealing with uncertainties. In soft set theory, the problem of setting the membership function does not arise, which makes the theory easily applied to many different fields $[1,2,5,6,7,8,9]$. At present, the research work on soft set theory in algebraic fields is progressing rapidly $[20,22,23,24]$. A soft set is a parameterized family of subsets of the universe set. In the real world, the parameters of this family arise from the view point of fuzzy set theory. Most of the researchers of algebraic structures have worked on the fuzzy aspect of soft sets. Soft set theory is applied in the field of optimization by Kovkov in [13]. Several similarity measures have been discussed in [16], decision making problems have been studied in [22], reduction of fuzzy soft sets and its applications in decision making problems have been analyzed in [14]. The notions of soft numbers, soft derivatives, soft integrals and many more have been formulated in [15]. This concept have been used for forecasting the export and import volumes in international trade [26].

Recently, Jun et al. further extended the notion of softs set into double-framed soft sets and defined double-framed soft subalgebra of BCK/BCI algebra and studied the related properties in [8]. Jun et al. also defined the concept of a doubleframed soft ideal (briefly, DFS ideal) of a BCK/BCI-algebra and gave many valuable results for this theory. In [12], Khan et al. have applied the idea of doubleframed soft set to ordered semigroups and defined prime and irreducible DFS ideals of an ordered semigroup over a universe set U. Khan et al. have also characterized different classes of an ordered semigroup by using different DFS ideals.

In the present paper, we apply the idea given by Jun et al. in [8], to ordered $\mathcal{A G}$-groupoids. We introduce and investigate the notions of DFS l-ideals, DFS r ideals and DFS bi-ideals. We study the relationship between these DFS ideals in detail. We give a necessary and sufficient condition for a strongly regular ordered $\mathcal{A} \mathcal{G}$-groupoid to become an ordered $\mathcal{A G}^{* *}$-groupoid and completely inverse ordered $\mathcal{A} \mathcal{G}$-groupoid. Further we show that the strongly regular, intra-regular and weakly regular classes of a unitary ordered $\mathcal{A \mathcal { G }}$-groupoid coincide. Finally we characterize a strongly regular class of an ordered $\mathcal{A G}$-groupoid by one-sided (two-sided) ideals and bi-ideals based on DFS-sets.

2. Preliminaries

An $\mathcal{A G}$-groupoid is a non-associative and a non-commutative algebraic structure lying in a grey area between a groupoid and a commutative semigroup. Commutative law is given by $a b c=c b a$ in ternary operations. By putting brackets on the left of this equation, i.e. $(a b) c=(c b) a$, in 1972, M. A. Kazim and M. Naseeruddin introduced a new algebraic structure called a left almost semigroup abbreviated as an $\mathcal{L A}$-semigroup [10]. This identity is called the left invertive law. P. V. Protic and N. Stevanovic called the same structure an Abel-Grassmann's groupoid abbreviated as an AG-groupoid [21].

This structure is closely related to a commutative semigroup because a commutative $\mathcal{A \mathcal { G }}$-groupoid is a semigroup [18]. It was proved in [10] that an $\mathcal{A \mathcal { G }}$-groupoid S is medial, that is, $a b \cdot c d=a c \cdot b d$ holds for all $a, b, c, d \in S$. An $\mathcal{A G}$-groupoid may or may not contain a left identity. The left identity of an $\mathcal{A \mathcal { G }}$-groupoid permits the inverses of elements in the structure. If an $\mathcal{A \mathcal { G }}$-groupoid contains a left identity, then this left identity is unique [18]. In an $\mathcal{A G}$-groupoid S with left identity (unitary $\mathcal{A} \mathcal{G}$-groupoid), the paramedial law $a b \cdot c d=d c \cdot b a$ holds for all $a, b, c, d \in S$. By using medial law with left identity, we get $a \cdot b c=b \cdot a c$ for all $a, b, c \in S$. We should genuinely acknowledge that much of the ground work has been done by M. A. Kazim, M. Naseeruddin, Q. Mushtaq, M. S. Kamran, P. V. Protic, N. Stevanovic, M. Khan, W. A. Dudek and R. S. Gigon. One can be referred to [3, 4, $11,18,19,21,25]$ in this regard.

An $\mathcal{A G}$-groupoid (S, \cdot) together with a partial order \leq on S that is compatible with an $\mathcal{A G}$-groupoid operation, meaning that for $x, y, z \in S, x \leq y \Rightarrow z x \leq z y$ and $x z \leq y z$, is called an ordered $\mathcal{A G}$-groupoid [28].

Let us define a binary operation " ${ }_{e}$ " (e-sandwich operation) on an ordered $\mathcal{A G}$-groupoid (S, \cdot, \leq) with left identity e as follows:

$$
a \circ_{e} b=a e \cdot b, \forall a, b \in S .
$$

Then $\left(\mathcal{S}, \circ_{e}, \leq\right)$ becomes an ordered semigroup [28].
Note that an ordered $\mathcal{A \mathcal { G }}$-groupoid is the generalization of an ordered semigroup because if an ordered $\mathcal{A G}$-groupoid has a right identity then it becomes an ordered semigroup.

Let $\emptyset \neq A \subseteq S$, we denote $(A]$ by $(A]:=\{x \in S / x \leq a$ for some $a \in A\}$. If $A=$ $\{a\}$, then we write $(\{a\}]$. For $\emptyset \neq A, B \subseteq S$, we denote $A B=:\{a b / a \in A, b \in B\}$.

- A nonempty subset A of an ordered $\mathcal{A G}$-groupoid S is called a left (right) ideal of S if:
(i) $S A \subseteq A(A S \subseteq A)$;
(ii) if $a \in A$ and $b \in S$ such that $b \leq a$, then $b \in A$.

Equivalently: A nonempty subset A of an ordered $\mathcal{A} \mathcal{G}$-groupoid S is called a left (right) ideal of S if $(S A] \subseteq A((A S] \subseteq A)$.

- By two-sided ideal or simply ideal, we mean a nonempty subset of an ordered $\mathcal{A G}$-groupoid S which is both left and right ideal of S.
- Let S be an ordered $\mathcal{A \mathcal { G }}$-groupoid. By an ordered $\mathcal{A \mathcal { G }}$-subgroupoid of S, we means a nonempty subset A of S such that $\left(A^{2}\right] \subseteq A$.
- A nonempty subset A of an ordered $\mathcal{A G}$-groupoid S is called a generalized bi-ideal of S if:
(i) $A S \cdot A \subseteq A$;
(ii) if $a \in A$ and $b \in S$ such that $b \leq a$, then $b \in A$.

Equivalently: A nonempty subset A of an ordered $\mathcal{A} \mathcal{G}$-groupoid S is called a generalized bi-ideal of S if $(A S \cdot A] \subseteq A$.

- An ordered $A G$-subgroupoid A of an ordered $A G$-groupoid S is called a biideal of S if $(A S \cdot A] \subseteq A$.
Lemma 2.1. [28] Let S be an ordered $\mathcal{A \mathcal { G }}$-groupoid and $\emptyset \neq A, B \subseteq S$. Then the followings hold:
(i) $A \subseteq(A]$;
(ii) If $A \subseteq B$, then $(A] \subseteq(B]$;
(iii) $(A](B] \subseteq(A B]$;
(iv) $(A]=((A]]$;
(vi) $((A](B]]=(A B]$;
(vii) Also for every ideal T of $S,(T]=T$.

3. Soft Sets

In [24], Sezgin and Atagun introduced some new operations on soft set theory and defined soft sets in the following way.

Let U be an initial universe set, E a set of parameters, $P(U)$ the power set of U and $A \subseteq E$. Then a soft set f_{A} over U is a function defined by:

$$
f_{A}: E \rightarrow P(U) \text { such that } f_{A}(x)=\emptyset \text {, if } x \notin A \text {. }
$$

Here f_{A} is called an approximate function. A soft set over U can be represented by the set of ordered pairs

$$
f_{A}=\left\{\left(x, f_{A}(x)\right): x \in E, f_{A}(x) \in P(U)\right\}
$$

It is clear that a soft set is a parameterized family of subsets of U. The set of all soft sets is denoted by $S(U)$.

- Let $f_{A}, f_{B} \in S(U)$. Then f_{A} is a soft subset of f_{B}, denoted by $f_{A} \simeq f_{B}$ if $f_{A}(x) \subseteq f_{B}(x)$ for all $x \in S$. Two soft sets f_{A}, f_{B} are said to be equal soft sets if
$f_{A} \tilde{\subseteq} f_{B}$ and $f_{B} \tilde{\subseteq} f_{A}$ and is denoted by $f_{A} \cong f_{B}$. The union of f_{A} and f_{B}, denoted by $f_{A} \tilde{\cup} f_{B}$, is defined by $f_{A} \tilde{\cup} f_{B}=f_{A \cup B}$, where $f_{A \cup B}(x)=f_{A}(x) \cup f_{B}(x), \forall x \in E$. In a similar way, we can define the intersection of f_{A} and f_{B}.
- Let S be an ordered $\mathcal{A G}$-groupoid. Let $f_{A}, f_{B} \in S(U)$. Then the soft product [24] of f_{A} and f_{B}, denoted by $f_{A} \widetilde{\circ} f_{B}$, is defined as follows:

$$
\left(f_{A} \tilde{\circ} f_{B}\right)(x)= \begin{cases}\bigcup_{(y, z) \in A_{x}}\left\{f_{A}(y) \cap g_{B}(z)\right\} & \text { if } A_{x} \neq \emptyset \\ \text { if } A_{x}=\emptyset\end{cases}
$$

where $A_{x}=\{(y, z) \in S \times S / x \leq y z\}$.

- A double-framed soft pair $\left\langle\left(f_{A}^{+}, f_{A}^{-} ; A\right\rangle\right.$ is called a double-framed soft set (briefly, DFS-set of A) [8] of A over U, where f_{A}^{+}and f_{A}^{-}are mappings from A to $P(U)$. The set of all DFS-sets of A over U will be denoted by $D F S(U)$.
- Let $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{A}=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ be two double-framed soft sets of an ordered $\mathcal{A \mathcal { G }}$-groupoid S over U. Then the uni-int soft product [12], denoted by $f_{A} \diamond g_{A}=\left\langle\left(f_{A}^{+} \tilde{\circ} g_{A}^{+}, f_{A}^{-} \tilde{\star} g_{A}^{-}\right) ; A\right\rangle$ is defined to be a double-framed soft set of S over U, in which $f_{A}^{+} \tilde{\circ} g_{A}^{+}$and $f_{A}^{-} \tilde{\star} g_{A}^{-}$are mapping from S to $P(U)$, given as follows:

$$
\begin{aligned}
& f_{A}^{+} \tilde{\circ} g_{A}^{+}: S \longrightarrow P(U), x \longmapsto \begin{cases}\bigcup_{(y, z) \in A_{x}}\left\{f_{A}^{+}(y) \cap g_{A}^{+}(z)\right\} & \text { if } A_{x} \neq \emptyset \\
\emptyset & \text { if } A_{x}=\emptyset,\end{cases} \\
& f_{A}^{-} \tilde{\star} g_{A}^{-}: S \longrightarrow P(U), x \longmapsto \begin{cases}\bigcap_{(y, z) \in A_{x}}\left\{f_{A}^{-}(y) \cup g_{A}^{-}(z)\right\} & \text { if } A_{x} \neq \emptyset \\
U & \text { if } A_{x}=\emptyset .\end{cases}
\end{aligned}
$$

- Let $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{A}=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ be two double-framed soft sets over a common universe set U. Then $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is called a double-framed soft subset (briefly, DFS-subset) [12] of $\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$, denote by $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle \sqsubseteq$ $\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ if:
(i) $A \subseteq B$;
(ii) $(\forall e \in A)\binom{f_{A}^{+}$and g_{A}^{+}are identical approximations $\left(f_{A}^{+}(e) \subseteq g_{A}^{+}(e)\right)}{f_{A}^{-}$and g_{A}^{-}are identical approximations $\left(f_{A}^{-}(e) \subseteq g_{A}^{-}(e)\right)}$.
- For two DFS-sets $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{A}=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ over U are said to be equal, denoted by $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$, if $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle \sqsubseteq$ $\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ and $\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle \sqsubseteq\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$.
- For two DFS-sets $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{A}=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ over U, the DFS int-uni set [12] of $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$, is defined to be a DFS-set
$\left\langle\left(f_{A}^{+} \cap g_{A}^{+}, f_{A}^{-} \cup g_{A}^{-}\right) ; A\right\rangle$, where $f_{A}^{+} \cap g_{A}^{+}$and $f_{A}^{-} \cup g_{A}^{-}$are mapping given as follows:

$$
\begin{aligned}
& f_{A}^{+} \cap g_{A}^{+} \quad: \quad A \longrightarrow P(U), x \longmapsto f_{A}^{+}(x) \cap g_{A}^{+}(x) \\
& f_{A}^{-} \cup g_{A}^{-} \quad: \quad A \longrightarrow P(U), x \longmapsto f_{A}^{-}(x) \cup g_{A}^{-}(x)
\end{aligned}
$$

It is denoted by $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle \sqcap\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle=\left\langle\left(f_{A}^{+} \cap g_{A}^{+}, f_{A}^{-} \cup g_{A}^{-}\right) ; A\right\rangle$.

- A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called a doubleframed soft $\mathcal{A \mathcal { G }}$-subgroupoid (briefly, $D F S \mathcal{A} \mathcal{G}$-subgroupoid) of S over U if it satisfies $f_{A}^{+}(x y) \supseteq f_{A}^{+}(x) \cap f_{A}^{+}(y), f_{A}^{-}(x y) \subseteq f_{A}^{-}(x) \cup f_{A}^{-}(y), \forall x, y \in S$.
- A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called
(i) a double-framed soft left ideal (briefly, DFS l-ideal) of S over U if it satisfies:
(a) $f_{A}^{+}(x y) \supseteq f_{A}^{+}(y)$ and $f_{A}^{-}(x y) \subseteq f_{A}^{-}(y)$;
(b) $x \leq y \Longrightarrow f_{A}^{+}(x) \supseteq f_{A}^{+}(y)$ and $f_{A}^{-}(x) \subseteq f_{A}^{-}(y), \forall x, y \in S$.
(ii) a double-framed soft right ideal (briefly, DFS r-ideal) of S over U if it satisfies:
(a) $f_{A}^{+}(x y) \supseteq f_{A}^{+}(x)$ and $f_{A}^{-}(x y) \subseteq f_{A}^{-}(x)$;
(b) $x \leq y \Longrightarrow f_{A}^{+}(x) \supseteq f_{A}^{+}(y)$ and $f_{A}^{-}(x) \subseteq f_{A}^{-}(y), \forall x, y \in S$.
(iii) a double-framed soft ideal (briefly, DFS ideal) of S over U, if it is both DFS l-ideal and DFS r-ideal of S over U.
- A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called a doubleframed bi-ideal (briefly, DFS bi-ideal) of S over U if it satisfies:
(a) $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a DFS $\mathcal{A} \mathcal{G}$-subgroupoid of S over U;
(b) $f_{A}^{+}(x y \cdot z) \supseteq f_{A}^{+}(x) \cap f_{A}^{+}(z)$ and $f_{A}^{-}(x y \cdot z) \subseteq f_{A}^{-}(x) \cup f_{A}^{-}(z)$;
(c) $x \leq y \Longrightarrow f_{A}^{+}(x) \supseteq f_{A}^{+}(y)$ and $f_{A}^{-}(x) \subseteq f_{A}^{-}(y), \forall x, y, z \in S$.
- A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called a doubleframed generalized bi-ideal (briefly, DFS generalized bi-ideal) of S over U if it satisfies (b) and (c).
- Let A be a nonempty subset of S. Then the characteristic double-framed soft mapping of A, denoted by $\left\langle\left(\mathcal{X}_{A}^{+}, \mathcal{X}_{A}^{-}\right) ; A\right\rangle=\mathcal{X}_{A}$ is defined to be a double-framed soft set, in which \mathcal{X}_{A}^{+}and \mathcal{X}_{A}^{-}are soft mappings over U, given as follows:

$$
\begin{aligned}
& \mathcal{X}_{A}^{+}: S \longrightarrow P(U), x \longmapsto\left\{\begin{array}{rr}
U & \text { if } x \in A \\
\emptyset & \text { if } x \notin A
\end{array}\right. \\
& \mathcal{X}_{A}^{-}: \quad S \longrightarrow P(U), x \longmapsto\left\{\begin{array}{rr}
\emptyset & \text { if } x \in A \\
U & \text { if } x \notin A
\end{array}\right.
\end{aligned}
$$

Note that the characteristic mapping of the whole set S, denoted by $\mathcal{X}_{S}=$ $\left\langle\left(\mathcal{X}_{S}^{+}, \mathcal{X}_{S}^{-}\right) ; S\right\rangle$, is called the identity double-framed soft mapping, where $\mathcal{X}_{S}^{+}(x)=$ U and $\mathcal{X}_{S}^{-}(x)=\emptyset, \forall x \in S$.

The following result holds for an ordered semigroup [6] just because of the closure property which makes very clear for an ordered $\mathcal{A G}$-groupoid to hold the same Lemma.
Lemma 3.1. For a nonempty subset A of an ordered $\mathcal{A \mathcal { G }}$-groupoid S, the following conditions are equivalent:
(i) A is a left ideal (right ideal or bi-ideal) of S;
(ii) The DFS set \mathcal{X}_{A} of S over U is a DFS l-ideal (DFS r-ideal or DFS bi-ideal) of S over U.

The following result holds for an ordered smemigroup [12] just because of the closure property which makes very clear for an ordered $\mathcal{A G}$-groupoid to hold the same Lemma.
Lemma 3.2. Let $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ be any DFS-set of an ordered $\mathcal{A G}$-groupoid S over U. Then the following assertions hold:
(i) f_{A} is a DFS r-ideal (l-ideal) of S over U if and only if $f_{A} \diamond \mathcal{X}_{S} \sqsubseteq f_{A}\left(\mathcal{X}_{S} \diamond f_{A} \sqsubseteq\right.$ f_{A});
(ii) f_{A} is a DFS bi-ideal of S over U if and only if $f_{A} \diamond f_{A} \sqsubseteq f_{A}$ and $\left(f_{A} \diamond \mathcal{X}_{S}\right) \diamond f_{A} \sqsubseteq$ f_{A}.

- A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called DFS idempotent if $f_{A} \diamond f_{A}=f_{A}$.
- A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called DFS semiprime if $f_{A}(x) \sqsupseteq f_{A}\left(x^{2}\right), \forall x \in A$.
Lemma 3.3. Let A be any right (left, bi-) ideal of an ordered $\mathcal{A \mathcal { G }}$-groupoid S. Then A is semiprime (idempotent) if and only if \mathcal{X}_{A} is DFS semiprime (DFS idempotent). Proof. Let A be a right (left, bi-) ideal of S, then by Lemma 3.1, \mathcal{X}_{A} is a DFS r (DFS l-, DFS bi-) ideal of S over U. Let $a^{2} \in A$, then $\mathcal{X}_{A}^{+}(a) \supseteq \mathcal{X}_{A}^{+}\left(a^{2}\right)$, therefore $\mathcal{X}_{A}^{+}\left(a^{2}\right)=U \subseteq \mathcal{X}_{A}^{+}(a)$, this implies $\mathcal{X}_{A}^{+}(a)=U$ and similarly $\mathcal{X}_{A}^{-}(a)=\emptyset$. Thus $a \in A$ and therefore A is semiprime. Converse is simple. Similarly we can show that the required result holds for the case of idempotent condition.
Remark 3.4. The set $(\operatorname{DFS}(U), \diamond, \sqsubseteq)$ forms an ordered $\mathcal{A \mathcal { G }}$-groupoid and satisfies all the basic laws.
Remark 3.5. If S is an ordered $\mathcal{A} \mathcal{G}$-groupoid, then $\mathcal{X}_{S} \diamond \mathcal{X}_{S}=\mathcal{X}_{S}$.
The following result also holds for an ordered smemigroup [12] just because of the closure property which is very trivial for an ordered $\mathcal{A \mathcal { G }}$-groupoid to hold the same Lemma.
Lemma 3.6. Let S be an ordered $\mathcal{A \mathcal { G }}$-groupoid. For $\emptyset \neq A, B \subseteq S$, the following assertions hold:
(i) $A \subseteq B \Leftrightarrow \mathcal{X}_{A} \sqsubseteq \mathcal{X}_{B}$;
(ii) $\mathcal{X}_{A} \sqcap \mathcal{X}_{B}=\mathcal{X}_{A \cap B}$;
(iii) $\mathcal{X}_{A} \sqcup \mathcal{X}_{B}=\mathcal{X}_{A \cup B}$;
(iv) $\mathcal{X}_{A} \diamond \mathcal{X}_{B}=\mathcal{X}_{(A B]}$.

4. On DFS strongly regular ordered $\mathcal{A G}$-groupoids

Throughout this paper, let $E=S$, where S is an ordered $\mathcal{A G}$-groupoid, unless otherwise stated.

4.1. Basic Results

Example 4.1. There are six students in the initial universe set U given by

$$
U=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\} .
$$

Let a set of parameters $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be a set of status of each student in U with the following type of grades:
e_{0} stands for the parameter "A-grade",
e_{1} stands for the parameter " B^{+}-grade",
e_{2} stands for the parameter "B-grade",
e_{3} stands for the parameter " C^{+}-grade",
e_{4} stands for the parameter "C-grade",
with the following binary operation and order given below.

Then $(E, *, \leq)$ is an ordered $\mathcal{A G}$-groupoid with left identity e_{2}. Let $A=$ $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ and define a DFS-set $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U as follows:
$f_{A}^{+}(x)=\left\{\begin{array}{c}\left\{s_{1}, s_{2}, s_{3}\right\} \text { if } x=e_{0} \\ \left\{s_{1}, s_{2}, s_{3}, s_{4}\right\} \text { if } x=e_{1} \\ \left\{s_{2}, s_{3}\right\} \text { if } x=e_{2} \\ \left\{s_{1}, s_{2}, s_{3}, s_{4}\right\} \text { if } x=e_{3}\end{array}\right\}$ and $f_{A}^{-}(x)=\left\{\begin{array}{c}\left\{s_{1}, s_{2}, s_{4}, s_{5}\right\} \text { if } x=e_{0} \\ \left\{s_{1}, s_{2}, s_{4}\right\} \text { if } x=e_{1} \\ U \text { if } x=e_{2} \\ \left\{s_{1}, s_{2}, s_{4}\right\} \text { if } x=e_{3}\end{array}\right\}$.

Then it is easy to verify that $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a DFS l-ideal of S over U.
Let $B=\left\{e_{0}, e_{1}, e_{3}, e_{4}\right\}$ and define a DFS-set $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ of S over U as follows:

$$
\begin{gathered}
g_{B}^{+}(x)=\left\{\begin{array}{c}
\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\} \text { if } x=e_{0} \\
U \text { if } x=e_{1} \\
\left\{s_{2}, s_{3}, s_{4}, s_{5}\right\} \text { if } x=e_{3} \\
\left\{s_{3}, s_{4}, s_{5}, s_{6}\right\} \text { if } x=e_{4}
\end{array}\right\} \text { and } \\
g_{B}^{-}(x)=\left\{\begin{array}{c}
\left\{s_{2}, s_{3}\right\} \text { if } x=e_{0} \\
\left\{s_{3}\right\} \text { if } x=e_{1} \\
\left\{s_{3}, s_{4}\right\} \text { if } x=e_{3} \\
U \text { if } x=e_{4}
\end{array}\right\} .
\end{gathered}
$$

Then it is easy to verify that $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ is a DFS r-ideal of S over U.
Let us explore the relationship between DFS idempotent subsets of a unitary ordered $\mathcal{A G}$-groupoid S and its DFS bi-ideals, explicitly, when will a DFS idempotent subset of S be a DFS bi-ideal. We answer this question in the following Proposition.
Proposition 4.2. Let f_{A} be a DFS idempotent subset of a unitary ordered $\mathcal{A G}$ groupoid S over U, and let $f_{A}=g_{B} \diamond h_{C}$ for a DFS l-ideal h_{C} and a DFS r-ideal g_{B} of S over U. Then f_{A} is a DFS bi-ideal of S over U.
Proof. By using Lemma 3.2, we have

$$
\left(f_{A} \diamond \mathcal{X}_{S}\right) \diamond f_{A}=\left(f_{A} \diamond \mathcal{X}_{S}\right) \diamond\left(f_{A} \diamond f_{A}\right) \sqsubseteq\left(g_{B} \diamond \mathcal{X}_{S}\right) \diamond\left(\mathcal{X}_{S} \diamond h_{C}\right) \sqsubseteq g_{B} \diamond h_{C}=f_{A} .
$$

Another question is the realization of DFS-subsets f_{A} of an ordered $\mathcal{A \mathcal { G }}$-groupoid which are both DFS idempotent and DFS bi-ideal. This is given in the following Proposition.
Proposition 4.3. Let f_{A} be a DFS idempotent subset and DFS bi-ideal of a unitary ordered $\mathcal{A G}$-groupoid S over U. Then there exist a DFS l-ideal h_{C} and a DFS r-ideal g_{B} of S over U such that $f_{A}=g_{B} \diamond h_{C}$.
Proof. Necessity. Assume that f_{A} is a DFS bi-ideal of S over U such that f_{A} is DFS idempotent. Setting $h_{C}=\mathcal{X}_{S} \diamond f_{A}$ and $g_{B}=\mathcal{X}_{S} \diamond f_{A}^{2}$, then by using Lemma
3.2, we have

$$
\begin{aligned}
g_{B} \diamond h_{C} & =\left(\mathcal{X}_{S} \diamond f_{A}^{2}\right) \diamond\left(\mathcal{X}_{S} \diamond f_{A}\right)=\left(f_{A}^{2} \diamond \mathcal{X}_{S}\right) \diamond\left(\mathcal{X}_{S} \diamond f_{A}\right) \\
& =\left(\left(\mathcal{X}_{S} \diamond f_{A}\right) \diamond\left(\mathcal{X}_{S} \diamond \mathcal{X}_{S}\right)\right) \diamond f_{A}^{2}=\left(\left(\mathcal{X}_{S} \diamond \mathcal{X}_{S}\right) \diamond\left(f_{A} \diamond \mathcal{X}_{S}\right)\right) \diamond f_{A}^{2} \\
& =\left(\mathcal{X}_{S} \diamond\left(\left(f_{A} \diamond f_{A}\right) \diamond\left(\mathcal{X}_{S} \diamond \mathcal{X}_{S}\right)\right)\right) \diamond f_{A}^{2} \\
& =\left(\mathcal{X}_{S} \diamond\left(\left(\mathcal{X}_{S} \diamond \mathcal{X}_{S}\right) \diamond\left(f_{A} \diamond f_{A}\right)\right)\right) \diamond f_{A}^{2} \\
& =\left(\mathcal{X}_{S} \diamond\left(f_{A} \diamond\left(\mathcal{X}_{S} \diamond f_{A}\right)\right)\right) \diamond f_{A}^{2}=\left(f_{A} \diamond\left(\mathcal{X}_{S} \diamond\left(\mathcal{X}_{S} \diamond f_{A}\right)\right)\right) \diamond f_{A}^{2} \\
& \sqsubseteq\left(f_{A} \diamond \mathcal{X}_{S}\right) \diamond f_{A}^{2} \sqsubseteq f_{A},
\end{aligned}
$$

and $f_{A}=f_{A}^{2} \sqsubseteq\left(\mathcal{X}_{S} \diamond f_{A}^{2}\right) \diamond\left(\mathcal{X}_{S} \diamond f_{A}\right)=g_{B} \diamond h_{C}$.
The Propositions 4.2 and 4.3 combined together give us a characterization Theorem which we state in the following.

Theorem 4.4. Let S be a unitary ordered $\mathcal{A \mathcal { G }}$-groupoid and f_{A} be a DFS idempotent subset of S over U. Then f_{A} is a DFS bi-ideal of S over U if and only if there exist a DFS l-ideal h_{C} and a DFS r-ideal g_{B} of S over U such that $g_{B} \diamond h_{C}=f_{A}$.
Remark 4.5. Every DFS r-ideal of a unitary ordered $\mathcal{A} \mathcal{G}$-groupoid S over U is a DFS l-ideal of S over U but the converse inclusion is not true in general which can be followed from Example 4.1.

Note that if S is a unitary ordered $\mathcal{A G}$-groupoid, then $(S S]=S$.
Lemma 4.6. Let R be a right ideal and L be a left ideal of a unitary ordered $\mathcal{A G}$-groupoid S. Then ($R L]$ is a left ideal of S.
Proof. Let R and L be any left and right ideals of S respectively. Then by using Lemma 2.1, we get

$$
\begin{aligned}
S(R L] & =(S S](R L] \subseteq(S S \cdot R L]=(S R \cdot S L] \subseteq(S R \cdot(S L]])=(S R \cdot L] \\
& =((S S] R \cdot L] \subseteq((S S) R \cdot L]=((R S) S \cdot L] \subseteq((R S] S \cdot L] \subseteq(R L],
\end{aligned}
$$

which shows that $(R L]$ is a left ideal of S.
An element a of an ordered $\mathcal{A G}$-groupoid S is called a strongly regular element of S, if there exists some x in S such that $a \leq a x \cdot a$ and $a x=x a$, where x is called a pseudo-inverse of a. S is called strongly regular ordered $\mathcal{A \mathcal { G }}$-groupoid if all elements of S are strongly regular.

A completely inverse ordered $\mathcal{A G}$-groupoid S is an ordered $\mathcal{A \mathcal { G }}$-groupoid satisfying the identity $a x=x a$, where x is a strong inverse of a, that is, $a \leq a x \cdot a$ and $x \leq x a \cdot x, \forall a \in S$.
Lemma 4.7. Let S be a unitary ordered $\mathcal{A G}$-groupoid. Then E is a semilattice, where E is the set of all idempotents of S.

Proof. It is simple.
Theorem 4.8. A strongly regular unitary ordered $\mathcal{A} \mathcal{G}$-groupoid S is completely inverse if and only if E is a semilattice.
Proof. Necessity. It can be followed from Lemma 4.7.
Sufficiency. Let $a \in S$ and Suppose $a^{\prime}, a^{\prime \prime} \in S$ are inverses of a. Then $a \leq a a^{\prime} \cdot a$, $a^{\prime} \leq a^{\prime} a \cdot a^{\prime}, a^{\prime} a=a a^{\prime}$ and $a \leq a a^{\prime \prime} \cdot a, a^{\prime \prime} \leq a^{\prime \prime} a \cdot a^{\prime \prime}, a^{\prime \prime} a=a a^{\prime \prime}$. Clearly $a a^{\prime}, a a^{\prime \prime} \in E$. Thus $a a^{\prime} \leq\left(a a^{\prime \prime} \cdot a\right) a^{\prime}=a^{\prime} a \cdot a a^{\prime \prime}=a^{\prime \prime} a \cdot a a^{\prime}=\left(a a^{\prime}\right) a \cdot a^{\prime \prime} \leq a a^{\prime \prime}$. Therefore $a^{\prime} \leq a^{\prime} a \cdot a^{\prime} \leq a^{\prime \prime} a \cdot a^{\prime} \leq a^{\prime} a \cdot a^{\prime \prime}=a^{\prime \prime} a \cdot a^{\prime \prime} \leq a^{\prime \prime}$.

An ordered $\mathcal{A \mathcal { G }}$-groupoid S is called an ordered $\mathcal{A G}^{* *}$-groupoid if it satisfies the identity $a \cdot b c=b \cdot a c$, for all $a, b, c \in S$ [3].

Note that every unitary ordered $\mathcal{A G}$-groupoid is an ordered $\mathcal{A G}^{* *}$-groupoid but the converse is not true in general [27].
Corollary 4.9. A strongly regular ordered $\mathcal{A G}^{* *}$-groupoid S is completely inverse if and only if E is a semilattice.
Theorem 4.10. A strongly regular ordered $\mathcal{A G}$-groupoid is an ordered $\mathcal{A G}{ }^{* *}$ groupoid if and only if E is a semilattice.
Proof. Necessity. It can be followed from Lemma 4.7.
Sufficiency. Let $a, b, c \in S$, then there exist $a^{\prime}, b^{\prime}, c^{\prime} \in S$ such that $a \cdot b c \leq$ $\left(a a^{\prime} \cdot b b^{\prime} \cdot c c^{\prime}\right)(a \cdot b c)$, as clearly $a a^{\prime}, b b^{\prime}, c c^{\prime} \in E$. Therefore

$$
\begin{aligned}
a \cdot b c & \leq\left(a a^{\prime} \cdot a\right)(b c)=(b c \cdot a)\left(a a^{\prime}\right)=(a c \cdot b)\left(a a^{\prime}\right)=\left(a a^{\prime} \cdot b\right)(a c) \\
& \leq\left(a a^{\prime} \cdot b\right) \cdot\left(a a^{\prime} \cdot a\right)\left(c c^{\prime} \cdot c\right)=\left(a a^{\prime} \cdot b\right) \cdot\left(a a^{\prime} \cdot c c^{\prime}\right)(a c) \\
& =\left(a a^{\prime} \cdot a a^{\prime} \cdot c c^{\prime}\right) \cdot(b \cdot a c) \leq\left(a a^{\prime} \cdot a a^{\prime} \cdot c c^{\prime}\right) \cdot\left(b b^{\prime} \cdot a a^{\prime} \cdot c c^{\prime}\right)(b \cdot a c) \\
& =\left(a a^{\prime} \cdot b b^{\prime} \cdot a a^{\prime} \cdot c c^{\prime}\right) \cdot\left(a a^{\prime} \cdot c c^{\prime}\right)(b \cdot a c) \\
& =\left(b b^{\prime} \cdot b b^{\prime} \cdot a a^{\prime} \cdot c c^{\prime}\right) \cdot\left(a a^{\prime} \cdot c c^{\prime}\right)(b \cdot a c) \\
& =\left(b b^{\prime} \cdot a a^{\prime} \cdot c c^{\prime}\right) \cdot\left(b b^{\prime} \cdot a a^{\prime} \cdot c c^{\prime}\right)(b \cdot a c) \\
& =\left(b b^{\prime} \cdot a a^{\prime} \cdot c c^{\prime}\right)(b \cdot a c) \leq b \cdot a c .
\end{aligned}
$$

Hence S is an ordered $\mathcal{A} \mathcal{G}^{* *}$-groupoid.
Theorem 4.11. Let S be a unitary ordered $\mathcal{A G}$-groupoid. An element a of S is strongly regular if and only if $a \leq a x \cdot$ ay for some $x, y \in S\left(a \leq b a^{2} \cdot c\right.$ for some $b, c \in S)$.
Proof. Necessity. Let $a \in S$ is strongly regular, then $a \leq a x \cdot a \leq(a x) \cdot(x a)(a x \cdot a)=$ $(a x) \cdot(a \cdot a x)(a x)=(a x) \cdot a((a \cdot a x) x)=a x \cdot a y$, where $(a \cdot a x) x=y \in S$. Thus $a \leq a x \cdot a y$ for some $x, y \in S$. Also, $a \leq a x \cdot a \leq(a x)(a x \cdot a y)=(a x)\left(a^{2} \cdot x y\right)=$ $\left(x y \cdot a^{2}\right)(x a)=b a^{2} \cdot c$, where $x y=b \in S$ and $x a=c \in S$.

Sufficiency. Let $a \in S$ such that $a \leq a x \cdot a y$ for some $x, y \in S$, then $a \leq a x \cdot a y=$ $(a y \cdot x) a=(x y \cdot a) a=u a \cdot a$, where $x y=u \in S$. Thus $a u \leq(u a \cdot a) u=u a \cdot u a=$
$u(u a \cdot a) \leq u a$, and $a \leq u a \cdot a=a u \cdot a$. Also if $a \in S$ such that $a \leq b a^{2} \cdot c$ for some $b, c \in S$, then it is easy to show that $a v \leq v a$ and $a \leq a v \cdot a$ for some $v \in S$. Thus S is strongly regular.
Corollary 4.12. The strongly regular, weakly regular and intra-regular classes of a unitary ordered $\mathcal{A} \mathcal{G}$-groupoid coincide.
Lemma 4.13. Let $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ be any DFS r-ideal (DFS l-ideal, $D F S$ bi-ideal) of a strongly regular unitary ordered $\mathcal{A \mathcal { G }}$-groupoid S over U. Then the following assertions hold:
(i) $f_{A}=f_{A} \diamond S\left(f_{A}=S \diamond f_{A}, f_{A}=\left(f_{A} \diamond S\right) \diamond f_{A}\right)$;
(ii) f_{A} is DFS idempotent (DFS semiprime).

Proof. It is simple.

4.2. Characterization Problems

In this section, we generalize the results of an ordered semigroup and get some interesting characterizations which we usually do not find in an ordered semigroup. Theorem 4.14. Let R (resp. L) be any right (resp. left) ideal and f_{A}, g_{B} be any DFS l-ideals of a unitary ordered $\mathcal{A \mathcal { G }}$-groupoid S. Then the following conditions are equivalent:
(i) S is strongly regular;
(ii) $(R L] \cap L=\left(R \cdot R L^{3}\right]$ and R is idempotent;
(iii) $f_{A} \sqcap g_{B}=\left(f_{A} \diamond g_{B}\right) \diamond f_{A}$ and f_{A} is DFS idempotent.

Proof. $(i) \Longrightarrow(i i i)$: Let f_{A} and g_{B} be any DFS l-ideals of a strongly regular S over U. Now for $a \in S$, there exist some $x, y \in S$ such that $a \leq a x \cdot a y=$ $y a \cdot x a \leq y(a x \cdot a y) \cdot x a=(a x)(y \cdot a y) \cdot x a=(a y \cdot y)(x a) \cdot x a=\left(y^{2} a \cdot x a\right)(x a)$. Thus $\left(y^{2} a \cdot x a, x a\right) \in A_{a}$. Therefore

$$
\begin{aligned}
\left(\left(f_{A}^{+} \sim g_{B}^{+}\right) \sim f_{A}^{+}\right)(a) & =\bigcup_{\left(y^{2} a \cdot x a, x a\right) \in A_{a}}\left\{\left(f_{A}^{+} \sim g_{B}^{+}\right)\left(y^{2} a \cdot x a\right) \cap f_{A}^{+}(x a)\right\} \\
& \supseteq \bigcup_{\left(y^{2} a, x a\right) \leq\left(y^{2} a, x a\right)}\left\{f_{A}^{+}\left(y^{2} a\right) \cap g_{B}^{+}(x a)\right\} \cap f_{A}^{+}(x a) \\
& \supseteq f_{A}^{+}\left(y^{2} a\right) \cap g_{B}^{+}(x a) \cap f_{A}^{+}(x a) \supseteq f_{A}^{+}(a) \cap g_{B}^{+}(a)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(f_{A}^{-} \tilde{\star} g_{B}^{-}\right) \tilde{\star} f_{A}^{-}\right)(a) & =\bigcap_{\left(y^{2} a \cdot x a, x a\right) \in A_{a}}\left\{\left(f_{A}^{-} \tilde{\star} g_{B}^{-}\right)\left(y^{2} a \cdot x a\right) \cup f_{A}^{-}(x a)\right\} \\
& \subseteq \bigcap_{\left(y^{2} a, x a\right) \leq\left(y^{2} a, x a\right)}\left\{f_{A}^{-}\left(y^{2} a\right) \cup g_{B}^{-}(x a)\right\} \cup f_{A}^{-}(x a) \\
& \subseteq f_{A}^{-}\left(y^{2} a\right) \cup g_{B}^{-}(x a) \cup f_{A}^{-}(x a) \subseteq f_{A}^{-}(a) \cup g_{B}^{-}(a)
\end{aligned}
$$

which shows that $\left(f_{A} \diamond g_{B}\right) \diamond f_{A} \sqsupseteq f_{A} \sqcap g_{B}$. By using Lemmas 3.2 and 4.13, it is easy to show that $\left(f_{A} \diamond g_{B}\right) \diamond f_{A} \sqsubseteq f_{A} \sqcap g_{B}$. Thus $f_{A} \sqcap g_{B}=\left(f_{A} \diamond g_{B}\right) \diamond f_{A}$ and by Lemma $4.13 \mathrm{f}=\mathrm{fg}, f_{A}$ is $D F S$ idempotent.
$($ iii $) \Longrightarrow(i i):$ Let R and L be any right and left ideals of S respectively. Then by using Lemmas 3.1 and 4.6, $\mathcal{X}_{(R L]}$ and \mathcal{X}_{L} are DFS l-ideals of S over U. Now by using Lemma 3.6, we get

$$
\mathcal{X}_{(R L] \cap L}=\mathcal{X}_{(R L]} \sqcap \mathcal{X}_{L}=\left(\mathcal{X}_{(R L]} \diamond \mathcal{X}_{L}\right) \diamond \mathcal{X}_{(R L]}=\mathcal{X}_{((R L] L \cdot(R L]]},
$$

which give us $(R L] \cap L=((R L] L \cdot(R L]]$. Now by using Lemma 2.1applied, we get

$$
\begin{aligned}
((R L] L \cdot(R L]] & =((R L) L \cdot R L]=\left(L^{2} R \cdot R L\right]=\left(L R \cdot R L^{2}\right]=\left(R\left(L R \cdot L^{2}\right)\right] \\
& =\left(R\left(L^{2} \cdot R L\right)\right]=\left(R\left(R \cdot L^{2} L\right)\right]=\left(R \cdot R L^{3}\right],
\end{aligned}
$$

which implies that $(R L] \cap L=\left(R \cdot R L^{3}\right]$. Since \mathcal{X}_{R} is a DFS r-ideal of S over U, so it is also a DFS l-ideal of S over U Remark 4.5. Thus by using the given assumption and Lemma 3.3 semidem, R is idempotent.
$(i i) \Longrightarrow(i)$: It is easy to see that $\left(S a^{2}\right]$ and ($\left.S a\right]$ are the right and left ideals of S respectively. Setting $R=\left(S a^{2}\right]$ and $L=(S a]$, then by using the given assumption and Lemma 2.1, we have $R=\left(S a^{2}\right]=(S S \cdot a a]=(S a \cdot S a]=((S a](S a]]=$ (Sa], therefore $R L=\left(S a^{2}\right](S a]=(S a](S a]=(S a]$, and clearly $a \in(S a]$. Thus $\left.a \in\left(\left(S a^{2}\right](S a]\right] \cap(S a]=\left(\left(S a^{2}\right] \cdot\left(S a^{2}\right](S a]^{3}\right]=\left((S a] \cdot(S a](S a]^{3}\right]=((S a])(S a]\right)=$ $(S a \cdot S a]=(a S \cdot a S]$. Hence S is strongly regular.
Theorem 4.15. Let f_{A}, g_{B} and h_{C} be any DFS r-ideal, DFS bi-ideal and DFS l-ideal of a unitary ordered $\mathcal{A} \mathcal{G}$-groupoid S respectively. Then S is strongly regular if and only if $f_{A} \sqcap g_{B} \sqcap h_{C}=\left(f_{A}^{2} \diamond g_{B}^{2}\right) \diamond h_{C}^{2}$ and f_{A} is DFS semiprime.
Proof. Necessity: Assume that f_{A}, g_{B} and h_{C} be any DFS r-ideal, $D F S$ bi-ideal and DFS l-ideal of S over U respectively. Now by using Lemmas 3.2 and 4.13, we have

$$
\begin{aligned}
& \left(f_{A}^{+^{2}} \tilde{\circ} g_{B}^{+^{2}}\right) \widetilde{\circ} h_{C}^{+^{2}}=\left(h_{C}^{+^{2}} \sim g_{B}^{+^{2}}\right) \widetilde{\circ}\left(f_{A}^{+\tau^{*}} \tilde{\rho_{A}^{+}}\right)=f_{A}^{+{ }^{+}} \tilde{\circ}\left(\left(h_{C}^{+2} \sim g_{B}^{+^{2}}\right) \tilde{\circ} f_{A}^{+}\right) \subseteq f_{A}^{+} \sim \mathcal{X}_{S}^{+} \subseteq f_{A}^{+}, \\
& \left(f_{A}^{+^{2}} \tilde{\circ} g_{B}^{+^{2}}\right) \sim h_{C}^{+^{2}}=\left(f_{A}^{+^{2}} \tilde{\circ}\left(g_{B}^{+} \tilde{\circ} g_{B}^{+}\right)\right) \tilde{\circ} h_{C}^{+^{2}}=\left(g_{B}^{+} \tilde{\circ}\left(f_{A}^{+^{2}} \tilde{\circ} g_{B}^{+}\right)\right) \sim h_{C}^{+^{2}} \\
& =\left(h_{C}^{+^{2}} \tilde{\circ}\left(f_{A}^{+^{2}} \tilde{\circ} g_{B}^{+}\right)\right) \tilde{\circ} g_{B}^{+}=\left(h_{C}^{+^{2}} \tilde{\circ}\left(\left(g_{B}^{+} \sim f_{A}^{+}\right) \tilde{\circ} f_{A}^{+}\right)\right) \sim g_{B}^{+} \\
& =\left(\left(g_{B}^{+} \tilde{\circ} f_{A}^{+}\right) \sim\left(h_{C}^{+2} \sim f_{A}^{+}\right)\right) \approx g_{B}^{+} \\
& =\left(\left(f_{A}^{+} \tilde{\circ} h_{C}^{+2}\right) \tilde{\circ}\left(f_{A}^{+} \tilde{\circ} g_{B}^{+}\right)\right) \tilde{\circ} g_{B}^{+}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\left(f_{A}^{+} \sim h_{C}^{+2}\right) \sim\left(f_{A}^{+} \sim\left(g_{B}^{+} \sim g_{B}^{+}\right)\right)\right) \sim g_{B}^{+} \\
& =\left(\left(f_{A}^{+} \tilde{\circ} h_{C}^{+2}\right) \sim\left(g_{B}^{+} \tilde{\circ}\left(f_{A}^{+} \tilde{\circ} g_{B}^{+}\right)\right)\right) \sim g_{B}^{+} \\
& =\left(g_{B}^{+} \tilde{\circ}\left(\left(f_{A}^{+} \sim h_{C}^{+2}\right) \sim\left(f_{A}^{+} \tilde{\circ} g_{B}^{+}\right)\right)\right) \sim g_{B}^{+} \\
& \subseteq\left(g_{B}^{+} \sim \mathcal{X}_{S}^{+}\right) \sim g_{B}^{+} \subseteq g_{B}^{+}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(f_{A}^{+^{2}} \tilde{\circ} g_{B}^{+^{2}}\right) \tilde{\circ} h_{C}^{+^{2}} & =\left(f_{A}^{+^{2}} \tilde{\circ} g_{B}^{+^{2}}\right) \tilde{\circ}\left(h_{C}^{+} \tilde{\circ} h_{C}^{+}\right)=\left(h_{C}^{+} \tilde{\circ} h_{C}^{+}\right) \tilde{\circ}\left(g_{B}^{+^{2}} \tilde{\circ} f_{A}^{+^{2}}\right) \\
& =\left(\left(g_{B}^{+2} \sim f_{A}^{+2}\right) \tilde{\circ} h_{C}^{+}\right) \sim h_{C}^{+} \subseteq \mathcal{X}_{S}^{+} \tilde{\circ} h_{C}^{+} \subseteq h_{C}^{+} .
\end{aligned}
$$

Therefore $\left(f_{A}^{+^{2}} \sim g_{B}^{+^{2}}\right) \sim h_{C}^{+^{2}} \subseteq f_{A}^{+} \cap g_{B}^{+} \cap h_{C}^{+}$, and similarly $\left(f_{A}^{-^{2}} \tilde{\star} g_{B}^{-2}\right) \stackrel{\sim}{\star} h_{C}^{-2} \supseteq$ $f_{A}^{-} \cup g_{B}^{-} \cup h_{C}^{-}$.

Thus $\left(f_{A}^{2} \diamond g_{B}^{2}\right) \diamond h_{C}^{2} \sqsubseteq f_{A} \sqcap g_{B} \sqcap h_{C}$. Now for $a \in S$, there exist $x, y \in S$ such that

$$
\begin{aligned}
a & \leq a x \cdot a y \leq(a x \cdot a y) x \cdot(a x \cdot a y) y=(a x \cdot a y) \cdot((a x \cdot a y) x) y \\
& =(a a \cdot x y) \cdot((a x \cdot a y) x) y=(((a x \cdot a y) x) y \cdot x y)(a a) \\
& =((y x)(a x \cdot a y) \cdot x y)(a a)=((y x)(y x \cdot a a) \cdot x y)(a a) \\
& =((y x)(a \cdot(y x) a) \cdot x y)(a a)=(a(y x \cdot(y x) a) \cdot x y)(a a) \\
& =((x y)(y x \cdot(y x) a) \cdot a)(a a)=((x \cdot y x)(y \cdot(y x) a) \cdot a)(a a) \\
& =\left(\left(y x^{2}\right)(y x \cdot y a) \cdot a\right)(a a)=\left(\left(y x^{2}\right)(y y \cdot x a) \cdot a\right)(a a) \\
& =\left(\left(y x^{2}\right)\left(a x \cdot y^{2}\right) \cdot a\right)(a a)=\left((a x)\left(y x^{2} \cdot y^{2}\right) \cdot a\right)(a a) \\
& \leq\left(((a x \cdot a y) x)\left(y x^{2} \cdot y^{2}\right) \cdot a\right)(a a)=\left(\left(\left(y x^{2} \cdot y^{2}\right) x\right)(a x \cdot a y) \cdot a\right)(a a) \\
& =\left(\left(x y^{2} \cdot y x^{2}\right)(a x \cdot a y) \cdot a\right)(a a)=\left((a x)\left(\left(x y^{2} \cdot y x^{2}\right)(a y)\right) \cdot a\right)(a a) \\
& =\left(\left(\left(\left(x y^{2} \cdot y x^{2}\right)(a y)\right) x\right) a \cdot a\right)(a a)=\left(\left((x \cdot a y)\left(x y^{2} \cdot y x^{2}\right)\right) a \cdot a\right)(a a) \\
& =\left(\left((a \cdot x y)\left(x y^{2} \cdot y x^{2}\right)\right) a \cdot a\right)(a a)=\left(\left(\left(y x^{2} \cdot x y^{2}\right)(x y \cdot e a)\right) a \cdot a\right)(a a) \\
& =\left(\left(\left(y x^{2} \cdot x y^{2}\right)(a e \cdot y x)\right) a \cdot a\right)(a a)=\left(\left(a e \cdot\left(y x^{2} \cdot x y^{2}\right)(y x)\right) a \cdot a\right)(a a) \\
& =((a e \cdot b) a \cdot a)(a a), \text { where } b=\left(y x^{2} \cdot x y^{2}\right)(y x) .
\end{aligned}
$$

This showing that $((a e \cdot b) a \cdot a, a a) \in A_{a}$. Therefore

$$
\begin{aligned}
f_{A}^{+2}((a e \cdot b) a) & =\left(f_{A}^{+} \tilde{\circ} f_{A}^{+}\right)((a e \cdot b) a)=\bigcup_{(a e \cdot b, a) \leq(a e \cdot b, a)} f_{A}^{+}(a e \cdot b) \cap f_{A}^{+}(a) \\
& \supseteq f_{A}^{+}\left(a e \cdot\left(y x^{2} \cdot x y^{2}\right)(y x)\right) \cap f_{A}^{+}(a) \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(a)=f_{A}^{+}(a)
\end{aligned}
$$

Also $h_{C}^{+^{2}}(a a)=\left(h_{C}^{+} \sim h_{C}^{+}\right)(e a \cdot e a) \supseteq h_{C}^{+}(a)$. Similarly we can show that $g_{B}^{+^{2}}(a) \supseteq$ $g_{B}^{+}(a)$. Therefore

$$
\begin{aligned}
\left(\left(f_{A}^{+^{2}} \sim g_{B}^{+^{2}}\right) \sim h_{C}^{+^{2}}\right)(a) & =\bigcup_{a \leq((a e \cdot b) a \cdot a)(a a)}\left\{f_{A}^{+^{2}}((a e \cdot b) a) \cap g_{B}^{+^{2}}(a) \cap h_{C}^{+^{2}}(a a)\right\} \\
& \supseteq f_{A}^{+}(a) \cap g_{B}^{+}(a) \cap h_{C}^{+}(a)
\end{aligned}
$$

which shows that $\left(f_{A}^{+^{2}} \sim g_{B}^{+^{2}}\right) \widetilde{\sim} h_{C}^{+^{2}} \supseteq f_{A}^{+} \cap g_{B}^{+} \cap h_{C}^{+}$and similarly $\left(f_{A}^{-2} \sim g_{\mathcal{B}}^{-2}\right) \stackrel{\sim}{\star} h_{C}^{-2} \subseteq$ $f_{A}^{-} \cup g_{B}^{-} \cup h_{C}^{-}$. Thus $\left(f_{A}^{2} \diamond g_{B}^{2}\right) \diamond h_{C}^{2} \sqsupseteq f_{A} \sqcap g_{B} \sqcap h_{C}$. Hence $f_{A} \sqcap g_{B} \sqcap h_{C}=\left(f_{A}^{2} \sim g_{B}^{+{ }^{2}}\right) \widetilde{\sim} h_{C}^{2}$.

Sufficiency: Let f_{A} be any DFS r-ideal and h_{A} be any DFS l-ideal of S over U respectively. Since \mathcal{X}_{S} is a $D F S$ bi-ideal of S over U, we get

$$
\begin{aligned}
& f_{A}^{+} \cap h_{C}^{+}=f_{A}^{+} \cap \mathcal{X}_{S}^{+} \cap h_{C}^{+}=\left(f_{A}^{+^{2}} \sim \mathcal{X}_{S}^{+^{2}}\right) \sim h_{C}^{+^{2}}=\left(\mathcal{X}_{S}^{+^{2}} \sim f_{A}^{+^{2}}\right) \sim h_{C}^{+^{2}} \\
& =\left(\left(f_{A}^{+^{2}} \sim \mathcal{X}_{S}^{+}\right) \sim \mathcal{X}_{S}^{+}\right) \sim h_{C}^{+^{2}}=\left(\left(\mathcal{X}_{S}^{+} \sim f_{A}^{+^{2}}\right) \sim \mathcal{X}_{S}^{+}\right) \sim h_{C}^{+2} \\
& =\left(h_{C}^{+^{2}} \sim \mathcal{X}_{S}^{+}\right) \approx\left(\mathcal{X}_{S}^{+} \sim f_{A}^{+^{2}}\right)=\left(f_{A}^{+^{2}} \sim \mathcal{X}_{S}^{+}\right) \approx\left(\mathcal{X}_{S}^{+} \sim h_{C}^{+^{2}}\right) \\
& =\left(\left(f_{A}^{+} \sim \mathcal{X}_{S}^{+}\right) \sim\left(f_{A}^{+} \sim \mathcal{X}_{S}^{+}\right)\right) \sim\left(\left(\mathcal{X}_{S}^{+} \sim h_{C}^{+}\right) \sim\left(\mathcal{X}_{S}^{+} \circ h_{C}^{+}\right)\right) \\
& =\left(\left(f_{A}^{+} \sim \mathcal{X}_{S}^{+}\right) \sim\left(\mathcal{X}_{S}^{+} \sim h_{C}^{+}\right)\right) \sim\left(\left(f_{A}^{+} \sim \mathcal{X}_{S}^{+}\right) \sim\left(\mathcal{X}_{S}^{+} \sim h_{C}^{+}\right)\right) \\
& \subseteq\left(f_{A}^{+} \sim h_{C}^{+}\right) \sim\left(f_{A}^{+} \sim h_{C}^{+}\right),
\end{aligned}
$$

which shows that $f_{A}^{+} \cap h_{C}^{+} \subseteq\left(f_{A}^{+} \sim h_{C}^{+}\right) \sim\left(f_{A}^{+} \sim h_{C}^{+}\right)$. Now for any $a \in S$, if $a \not \leq b c$, for some $b, c \in S$, then the proof is straightforward. Let $a \leq b c$, for some $b, c \in S$. Then

$$
\begin{aligned}
\left(\left(f_{A}^{+} \sim h_{C}^{+}\right) \sim\left(f_{A}^{+} \sim h_{C}^{+}\right)\right)(a) & =\left(\left(f_{A}^{+} \sim f_{A}^{+}\right) \sim\left(h_{C}^{+} \sim h_{C}^{+}\right)\right)(a) \\
& \subseteq\left(\left(f_{A}^{+} \sim \mathcal{X}_{S}^{+}\right) \sim\left(S \sim h_{C}^{+}\right)\right)(a) \\
& =\bigcup_{a \leq b c}\left\{\left(f_{A}^{+} \sim \mathcal{X}_{S}^{+}\right)(b) \cap\left(\mathcal{X}_{S}^{+} \sim h_{C}^{+}\right)(c)\right\} \\
& =\bigcup_{a \leq b c}\left\{\bigcup_{b \leq l m}\left\{f_{A}^{+}(l) \cap \mathcal{X}_{S}^{+}(m)\right\} \cap \bigcup_{c \leq o p}\left\{\mathcal{X}_{S}^{+}(o) \cap h_{C}^{+}(p)\right\}\right\} \\
& \subseteq \bigcup_{a \leq b c}\left\{\bigcup_{b \leq l m}\left\{f_{A}^{+}(l m)\right\} \cap \bigcup_{c \leq o p}\left\{h_{C}^{+}(o p)\right\}\right\} \\
& =\bigcup_{a \leq b c}\left\{f_{A}^{+}(b) \cap h_{C}^{+}(c)\right\} \subseteq \bigcup_{a \leq b c}\left\{f_{A}^{+}(b c) \cap h_{C}^{+}(b c)\right\} \\
& =f_{A}^{+}(a) \cap h_{C}^{+}(a),
\end{aligned}
$$

which implies that $\left(f_{A}^{+} \sim h_{C}^{+}\right) \tilde{\circ}\left(f_{A}^{+} \sim h_{C}^{+}\right) \subseteq f_{A}^{+} \cap h_{C}^{+}$and therefore $f_{A}^{+} \cap h_{C}^{+}=$ $\left(f_{A}^{+} \stackrel{\sim}{\circ} h_{C}^{+}\right) \stackrel{\sim}{\circ}\left(f_{A}^{+} \sim h_{C}^{+}\right)$. Similarly $f_{A}^{-} \cup h_{C}^{-}=\left(f_{A}^{-} \tilde{\star} h_{C}^{-}\right) \tilde{\star}\left(f_{A}^{-} \tilde{\star} h_{C}^{-}\right)$. Thus $f_{A} \sqcap h_{C}=$ $\left(f_{A} \diamond h_{C}\right) \diamond\left(f_{A} \diamond h_{C}\right)$. Let R and L be any right and left ideals of S. Then by using Lemma 3.1, \mathcal{X}_{R} and \mathcal{X}_{L} are the DFS r-ideal and DFS l-ideal of S over U respectively. Now by using Lemma 3.6, we get

$$
\begin{aligned}
\mathcal{X}_{R \cap L} & =\mathcal{X}_{R} \sqcap \mathcal{X}_{L}=\left(\mathcal{X}_{R} \diamond \mathcal{X}_{L}\right) \diamond\left(\mathcal{X}_{R} \diamond \mathcal{X}_{L}\right)=\left(\mathcal{X}_{R} \diamond \mathcal{X}_{R}\right) \diamond\left(\mathcal{X}_{L} \diamond \mathcal{X}_{L}\right) \\
& =\mathcal{X}_{R^{2}} \diamond \mathcal{X}_{L^{2}}=\mathcal{X}_{\left(R^{2} L^{2}\right]}=\mathcal{X}_{\left(L^{2} R^{2}\right]},
\end{aligned}
$$

which implies that $R \cap L=\left(L^{2} R^{2}\right]$. Now let $a^{2} \in R$, then $a \leq a x \cdot a y=a^{2} \cdot x y \in$ $R S \subseteq R$. Hence R is semiprime. Since ($\left.S a^{2}\right]$ and ($\left.S a\right]$ are the right and left ideals of S such that $a^{2} \in\left(S a^{2}\right]$ and $a \in(S a]$, therefore

$$
\begin{aligned}
a & \in\left(S a^{2}\right] \cap(S a]=\left(\left(S a^{2}\right]\left(S a^{2}\right]\right)\left(S a^{2}\right] \cdot(S a] \subseteq(S S]\left(S a^{2}\right] \cdot(S a] \\
& \subseteq\left((S S)\left(S a^{2}\right) \cdot(S a)\right]=\left(\left(a^{2} S\right) S \cdot S a\right]=((S S)(a a) \cdot S a] \\
& =((a a)(S S) \cdot S a]=((S a) a \cdot S a] \subseteq(S a \cdot S a]=(a S \cdot a S] .
\end{aligned}
$$

This implies that S is strongly regular.
Theorem 4.16. Let R (resp. L) be any right ideal (resp. left ideal) and f_{A} (resp. g_{B}) be any DFS r-ideal over U (resp. DFS l-ideal over U) of a unitary ordered $\mathcal{A G}$-groupoid S. Then the following conditions are equivalent:
(i) S is strongly regular;
(ii) $R \cap L=\left(R^{3} L\right]=\left(L^{3} R\right]$ and R is semiprime;
(iii) $f_{A} \sqcap g_{B}=f_{A}^{3} \diamond g_{B}=g_{B}^{3} \diamond f_{A}$ and f_{A} is DFS semiprime.

Proof. $(i) \Longrightarrow(i i i)$: Let f_{A} and g_{B} be any DFS r-ideal and DFS l-ideal of a strongly regular S over U respectively. From Lemma 3.2, it is easy to show that $f_{A}^{+3} \diamond g_{B}^{+} \sqsubseteq f_{A}^{+} \sqcap g_{B}^{+}$. Now for $a \in S$, there exist some $x, y \in S$ such that

$$
\begin{aligned}
a & \leq a x \cdot a y \leq(a x \cdot a y) x \cdot(a x \cdot a y) y=y(a x \cdot a y) \cdot x(a x \cdot a y) \\
& =(a x)(y \cdot a y) \cdot(a x)(x \cdot a y)=(a x)\left(a y^{2}\right) \cdot(a x)(a \cdot x y) \\
& =\left(y^{2} a\right)(x a) \cdot(a x)(a \cdot x y)=((a x)(a \cdot x y))(x a) \cdot y^{2} a \\
& =((a x)(a \cdot x y))(e x \cdot a) \cdot y^{2} a=((a x)(a \cdot x y))(a x \cdot e) \cdot y^{2} a \\
& =b c \cdot y^{2} a=d \cdot y^{2} a, \text { where } d=b c=((a x)(a \cdot x y))(a x \cdot e) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(\left(f_{A}^{+} \tilde{\circ} f_{A}^{+}\right) \tilde{\circ} f_{A}^{+}\right)(d) & =\bigcup_{d \leq b c}\left\{\left(f_{A}^{+} \tilde{\circ} f_{A}^{+}\right)(b) \cap f_{A}^{+}(c)\right\} \supseteq\left(f_{A}^{+} \tilde{\circ} f_{A}^{+}\right)(b) \cap f_{A}^{+}(c) \\
& =\bigcup_{b \leq(a x)(a \cdot x y)}\left\{f_{A}^{+}(a x) \cap f_{A}^{+}(a \cdot x y)\right\} \cap f_{A}^{+}(a x \cdot e) \\
& \supseteq f_{A}^{+}(a x) \cap f_{A}^{+}(a \cdot x y) \cap f_{A}^{+}(a x \cdot e) \supseteq f_{A}^{+}(a)
\end{aligned}
$$

Therefore

$$
\left(f_{A}^{+3} \sim g_{B}^{+}\right)(a)=\bigcup_{a \leq d \cdot y^{2} a}\left\{\left(\left(f_{A}^{+} \tilde{\circ} f_{A}^{+}\right) \tilde{\circ} f_{A}^{+}\right)(d) \cap g_{B}^{+}\left(y^{2} a\right)\right\} \supseteq f_{A}^{+}(a) \cap g_{B}^{+}(a),
$$

which shows that $f_{A}^{+} \cap g_{B}^{+} \subseteq f_{A}^{+3} \tilde{\circ} g_{B}^{+}$, and similarly $f_{A}^{-} \cup g_{B}^{-} \supseteq f_{A}^{-3} \tilde{\star} g_{B}^{-}$. Thus $f_{A} \sqcap g_{B}=f_{A}^{3} \diamond g_{B}$, and by Lemma 4.13, f_{A}^{+}is $D F S$ semiprime. It is easy to show that $f_{A}^{3} \diamond g_{B}=g_{A}^{3} \diamond f_{A}$, hence the proof is omitted.
$(i i i) \Longrightarrow(i i)$: Let R and L be any right and left ideals of S. Then by using Lemma 3.1, \mathcal{X}_{R} and \mathcal{X}_{L} are the DFS r-ideal and DFS l-ideal of S over U respectively. Now by using Lemma 3.6, we get

$$
\mathcal{X}_{R \cap L}=\mathcal{X}_{R} \sqcap \mathcal{X}_{L}=\left(\left(\mathcal{X}_{R} \diamond \mathcal{X}_{R}\right) \diamond \mathcal{X}_{R}\right) \diamond \mathcal{X}_{L}=\mathcal{X}_{\left(R^{3}\right]} \diamond \mathcal{X}_{L}=\mathcal{X}_{\left(\left(R^{3}\right] L\right]}=\mathcal{X}_{\left[R^{3} L\right]},
$$

which implies that $R \cap L=\left(R^{3} L\right]$ and by Lemma 3.3, R is semiprime. Also it is easy to see that $\left(R^{3} L\right]=\left(L^{3} R\right]$, hence the proof is omitted.
$(i i) \Longrightarrow(i)$: Since $\left(S a^{2}\right]$ and $(S a]$ are the right and left ideals of S such that $a^{2} \in\left(S a^{2}\right]$ and $a \in(S a]$, therefore by given assumption and Lemma 2.1, we have

$$
\begin{aligned}
a & \in\left(S a^{2}\right] \cap(S a]=\left(\left(S a^{2}\right]\left(S a^{2}\right]\right)\left(S a^{2}\right] \cdot(S a] \subseteq(S S]\left(S a^{2}\right] \cdot(S a] \\
& \subseteq\left((S S)\left(S a^{2}\right) \cdot(S a)\right]=\left(\left(a^{2} S\right) S \cdot S a\right]=((S S)(a a) \cdot S a] \\
& =((a a)(S S) \cdot S a]=((S a) a \cdot S a] \subseteq(S a \cdot S a]=(a S \cdot a S] .
\end{aligned}
$$

Thus S is strongly regular.
Theorem 4.17. Let S be a unitary ordered $\mathcal{A \mathcal { G }}$-groupoid. Then the following conditions are equivalent:
(i) S is strongly regular;
(ii) $f_{A} \sqcap g_{B}=\left(f_{A}^{3} \diamond g_{B}\right) \sqcap\left(g_{B} \diamond f_{A}^{3}\right)$ and f_{A} is DFS semiprime (for any DFS r-ideal f_{A} and DFS l-ideal g_{B} of S over U);
(iii) $f_{A} \sqcap g_{B}=\left(f_{A}^{3} \diamond g_{B}\right) \sqcap\left(g_{B} \diamond f_{A}^{3}\right)$) and f_{A} is DFS semiprime (for any DFS r-ideal f_{A} and DFS bi-ideal g_{B} of S over U);
(iv) $f_{A} \sqcap g_{B}=\left(f_{A}^{3} \diamond g_{B}\right) \sqcap\left(g_{B} \diamond f_{A}^{3}\right)$ and f_{A} is DFS semiprime (for any DFS r-ideal f_{A} and DFS generalized bi-ideal g_{B} of S over U);
(v) $f_{A} \sqcap g_{B}=\left(f_{A}^{3} \diamond g_{B}\right) \sqcap\left(g_{B} \diamond f_{A}^{3}\right)$ and f_{A}, g_{B} are DFS semiprime (for DFS bi-ideals f_{A}, g_{B} of S over U);
(vi) $f_{A} \sqcap g_{B}=\left(f_{A}^{3} \diamond g_{B}\right) \sqcap\left(g_{B} \diamond f_{A}^{3}\right)$ and f_{A}, g_{B} are DFS semiprime (for DFS generalized bi-ideals f_{A}, g_{B} of S over U).
Proof. $(i) \Longrightarrow(v i)$: Let f_{A} and g_{B} be $D F S$ generalized bi-ideals of S over U.

Now for $a \in S$, there exist $x, y \in S$ such that

$$
\begin{aligned}
a & \leq a x \cdot a y \leq(a x \cdot a y) x \cdot(a x \cdot a y) y=(a x \cdot a y)(a x \cdot a y) \cdot x y \\
& =(a x \cdot a y)(a a \cdot x y) \cdot x y=(a a)((a x \cdot a y)(x y)) \cdot x y \\
& =((x y)(a x \cdot a y))(a a) \cdot x y=a(((x y)(a x \cdot a y)) a) \cdot x y \\
& =(x y)(((x y)(a x \cdot a y)) a) \cdot a=(x y)(a(a x \cdot a y) \cdot x y) \cdot a \\
& =(x y)(a x \cdot(a x \cdot a y) y) \cdot a=(x y)(a x \cdot(y \cdot a y)(a x)) \cdot a \\
& =(a x)(x y \cdot(y \cdot a y)(a x)) \cdot a=\left(\left(x y \cdot\left(a y^{2}\right)(a x)\right) x\right) a \cdot a \\
& =\left(\left(x \cdot\left(a y^{2}\right)(a x)\right) \cdot x y\right) a \cdot a=\left(\left(x \cdot(a a)\left(y^{2} x\right)\right) \cdot x y\right) a \cdot a \\
& =\left(\left(a a \cdot x\left(y^{2} x\right)\right) \cdot x y\right) a \cdot a=\left(\left(a a \cdot y^{2} x^{2}\right) \cdot x y\right) a \cdot a \\
& =\left(\left(x y \cdot y^{2} x^{2}\right) \cdot a a\right) a \cdot a=\left(\left(x y \cdot x^{2} y^{2}\right) \cdot a a\right) a \cdot a \\
& =\left(\left(y^{2} x^{2} \cdot y x\right) \cdot a a\right) a \cdot a=\left(y^{3} x^{3} \cdot a a\right) a \cdot a=\left(a a \cdot x^{3} y^{3}\right) a \cdot a \\
& =\left(\left(x^{3} y^{3} \cdot a\right) a\right) a \cdot a=\left(\left(x^{3} y^{3} \cdot(a x \cdot a y)\right) a\right) a \cdot a=\left(\left(x^{3} y^{3} \cdot(a a \cdot x y)\right) a\right) a \cdot a \\
& =\left(\left(a a \cdot x^{4} y^{4}\right) a\right) a \cdot a=\left(\left(x^{4} y^{4} \cdot a\right) a \cdot a\right) a \cdot a=\left(\left(x^{4} y^{4} \cdot(a x \cdot a y)\right) a \cdot a\right) a \cdot a \\
& =\left(\left(a a \cdot x^{5} y^{5}\right) a \cdot a\right) a \cdot a=\left(\left(y^{5} x^{5} \cdot a a\right) a \cdot a\right) a \cdot a=\left(\left(a \cdot\left(y^{5} x^{5}\right) a\right) a \cdot a\right) a \cdot a \\
& =b a \cdot a, \text { where } b=\left(a \cdot\left(y^{5} x^{5}\right) a\right) a \cdot a .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(f_{A}^{+^{3}} \sim g_{B}^{+}\right)(a) & =\bigcup_{a \leq b a \cdot a}\left\{f_{A}^{+^{3}}(b a) \cap g_{B}^{+}(a)\right\} \\
& \supseteq \bigcup_{b a \leq b a}\left\{f_{A}^{+^{2}}\left(\left(\left(a \cdot\left(y^{5} x^{5}\right) a\right) a \cdot a\right)\right) \cap f_{A}^{+}(a)\right\} \cap g_{B}^{+}(a) \\
& \supseteq \bigcup_{b \leq\left(a \cdot\left(y^{5} x^{5}\right) a\right) a \cdot a}\left\{f_{A}^{+}\left(\left(a \cdot\left(y^{5} x^{5}\right) a\right) a\right) \cap f_{A}^{+}(a)\right\} \cap f_{A}^{+}(a) \cap g_{B}^{+}(a) \\
& \supseteq f_{A}^{+}\left(\left(a \cdot\left(y^{5} x^{5}\right) a\right) a\right) \cap f_{A}^{+}(a) \cap f_{A}^{+}(a) \cap g_{B}^{+}(a) \\
& \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(a) \cap f_{A}^{+}(a) \cap g_{B}^{+}(a)=f_{A}^{+}(a) \cap g_{B}^{+}(a)
\end{aligned}
$$

which shows that $f_{A}^{+^{3}} \sim g_{B}^{+} \supseteq f_{A}^{+} \cap g_{B}^{+}$and similarly we can show that $g_{B}^{+} \sim f_{A}^{+3} \supseteq$ $f_{A}^{+} \cap g_{B}^{+}$. Therefore $\left(f_{A}^{+^{3}} \sim g_{B}^{+}\right) \cap\left(g_{B}^{+} \tilde{\circ}_{A}^{+^{3}}\right) \supseteq f_{A}^{+} \cap g_{B}^{+}$. Similarly $\left(f_{A}^{-^{3}} \tilde{\star} g_{B}^{-}\right) \cup\left(g_{B}^{-} \tilde{\star}\right.$ $\left.f_{A}^{-3}\right) \subseteq f_{A}^{-} \cup g_{B}^{-}$. It is easy to show that $\left(f_{A}^{+3} \sim g_{B}^{+}\right) \cap\left(g_{B}^{+} \sim f_{A}^{+3}\right) \subseteq f_{A}^{+} \cap g_{B}^{+}$and $\left(f_{A}^{-3} \approx g_{B}^{-}\right) \cup\left(g_{B}^{-} \approx f_{A}^{-3}\right) \supseteq f_{A}^{-} \cup g_{B}^{-}$. Thus $f_{A} \sqcap g_{B}=\left(f_{A}^{3} \diamond g_{B}\right) \sqcap\left(g_{B} \diamond f_{A}^{3}\right)$.
$(v i) \Longrightarrow(v) \Longrightarrow(i v) \Rightarrow(i i i) \Longrightarrow(i i)$ are obvious cases.
$($ ii $) \Longrightarrow(i)$: Let f_{A} be any DFS r-ideal and g_{B} be any DFS l-ideal of S over U. Since $f_{A} \sqcap g_{B}=\left(f_{A}^{3} \diamond g_{B}\right) \sqcap\left(g_{B} \diamond f_{A}^{3}\right)$, therefore $f_{A}^{+} \cap g_{B}^{+} \subseteq f_{A}^{+^{3}} \sim g_{B}^{+}$and
$f_{A}^{+} \cap g_{B}^{+} \subseteq g_{B}^{+} \sim f_{A}^{+^{3}}$. Let $f_{A}^{+} \cap g_{B}^{+} \subseteq f_{A}^{+^{3}} \sim g_{B}^{+}$, but from Theorem 4.16, $f_{A}^{+^{3}}{ }^{\sim} g_{B}^{+} \subseteq$ $f_{A}^{+} \cap g_{B}^{+}$. Therefore $f_{A}^{+} \cap g_{B}^{+}=f_{A}^{+3} \sim g_{B}^{+}$and similarly $f_{A}^{-} \cup g_{B}^{-}=f_{A}^{-3} \stackrel{\sim}{\star} g_{B}^{-}$. Thus $f_{A} \sqcap g_{B}=f_{A}^{3} \diamond g_{B}$ therefore by using Theorem 4.16, S is strongly regular. Now let $f_{A}^{+} \cap g_{B}^{+} \subseteq g_{B}^{+} \sim f_{A}^{+^{3}}$. It is easy to show that $g_{B}^{+} \widetilde{\circ} f_{A}^{+^{3}} \subseteq f_{A}^{+} \cap g_{B}^{+}$, therefore $f_{A}^{+} \cap g_{B}^{+}=g_{B}^{+} \widetilde{\sim} f_{A}^{+{ }^{3}}$ and similarly $f_{A}^{-} \cup g_{B}^{-}=g_{B}^{-} \tilde{\star} f_{A}^{-3}$. Thus $f_{A} \sqcap g_{B}=g_{B} \diamond f_{A}^{+^{3}}$ and therefore by using Theorem 4.16, S is strongly regular.

Theorem 4.18. Let S be a unitary ordered $\mathcal{A G}$-groupoid. Then the following conditions are equivalent:
(i) S is strongly regular;
(ii) Every ideal of S is semiprime;
(iii) Every bi-ideal of S is semiprime;
(iv) Every DFS bi-ideal of S is DFS semiprime;
(v) Every DFS generalized bi-ideal of S is DFS semiprime;
(vi) For every DFS bi-ideal f_{A} of S over $U, f_{A}(a)=f_{A}\left(a^{2}\right), \forall a \in S$;
(vii) For every DFS generalized bi-ideal f_{A} of S over $U, f_{A}(a)=f_{A}\left(a^{2}\right), \forall a \in S$.

Proof. $(i) \Longrightarrow(v i i)$: Let S be strongly regular and f_{A} be a $D F S$ generalized bi-ideal of S. Let $a \in S$, then there exist $b, c \in S$ such that $a \leq\left(b a^{2}\right) c$, therefore

$$
\begin{aligned}
a & \leq b a^{2} \cdot c=(b \cdot a a) c=(a \cdot b a) c=(c \cdot b a) a \leq c\left(b\left(b a^{2} \cdot c\right)\right) \cdot a=b\left(c\left(b a^{2} \cdot c\right)\right) \cdot a \\
& =b\left(b a^{2} \cdot c^{2}\right) \cdot a=\left(b a^{2} \cdot b c^{2}\right) a=\left(b^{2} \cdot a^{2} c^{2}\right) a=\left(a^{2} \cdot b^{2} c^{2}\right) a=\left(a \cdot b^{2} c^{2}\right) a^{2} \\
& \leq\left(b a^{2} \cdot c\right)\left(b^{2} c^{2}\right) \cdot a^{2}=\left(c^{2} c\right)\left(b^{2} \cdot b a^{2}\right) \cdot a^{2} \\
& =\left(c^{2} b^{2}\right)\left(c \cdot b a^{2}\right) \cdot a^{2} \leq\left(c^{2} b^{2}\right)\left(u v \cdot b a^{2}\right) \cdot a^{2} \\
& =\left(c^{2} b^{2}\right)\left(a^{2} v \cdot b u\right) \cdot a^{2}=\left(c^{2} b^{2}\right)\left(a^{2} b \cdot v u\right) \cdot a^{2}=\left(\left(c^{2} b^{2} \cdot v u\right) b\right)(a a) \cdot a^{2} \\
& =(a b)\left(a\left(c^{2} b^{2} \cdot v u\right)\right) \cdot a^{2}=(a a)\left(b\left(b^{2} c^{2} \cdot v u\right)\right) \cdot a^{2}=a^{2}\left(b\left(b^{2} c^{2} \cdot v u\right) \cdot a^{2}\right.
\end{aligned}
$$

Thus, we have $f_{A}^{+}(a) \supseteq f_{A}^{+}\left(a^{2}\left(b\left(b^{2} c^{2} \cdot v u\right)\right) \cdot a^{2}\right) \supseteq f_{A}^{+}\left(a^{2}\right) \cap f_{A}^{+}\left(a^{2}\right)=f_{A}^{+}\left(a^{2}\right)$, and similarly $f_{A}^{-}(a) \subseteq f_{A}^{-}\left(a^{2}\right)$. Thus $f_{A}(a) \sqsupseteq f_{A}\left(a^{2}\right)$. Again

$$
\begin{aligned}
a^{2} & =a a \leq\left(b a^{2} \cdot c\right)\left(b a^{2} \cdot c\right)=\left(b a^{2} \cdot b a^{2}\right)(c c)=\left(b b \cdot a^{2} a^{2}\right) c^{2}=b^{2}\left(a^{2}\right)^{2} \cdot c^{2} \\
& =b^{2}\left(a^{2} a^{2}\right) \cdot c^{2}=a^{2}\left(b^{2} a^{2}\right) \cdot c^{2}=c^{2}\left(b^{2} a^{2}\right) \cdot a^{2}=\left(c^{2} \cdot b^{2} a^{2}\right)(a a) \\
& =\left(a \cdot b^{2} a^{2}\right)\left(a c^{2}\right)=(a a)\left(b^{2} a^{2} \cdot c^{2}\right)=\left(b^{2} a^{2} \cdot c^{2}\right) a \cdot a=\left(c^{2} a^{2} \cdot b^{2}\right) a \cdot a \\
& =\left(\left(c^{2} \cdot a a\right) b^{2} \cdot a\right) a=\left(\left(a \cdot c^{2} a\right) b^{2} \cdot a\right) a=\left(a b^{2}\right)\left(a \cdot c^{2} a\right) \cdot a=a^{2}\left(b^{2} \cdot c^{2} a\right) \cdot a \\
& =a^{2}\left(c^{2} \cdot b^{2} a\right) \cdot a=(a a)\left(c^{2} \cdot b^{2} a\right) \cdot a=\left(b^{2} a \cdot c^{2}\right)(a a) \cdot a=a\left(\left(b^{2} a \cdot c\right) a\right) \cdot a
\end{aligned}
$$

therefore $f_{A}^{+}\left(a^{2}\right) \supseteq f_{A}^{+}\left(a\left(\left(b^{2} a \cdot c\right) a\right) \cdot a\right) \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(a)=f_{A}^{+}(a)$ and similarly $f_{A}^{-}\left(a^{2}\right) \subseteq f_{A}^{-}(a)$. Thus $f_{A}\left(a^{2}\right) \sqsupseteq f_{A}(a)$. Hence $f_{A}\left(a^{2}\right)=f_{A}(a)$.
$(v i i) \Longrightarrow(v i)$ and $(v i i) \Longrightarrow(v)$ are obvious.
$($ iv $) \Longrightarrow($ iii $):$ It can be followed from Lemma 3.3.
$($ iii $) \Longrightarrow($ ii $)$: It is obvious.
$(i i) \Longrightarrow(i)$: Since $\left(S a^{2}\right]$ is an ideal of a unitary ordered $\mathcal{A G}$-groupoid S containing a^{2}, thus by using Lemma 2.1 applied, we have $a \in\left(S a^{2}\right]=\left(S S \cdot a^{2}\right]=$ $\left(a^{2} S \cdot S\right]=((a a \cdot S S) S]=((S S \cdot a a) S]=\left(S a^{2} \cdot S\right]$. Therefore S is strongly regular.

5. Conclusions

We have considered the following problems in detail:
i) Define and compare DFS left/right and bi-ideals of an ordered $\mathcal{A G}$-groupoid and respective examples are provided.
ii) Discuss the structural properties of a strongly regular ordered $\mathcal{A G}$-groupoid in terms of DFS left/right and bi-ideals.
iii) Compare a strongly regular class of an ordered $\mathcal{A G}$-groupoid with other important classes of an ordered $\mathcal{A G}$-groupoid, which will provide us a way to study DFS-sets in more generalized form in future.

This paper generalized the theory of an $\mathcal{A} \mathcal{G}$-groupoid in the following ways:
i) In an $\mathcal{A} \mathcal{G}$-groupoid (without order) by using the DFS-sets.
ii) In an $\mathcal{A} \mathcal{G}$-groupoid (with and without order) by using fuzzy sets instead of DFS-sets.

Some important issues for future work are:
i) To develop strategies for obtaining more valuable results in related areas.
ii) To apply these notions and results for studying DFS expert sets and applications in decision making problems.

References

[1] Ali, M. I., Feng, F., Liu, X., Mine, W. K. and Shabir, M., On some new operations in soft set theory, Comput Math Appl., 57 (2009), 1547-1553.
[2] Cagman, N. and Enginoglu, S., FP-soft set theory and its applications, Ann. Fuzzy Math. Inform., 2 (2011), 219-226.
[3] Dudek, W. A. and Gigon, R. S., Congruences on completely inverse AG**groupoids, Quasigroups and related systems, 20 (2012), 203-209.
[4] Dudek, W. A. and Gigon, R. S., Completely inverse AG**-groupoids. Semigroup Forum, 87 (2013), 201-229.
[5] Feng, F., Soft rough sets applied to multicriteria group decision making, Ann. Fuzzy Math. Inform., 2 (2011), 69-80.
[6] Feng, F., Jun, Y. B. and Zhao, X., Soft Semirings, Comput. Math. Appl., 56 (2008), 2621-2628.
[7] Jun, Y. B., Soft BCK/BCI-algebras, Comput. Math. Appl., 56 (2008), 14081413.
[8] Jun, Y. B. and Ahn, S. S., Double-framed soft sets with applications in BCK/BCI-algebras, J. Appl. Math., 2012, pp. 15.
[9] Jun, Y. B., Lee, K. J. and Khan, A., Soft ordered semigroups, Math. Logic Q., 56 (2010), 42-50.
[10] Kazim, M. A. and Naseeruddin, M., On almost semigroups, The Alig. Bull. Math., 2(1972), 1-7.
[11] Khan, M., Some studies in AG*-groupoids, Ph. D Thesis, Quaid-i-Azam University, Pakistan, 2008.
[12] Khan, A., Asif, T. and Jun, Y. B., Double-framed soft ordered semigroups, submitted.
[13] Kovkov, D. V., Kolbanov, V. M. and Molodtsov, D. A., Soft sets theory based optimization, Journal of Computer and Systems Sciences International, 46 (6) (2007), 872-880.
[14] Maji, P. K., Roy, A. R. and Biswas, R., An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083.
[15] Molodtsov, D., Leonov, V. Y. and Kovkov, D. V., Soft sets technique and its application, Nechetkie Sistemy i Myagkie Vychisleniya, 1 (1) (2006), 8-39.
[16] Majumdar, P. and Samanta, S. K., Similarity measures of soft sets, New Mathematics and Neutral Computation, 4 (1) (2008), 1-12.
[17] Molodtsov, D., Soft set theory, Comput Math Appl., 37 (1999), 19-31.
[18] Mushtaq, Q. and Yusuf, S. M., On LA-semigroups, The Alig. Bull. Math., 8(1978), 65-70.
[19] Mushtaq, Q. and Yusuf, S. M., On locally associative left almost semigroups, J. Nat. Sci. Math., 19(1979), 57-62.
[20] Pei, D. W. and Miao, D., From soft sets to information systems, IEEE International Conference on granular computing, (2005), 617-621.
[21] Protić, P. V. and Stevanović, N., AG-test and some general properties of Abel-Grassmann's groupoids, PU. M. A., 4, 6 (1995), 371-383.
[22] Roy, A. R. and Maji, P. K., A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math., 203 (2007), 412-418.
[23] Sezgin, A., Atagun, A. O. and Cagman, N., Soft intersection nearrings with applications, Neural Comput. and Appl., 21 (2011), 221-229.
[24] Seizgin, A. and Atagun, A. O., On operations of soft sets, Comput. Math. Appl., 61 (2011), 1457-1467.
[25] Stevanović, N. and Protić, P. V., Composition of Abel-Grassmann's 3-bands, Novi Sad, J. Math., 2, 34 (2004), 175-182.
[26] Yang, X., Yu, D., Yang, J., Wu, C., Generalization of soft set theory from crisp to fuzzy case, Fuzzy Inormation and Engineering, 40 (2007), 345-355.
[27] Yousafzai, F., Yaqoob, N. and Hila, K., On fuzzy (2,2)-regular ordered Γ $\mathcal{A G}{ }^{* *}$-groupoids, UPB Scientific Bulletin, Series A, 74 (2012), 87-104.
[28] Yousafzai, F., Khan, A., Amjid, V. and Zeb, A., On fuzzy fully regular ordered AG-groupoids, Journal of Intelligent \& Fuzzy Systems, 26 (2014), 2973-2982.

