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Abstract: In this note, the authors introduce the notion of double-framed soft sets
(briefly, DFS-sets) in an ordered AG-groupoid. An ordered AG-groupoid can be
referred to as a non-associative ordered semigroup, as the main difference between
an ordered semigroup and an orderedAG-groupoid is the switching of an associative
law. We define and give the examples of DFS l-ideals, DFS r-ideals and DFS bi-
ideals in an ordered AG-groupoid and also investigate the relationship between
them. We give an alternate definition for a strongly regular element of a unitary
ordered AG-groupoid and show that how a strongly regular ordered AG-groupoid
becomes an ordered AG**-groupoid and a completely inverse ordered AG-groupoid.
As an application of our results we get characterizations of a strongly regular
ordered AG-groupoid in terms of DFS one-sided (two-sided) ideals and DFS bi-
ideals. These concepts will help in verifying the existing characterizations and will
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help in achieving new and generalized results in future works.

Keywords and Phrases: DFS-sets, ordered AG-groupoid, pseudo-inverse, left
invertive law and DFS ideals.

2010 Mathematics Subject Classification: 20M10 and 20N99.

1. Introduction
The concept of soft set theory was introduced by Molodtsov in [17]. This

theory can be used as a generic mathematical tool for dealing with uncertainties.
In soft set theory, the problem of setting the membership function does not arise,
which makes the theory easily applied to many different fields [1, 2, 5, 6, 7, 8, 9].
At present, the research work on soft set theory in algebraic fields is progressing
rapidly [20, 22, 23, 24]. A soft set is a parameterized family of subsets of the
universe set. In the real world, the parameters of this family arise from the view
point of fuzzy set theory. Most of the researchers of algebraic structures have
worked on the fuzzy aspect of soft sets. Soft set theory is applied in the field of
optimization by Kovkov in [13]. Several similarity measures have been discussed
in [16], decision making problems have been studied in [22], reduction of fuzzy soft
sets and its applications in decision making problems have been analyzed in [14].
The notions of soft numbers, soft derivatives, soft integrals and many more have
been formulated in [15]. This concept have been used for forecasting the export
and import volumes in international trade [26].

Recently, Jun et al. further extended the notion of softs set into double-framed
soft sets and defined double-framed soft subalgebra of BCK/BCI algebra and stud-
ied the related properties in [8]. Jun et al. also defined the concept of a double-
framed soft ideal (briefly, DFS ideal) of a BCK/BCI-algebra and gave many valu-
able results for this theory. In [12], Khan et al. have applied the idea of double-
framed soft set to ordered semigroups and defined prime and irreducible DFS ideals
of an ordered semigroup over a universe set U . Khan et al. have also characterized
different classes of an ordered semigroup by using different DFS ideals.

In the present paper, we apply the idea given by Jun et al. in [8], to ordered
AG-groupoids. We introduce and investigate the notions of DFS l-ideals, DFS r-
ideals and DFS bi-ideals. We study the relationship between these DFS ideals in
detail. We give a necessary and sufficient condition for a strongly regular ordered
AG-groupoid to become an ordered AG**-groupoid and completely inverse ordered
AG-groupoid. Further we show that the strongly regular, intra-regular and weakly
regular classes of a unitary ordered AG-groupoid coincide. Finally we characterize
a strongly regular class of an ordered AG-groupoid by one-sided (two-sided) ideals
and bi-ideals based on DFS-sets.
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2. Preliminaries
AnAG-groupoid is a non-associative and a non-commutative algebraic structure

lying in a grey area between a groupoid and a commutative semigroup. Commu-
tative law is given by abc = cba in ternary operations. By putting brackets on the
left of this equation, i.e. (ab)c = (cb)a, in 1972, M. A. Kazim and M. Naseeruddin
introduced a new algebraic structure called a left almost semigroup abbreviated
as an LA-semigroup [10]. This identity is called the left invertive law. P. V. Pro-
tic and N. Stevanovic called the same structure an Abel-Grassmann’s groupoid
abbreviated as an AG-groupoid [21].

This structure is closely related to a commutative semigroup because a commu-
tative AG-groupoid is a semigroup [18]. It was proved in [10] that an AG-groupoid
S is medial, that is, ab · cd = ac · bd holds for all a,b,c,d ∈ S. An AG-groupoid may
or may not contain a left identity. The left identity of an AG-groupoid permits the
inverses of elements in the structure. If an AG-groupoid contains a left identity,
then this left identity is unique [18]. In an AG-groupoid S with left identity (uni-
tary AG-groupoid), the paramedial law ab · cd = dc · ba holds for all a,b,c,d ∈ S.
By using medial law with left identity, we get a · bc = b · ac for all a,b,c ∈ S.
We should genuinely acknowledge that much of the ground work has been done
by M. A. Kazim, M. Naseeruddin, Q. Mushtaq, M. S. Kamran, P. V. Protic, N.
Stevanovic, M. Khan, W. A. Dudek and R. S. Gigon. One can be referred to [3, 4,
11, 18, 19, 21, 25] in this regard.

An AG-groupoid (S, ·) together with a partial order ≤ on S that is compatible
with an AG-groupoid operation, meaning that for x, y, z ∈ S, x ≤ y ⇒ zx ≤ zy
and xz ≤ yz, is called an ordered AG-groupoid [28].

Let us define a binary operation ”◦e” (e-sandwich operation) on an ordered
AG-groupoid (S, ·,≤) with left identity e as follows:

a ◦e b = ae · b, ∀ a, b ∈ S.

Then (S, ◦e,≤) becomes an ordered semigroup [28].
Note that an ordered AG-groupoid is the generalization of an ordered semigroup

because if an ordered AG-groupoid has a right identity then it becomes an ordered
semigroup.

Let ∅ 6= A ⊆ S, we denote (A] by (A] := {x ∈ S/x ≤ a for some a ∈ A}. If A =
{a}, then we write ({a}]. For ∅ 6= A,B ⊆ S, we denote AB =: {ab/a ∈ A, b ∈ B}.
• A nonempty subset A of an ordered AG-groupoid S is called a left (right)

ideal of S if:
(i) SA ⊆ A (AS ⊆ A);
(ii) if a ∈ A and b ∈ S such that b ≤ a, then b ∈ A.
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Equivalently: A nonempty subset A of an ordered AG-groupoid S is called a
left (right) ideal of S if (SA] ⊆ A ((AS] ⊆ A).
• By two-sided ideal or simply ideal, we mean a nonempty subset of an ordered

AG-groupoid S which is both left and right ideal of S.
• Let S be an ordered AG-groupoid. By an ordered AG-subgroupoid of S, we

means a nonempty subset A of S such that (A2] ⊆ A.
• A nonempty subset A of an ordered AG-groupoid S is called a generalized

bi-ideal of S if:
(i) AS · A ⊆ A;
(ii) if a ∈ A and b ∈ S such that b ≤ a, then b ∈ A.
Equivalently: A nonempty subset A of an ordered AG-groupoid S is called a

generalized bi-ideal of S if (AS · A] ⊆ A.
• An ordered AG-subgroupoid A of an ordered AG-groupoid S is called a bi-

ideal of S if (AS · A] ⊆ A.

Lemma 2.1. [28] Let S be an ordered AG-groupoid and ∅ 6= A,B ⊆ S. Then the
followings hold:
(i) A ⊆ (A] ;
(ii) If A ⊆ B, then (A] ⊆ (B] ;
(iii) (A] (B] ⊆ (AB] ;
(iv) (A] = ((A]] ;
(vi) ((A] (B]] = (AB] ;
(vii) Also for every ideal T of S, (T ] = T.

3. Soft Sets
In [24], Sezgin and Atagun introduced some new operations on soft set theory

and defined soft sets in the following way.
Let U be an initial universe set, E a set of parameters, P (U) the power set of

U and A ⊆ E. Then a soft set fA over U is a function defined by:

fA : E → P (U) such that fA(x) = ∅, if x /∈ A.

Here fA is called an approximate function. A soft set over U can be represented by
the set of ordered pairs

fA = {(x, fA(x)) : x ∈ E, fA(x) ∈ P (U)} .

It is clear that a soft set is a parameterized family of subsets of U . The set of all
soft sets is denoted by S(U).

• Let fA, fB ∈ S(U). Then fA is a soft subset of fB, denoted by fA
∼
⊆ fB if

fA(x) ⊆ fB(x) for all x ∈ S. Two soft sets fA, fB are said to be equal soft sets if
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fA
∼
⊆ fB and

∼
fB ⊆ fA and is denoted by fA

∼
= fB. The union of fA and fB, denoted

by fA
∼
∪fB, is defined by fA

∼
∪fB = fA∪B, where fA∪B(x) = fA(x)∪fB(x), ∀ x ∈ E.

In a similar way, we can define the intersection of fA and fB.
• Let S be an ordered AG-groupoid. Let fA, fB ∈ S(U). Then the soft product

[24] of fA and fB, denoted by fA
∼◦ fB, is defined as follows:

(fA
∼◦ fB)(x) =

{ ⋃
(y,z)∈Ax

{fA(y) ∩ g
B

(z)} if Ax 6= ∅

∅ if Ax = ∅

where Ax = {(y, z) ∈ S × S/x ≤ yz}.
• A double-framed soft pair

〈
(f+

A , f−A ;A
〉

is called a double-framed soft set
(briefly, DFS-set of A) [8] of A over U, where f+

A and f−A are mappings from A to
P (U). The set of all DFS-sets of A over U will be denoted by DFS(U).
• Let fA =

〈
(f+

A , f−A );A
〉

and gA =
〈
(g+A , g−A);A

〉
be two double-framed soft

sets of an orderedAG-groupoid S over U. Then the uni-int soft product [12], denoted

by fA � gA =
〈

(f+
A

∼◦ g+A , f−A
∼
? g−A);A

〉
is defined to be a double-framed soft set of

S over U , in which f+
A

∼◦ g+A and f−A
∼
? g−A are mapping from S to P (U), given as

follows:

f+
A

∼◦ g+A : S −→ P (U), x 7−→

{ ⋃
(y,z)∈Ax

{f+
A (y) ∩ g+A(z)} if Ax 6= ∅

∅ if Ax = ∅,

f−A
∼
? g−A : S −→ P (U), x 7−→

{ ⋂
(y,z)∈Ax

{f−A (y) ∪ g−A(z)} if Ax 6= ∅

U if Ax = ∅.

• Let fA =
〈
(f+

A , f−A );A
〉

and gA =
〈
(g+A , g−A);A

〉
be two double-framed soft

sets over a common universe set U. Then
〈
(f+

A , f−A );A
〉

is called a double-framed
soft subset (briefly, DFS-subset) [12] of

〈
(g+A , g−A);A

〉
, denote by

〈
(f+

A , f−A );A
〉
v〈

(g+A , g−A);A
〉

if:
(i) A ⊆ B;

(ii) (∀e ∈ A)

(
f+
A and g+A are identical approximations (f+

A (e) ⊆ g+A(e))
f−A and g−A are identical approximations (f−A (e) ⊆ g−A(e))

)
.

• For two DFS-sets fA =
〈
(f+

A , f−A );A
〉

and gA =
〈
(g+A , g−A);A

〉
over U are

said to be equal, denoted by
〈
(f+

A , f−A );A
〉

=
〈
(g+A , g−A);A

〉
, if

〈
(f+

A , f−A );A
〉
v〈

(g+A , g−A);A
〉

and
〈
(g+A , g−A);A

〉
v
〈
(f+

A , f−A );A
〉
.

• For two DFS-sets fA =
〈
(f+

A , f−A );A
〉

and gA =
〈
(g+A , g−A);A

〉
over U, the

DFS int-uni set [12] of
〈
(f+

A , f−A );A
〉

and
〈
(g+A , g−A);A

〉
, is defined to be a DFS-set
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(f+

A ∩ g+A , f−A ∪ g−A);A
〉
, where f+

A ∩g
+
A and f−A ∪g

−
A are mapping given as follows:

f+
A ∩ g+A : A −→ P (U), x 7−→ f+

A (x) ∩ g+A(x);

f−A ∪ g−A : A −→ P (U), x 7−→ f−A (x) ∪ g−A(x).

It is denoted by
〈
(f+

A , f−A );A
〉
u
〈
(g+A , g−A);A

〉
=
〈
(f+

A ∩ g+A , f−A ∪ g−A);A
〉
.

• A double-framed soft set fA =
〈
(f+

A , f−A );A
〉

of S over U is called a double-
framed soft AG-subgroupoid (briefly, DFS AG-subgroupoid) of S over U if it sat-
isfies f+

A (xy) ⊇ f+
A (x) ∩ f+

A (y), f−A (xy) ⊆ f−A (x) ∪ f−A (y), ∀ x, y ∈ S.
• A double-framed soft set fA =

〈
(f+

A , f−A );A
〉

of S over U is called
(i) a double-framed soft left ideal (briefly, DFS l-ideal) of S over U if it satisfies:
(a) f+

A (xy) ⊇ f+
A (y) and f−A (xy) ⊆ f−A (y);

(b) x ≤ y =⇒ f+
A (x) ⊇ f+

A (y) and f−A (x) ⊆ f−A (y), ∀ x, y ∈ S.
(ii) a double-framed soft right ideal (briefly, DFS r-ideal) of S over U if it

satisfies:
(a) f+

A (xy) ⊇ f+
A (x) and f−A (xy) ⊆ f−A (x);

(b) x ≤ y =⇒ f+
A (x) ⊇ f+

A (y) and f−A (x) ⊆ f−A (y), ∀ x, y ∈ S.
(iii) a double-framed soft ideal (briefly, DFS ideal) of S over U , if it is both

DFS l-ideal and DFS r-ideal of S over U .
• A double-framed soft set fA =

〈
(f+

A , f−A );A
〉

of S over U is called a double-
framed bi-ideal (briefly, DFS bi-ideal) of S over U if it satisfies:

(a)
〈
(f+

A , f−A );A
〉

is a DFS AG-subgroupoid of S over U ;
(b) f+

A (xy · z) ⊇ f+
A (x) ∩ f+

A (z) and f−A (xy · z) ⊆ f−A (x) ∪ f−A (z);
(c) x ≤ y =⇒ f+

A (x) ⊇ f+
A (y) and f−A (x) ⊆ f−A (y), ∀ x, y, z ∈ S.

• A double-framed soft set fA =
〈
(f+

A , f−A );A
〉

of S over U is called a double-
framed generalized bi-ideal (briefly, DFS generalized bi-ideal) of S over U if it
satisfies (b) and (c).
• Let A be a nonempty subset of S. Then the characteristic double-framed soft

mapping of A, denoted by
〈
(X+

A , X−A );A
〉

= XA is defined to be a double-framed
soft set, in which X+

A and X−A are soft mappings over U, given as follows:

X+
A : S −→ P (U), x 7−→

{
U if x ∈ A
∅ if x /∈ A,

X−A : S −→ P (U), x 7−→
{
∅ if x ∈ A

U if x /∈ A.

Note that the characteristic mapping of the whole set S, denoted by XS =〈
(X+

S , X−S );S
〉
, is called the identity double-framed soft mapping, where X+

S (x) =
U and X−S (x) = ∅, ∀ x ∈ S.
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The following result holds for an ordered semigroup [6] just because of the
closure property which makes very clear for an ordered AG-groupoid to hold the
same Lemma.

Lemma 3.1. For a nonempty subset A of an ordered AG-groupoid S, the following
conditions are equivalent:
(i) A is a left ideal (right ideal or bi-ideal) of S;
(ii) The DFS set XA of S over U is a DFS l-ideal (DFS r-ideal or DFS bi-ideal)
of S over U.

The following result holds for an ordered smemigroup [12] just because of the
closure property which makes very clear for an ordered AG-groupoid to hold the
same Lemma.

Lemma 3.2. Let fA = 〈(f+
A , f

−
A );A〉 be any DFS-set of an ordered AG-groupoid S

over U . Then the following assertions hold:
(i) fA is a DFS r-ideal (l-ideal) of S over U if and only if fA �XS v fA (XS �fA v
fA);
(ii) fA is a DFS bi-ideal of S over U if and only if fA�fA v fA and (fA�XS)�fA v
fA.

• A double-framed soft set fA =
〈
(f+

A , f−A );A
〉

of S over U is called DFS
idempotent if fA � fA = fA.

• A double-framed soft set fA =
〈
(f+

A , f−A );A
〉

of S over U is called DFS
semiprime if fA(x) w fA(x2), ∀ x ∈ A.

Lemma 3.3. Let A be any right (left, bi-) ideal of an ordered AG-groupoid S. Then
A is semiprime (idempotent) if and only if XA is DFS semiprime (DFS idempotent).
Proof. Let A be a right (left, bi-) ideal of S, then by Lemma 3.1, XA is a DFS r-
(DFS l-, DFS bi-) ideal of S over U . Let a2 ∈ A, then X+

A (a) ⊇ X+
A (a2), therefore

X+
A (a2) = U ⊆ X+

A (a), this implies X+
A (a) = U and similarly X−A (a) = ∅. Thus

a ∈ A and therefore A is semiprime. Converse is simple. Similarly we can show
that the required result holds for the case of idempotent condition.

Remark 3.4. The set (DFS(U), �,v) forms an ordered AG-groupoid and satisfies
all the basic laws.

Remark 3.5. If S is an ordered AG-groupoid, then XS � XS = XS.

The following result also holds for an ordered smemigroup [12] just because of
the closure property which is very trivial for an ordered AG-groupoid to hold the
same Lemma.

Lemma 3.6. Let S be an ordered AG-groupoid. For ∅ 6= A,B ⊆ S, the following
assertions hold:
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(i) A ⊆ B ⇔ XA v XB;
(ii) XA u XB = XA∩B;
(iii) XA t XB = XA∪B;
(iv) XA � XB = X(AB].

4. On DFS strongly regular ordered AG-groupoids
Throughout this paper, let E = S, where S is an ordered AG-groupoid, unless

otherwise stated.

4.1. Basic Results
Example 4.1. There are six students in the initial universe set U given by

U = {s1, s2, s3, s4, s5, s6}.

Let a set of parameters E = {e0, e1, e2, e3, e4} be a set of status of each student in
U with the following type of grades:

e0 stands for the parameter ”A-grade”,
e1 stands for the parameter ”B+-grade”,
e2 stands for the parameter ”B-grade”,
e3 stands for the parameter ”C+-grade”,
e4 stands for the parameter ”C-grade”,
with the following binary operation and order given below.

∗ e0 e1 e2 e3 e4
e0 e1 e1 e3 e3 e4
e1 e1 e1 e1 e1 e4
e2 e0 e1 e2 e3 e4
e3 e0 e1 e0 e1 e4
e4 e0 e4 e4 e4 e4

≤ ={(e0, e0 ), (e0 , e1), (e2, e2), (e0 , e2), (e3, e3), (e0 , e4), (e4, e4), (e1, e1)}.

Then (E, ∗,≤) is an ordered AG-groupoid with left identity e2. Let A =
{e0, e1, e2, e3} and define a DFS-set

〈
(f+

A , f−A );A
〉

of S over U as follows:

f+
A (x) =


{s1, s2, s3} if x = e0
{s1, s2, s3, s4} if x = e1
{s2, s3} if x = e2

{s1, s2, s3, s4} if x = e3

 and f−A (x) =


{s1, s2, s4, s5} if x = e0
{s1, s2, s4} if x = e1

U if x = e2
{s1, s2, s4} if x = e3

 .
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Then it is easy to verify that
〈
(f+

A , f−A );A
〉

is a DFS l-ideal of S over U.

Let B = {e0, e1, e3, e4} and define a DFS-set
〈
(g+B , g−B);B

〉
of S over U as

follows :

g+B(x) =


{s1, s2, s3, s4} if x = e0

U if x = e1
{s2, s3, s4, s5} if x = e3
{s3, s4, s5, s6} if x = e4

 and

g−B(x) =


{s2, s3} if x = e0
{s3} if x = e1
{s3, s4} if x = e3

U if x = e4

 .

Then it is easy to verify that
〈
(g+B , g−B);B

〉
is a DFS r-ideal of S over U.

Let us explore the relationship between DFS idempotent subsets of a unitary
ordered AG-groupoid S and its DFS bi-ideals, explicitly, when will a DFS idem-
potent subset of S be a DFS bi-ideal. We answer this question in the following
Proposition.

Proposition 4.2. Let fA be a DFS idempotent subset of a unitary ordered AG-
groupoid S over U, and let fA = gB � hC for a DFS l-ideal hC and a DFS r-ideal
gB of S over U . Then fA is a DFS bi-ideal of S over U .
Proof. By using Lemma 3.2, we have

(fA � XS) � fA = (fA � XS) � (fA � fA) v (gB � XS) � (XS � hC) v gB � hC = fA.

Another question is the realization of DFS-subsets fA of an orderedAG-groupoid
which are both DFS idempotent and DFS bi-ideal. This is given in the following
Proposition.

Proposition 4.3. Let fA be a DFS idempotent subset and DFS bi-ideal of a uni-
tary ordered AG-groupoid S over U. Then there exist a DFS l-ideal hC and a DFS
r-ideal gB of S over U such that fA = gB � hC.
Proof. Necessity. Assume that fA is a DFS bi-ideal of S over U such that fA is
DFS idempotent. Setting hC = XS � fA and gB = XS � f 2

A, then by using Lemma
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3.2, we have

gB � hC = (XS � f 2
A) � (XS � fA) = (f 2

A � XS) � (XS � fA)

= ((XS � fA) � (XS � XS)) � f 2
A = ((XS � XS) � (fA � XS)) � f 2

A

= (XS � ((fA � fA) � (XS � XS))) � f 2
A

= (XS � ((XS � XS) � (fA � fA))) � f 2
A

= (XS � (fA � (XS � fA))) � f 2
A = (fA � (XS � (XS � fA))) � f 2

A

v (fA � XS) � f 2
A v fA,

and fA = f 2
A v (XS � f 2

A) � (XS � fA) = gB � hC .
The Propositions 4.2 and 4.3 combined together give us a characterization The-

orem which we state in the following.

Theorem 4.4. Let S be a unitary ordered AG-groupoid and fA be a DFS idempo-
tent subset of S over U . Then fA is a DFS bi-ideal of S over U if and only if there
exist a DFS l-ideal hC and a DFS r-ideal gB of S over U such that gB � hC = fA.

Remark 4.5. Every DFS r-ideal of a unitary ordered AG-groupoid S over U is
a DFS l-ideal of S over U but the converse inclusion is not true in general which
can be followed from Example 4.1.

Note that if S is a unitary ordered AG-groupoid, then (SS] = S.

Lemma 4.6. Let R be a right ideal and L be a left ideal of a unitary ordered
AG-groupoid S. Then (RL] is a left ideal of S.
Proof. Let R and L be any left and right ideals of S respectively. Then by using
Lemma 2.1, we get

S(RL] = (SS](RL] ⊆ (SS ·RL] = (SR · SL] ⊆ (SR · (SL]] = (SR · L]

= ((SS]R · L] ⊆ ((SS)R · L] = ((RS)S · L] ⊆ ((RS]S · L] ⊆ (RL],

which shows that (RL] is a left ideal of S.
An element a of an ordered AG-groupoid S is called a strongly regular element

of S, if there exists some x in S such that a ≤ ax · a and ax = xa, where x is
called a pseudo-inverse of a. S is called strongly regular ordered AG-groupoid if all
elements of S are strongly regular.

A completely inverse ordered AG-groupoid S is an ordered AG-groupoid satis-
fying the identity ax = xa, where x is a strong inverse of a, that is, a ≤ ax · a and
x ≤ xa · x, ∀ a ∈ S.
Lemma 4.7. Let S be a unitary ordered AG-groupoid. Then E is a semilattice,
where E is the set of all idempotents of S.
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Proof. It is simple.
Theorem 4.8. A strongly regular unitary ordered AG-groupoid S is completely
inverse if and only if E is a semilattice.
Proof. Necessity. It can be followed from Lemma 4.7.

Sufficiency. Let a ∈ S and Suppose a
′
, a

′′ ∈ S are inverses of a. Then a ≤ aa
′ ·a,

a
′ ≤ a

′
a·a′

, a
′
a = aa

′
and a ≤ aa

′′ ·a, a′′ ≤ a
′′
a·a′′

, a
′′
a = aa

′′
. Clearly aa

′
, aa

′′ ∈ E.
Thus aa

′ ≤ (aa
′′ · a)a

′
= a

′
a · aa′′

= a
′′
a · aa′

= (aa
′
)a · a′′ ≤ aa

′′
. Therefore

a
′ ≤ a

′
a · a′ ≤ a

′′
a · a′ ≤ a

′
a · a′′

= a
′′
a · a′′ ≤ a

′′
.

An ordered AG-groupoid S is called an ordered AG**-groupoid if it satisfies the
identity a · bc = b · ac, for all a,b,c ∈ S [3].

Note that every unitary ordered AG-groupoid is an ordered AG**-groupoid but
the converse is not true in general [27].
Corollary 4.9. A strongly regular ordered AG**-groupoid S is completely inverse
if and only if E is a semilattice.
Theorem 4.10. A strongly regular ordered AG-groupoid is an ordered AG**-
groupoid if and only if E is a semilattice.
Proof. Necessity. It can be followed from Lemma 4.7.

Sufficiency. Let a,b,c ∈ S, then there exist a
′
,b

′
,c

′ ∈ S such that a · bc ≤
(aa

′ · bb′ · cc′)(a · bc), as clearly aa
′
, bb

′
, cc

′ ∈ E. Therefore

a · bc ≤ (aa
′ · a)(bc) = (bc · a)(aa

′
) = (ac · b)(aa′

) = (aa
′ · b)(ac)

≤ (aa
′ · b) · (aa′ · a)(cc

′ · c) = (aa
′ · b) · (aa′ · cc′)(ac)

= (aa
′ · aa′ · cc′) · (b · ac) ≤ (aa

′ · aa′ · cc′) · (bb′ · aa′ · cc′)(b · ac)
= (aa

′ · bb′ · aa′ · cc′) · (aa′ · cc′)(b · ac)
= (bb

′ · bb′ · aa′ · cc′) · (aa′ · cc′)(b · ac)
= (bb

′ · aa′ · cc′) · (bb′ · aa′ · cc′)(b · ac)
= (bb

′ · aa′ · cc′)(b · ac) ≤ b · ac.

Hence S is an ordered AG**-groupoid.

Theorem 4.11. Let S be a unitary ordered AG-groupoid. An element a of S is
strongly regular if and only if a ≤ ax · ay for some x, y ∈ S (a ≤ ba2 · c for some
b, c ∈ S).
Proof. Necessity. Let a ∈ S is strongly regular, then a ≤ ax·a ≤ (ax)·(xa)(ax·a) =
(ax) · (a · ax)(ax) = (ax) · a((a · ax)x) = ax · ay, where (a · ax)x = y ∈ S. Thus
a ≤ ax · ay for some x, y ∈ S. Also, a ≤ ax · a ≤ (ax)(ax · ay) = (ax)(a2 · xy) =
(xy · a2)(xa) = ba2 · c, where xy = b ∈ S and xa = c ∈ S.

Sufficiency. Let a ∈ S such that a ≤ ax·ay for some x, y ∈ S, then a ≤ ax·ay =
(ay · x)a = (xy · a)a = ua · a, where xy = u ∈ S. Thus au ≤ (ua · a)u = ua · ua =
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u(ua · a) ≤ ua, and a ≤ ua · a = au · a. Also if a ∈ S such that a ≤ ba2 · c for some
b, c ∈ S, then it is easy to show that av ≤ va and a ≤ av · a for some v ∈ S. Thus
S is strongly regular.
Corollary 4.12. The strongly regular, weakly regular and intra-regular classes of
a unitary ordered AG-groupoid coincide.
Lemma 4.13. Let fA =

〈
(f+

A , f−A );A
〉

be any DFS r-ideal (DFS l-ideal, DFS
bi-ideal) of a strongly regular unitary ordered AG-groupoid S over U . Then the
following assertions hold:
(i) fA = fA � S (fA = S � fA, fA = (fA � S) � fA);
(ii) fA is DFS idempotent (DFS semiprime).
Proof. It is simple.

4.2. Characterization Problems
In this section, we generalize the results of an ordered semigroup and get some

interesting characterizations which we usually do not find in an ordered semigroup.
Theorem 4.14. Let R (resp. L) be any right (resp. left) ideal and fA, gB be any
DFS l-ideals of a unitary ordered AG-groupoid S. Then the following conditions
are equivalent:
(i) S is strongly regular;
(ii) (RL] ∩ L = (R ·RL3] and R is idempotent;
(iii) fA u gB = (fA � gB) � fA and fA is DFS idempotent.
Proof. (i) =⇒ (iii) : Let fA and gB be any DFS l-ideals of a strongly regular
S over U . Now for a ∈ S, there exist some x, y ∈ S such that a ≤ ax · ay =
ya · xa ≤ y(ax · ay) · xa = (ax)(y · ay) · xa = (ay · y)(xa) · xa = (y2a · xa)(xa). Thus
(y2a · xa, xa) ∈ Aa. Therefore

((f+
A

∼◦ g+B)
∼◦ f+

A )(a) =
⋃

(y2a·xa,xa)∈Aa

{
(f+

A

∼◦ g+B)(y2a · xa) ∩ f+
A (xa)

}
⊇

⋃
(y2a,xa)≤(y2a,xa)

{f+
A (y2a) ∩ g+B(xa)} ∩ f+

A (xa)

⊇ f+
A (y2a) ∩ g+B(xa) ∩ f+

A (xa) ⊇ f+
A (a) ∩ g+B(a),

and

((f−A
∼
? g−B)

∼
? f−A )(a) =

⋂
(y2a·xa,xa)∈Aa

{
(f−A

∼
? g−B)(y2a · xa) ∪ f−A (xa)

}
⊆

⋂
(y2a,xa)≤(y2a,xa)

{f−A (y2a) ∪ g−B(xa)} ∪ f−A (xa)

⊆ f−A (y2a) ∪ g−B(xa) ∪ f−A (xa) ⊆ f−A (a) ∪ g−B(a),
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which shows that (fA � gB) � fA w fA u gB. By using Lemmas 3.2 and 4.13, it
is easy to show that (fA � gB) � fA v fA u gB. Thus fA u gB = (fA � gB) � fA and
by Lemma 4.13f=fg, fA is DFS idempotent.

(iii) =⇒ (ii) : Let R and L be any right and left ideals of S respectively. Then
by using Lemmas 3.1 and 4.6, X(RL] and XL are DFS l-ideals of S over U . Now by
using Lemma 3.6, we get

X(RL]∩L = X(RL] u XL = (X(RL] � XL) � X(RL] = X((RL]L·(RL]],

which give us (RL] ∩ L = ((RL]L · (RL]]. Now by using Lemma 2.1applied, we
get

((RL]L · (RL]] = ((RL)L ·RL] = (L2R ·RL] = (LR ·RL2] = (R(LR · L2)]

= (R(L2 ·RL)] = (R(R · L2L)] = (R ·RL3],

which implies that (RL] ∩ L = (R · RL3]. Since XR is a DFS r-ideal of S over
U, so it is also a DFS l-ideal of S over U Remark 4.5. Thus by using the given
assumption and Lemma 3.3 semidem, R is idempotent.

(ii) =⇒ (i) : It is easy to see that (Sa2] and (Sa] are the right and left ideals of S
respectively. Setting R = (Sa2] and L = (Sa], then by using the given assumption
and Lemma 2.1, we have R = (Sa2] = (SS · aa] = (Sa · Sa] = ((Sa](Sa]] =
(Sa], therefore RL = (Sa2](Sa] = (Sa](Sa] = (Sa], and clearly a ∈ (Sa]. Thus
a ∈ ((Sa2](Sa]] ∩ (Sa] = ((Sa2] · (Sa2](Sa]3] = ((Sa] · (Sa](Sa]3] = ((Sa](Sa]] =
(Sa · Sa] = (aS · aS]. Hence S is strongly regular.

Theorem 4.15. Let fA, gB and hC be any DFS r-ideal, DFS bi-ideal and DFS
l-ideal of a unitary ordered AG-groupoid S respectively. Then S is strongly regular
if and only if fA u gB u hC = (f 2

A � g2B) � h2
C and fA is DFS semiprime.

Proof. Necessity: Assume that fA, gB and hC be any DFS r-ideal, DFS bi-ideal
and DFS l-ideal of S over U respectively. Now by using Lemmas 3.2 and 4.13, we
have

(f+2

A

∼◦g+2

B )
∼◦h+2

C = (h+2

C

∼◦g+2

B )
∼◦ (f+

A

∼◦f+
A ) = f+

A

∼◦ ((h+2

C

∼◦g+2

B )
∼◦f+

A ) ⊆ f+
A

∼◦X+
S ⊆ f+

A ,

(f+2

A

∼◦ g+2

B )
∼◦ h+2

C = (f+2

A

∼◦ (g+B
∼◦ g+B))

∼◦ h+2

C = (g+B
∼◦ (f+2

A

∼◦ g+B))
∼◦ h+2

C

= (h+2

C

∼◦ (f+2

A

∼◦ g+B))
∼◦ g+B = (h+2

C

∼◦ ((g+B
∼◦ f+

A )
∼◦ f+

A ))
∼◦ g+B

= ((g+B
∼◦ f+

A )
∼◦ (h+2

C

∼◦ f+
A ))

∼◦ g+B
= ((f+

A

∼◦ h+2

C )
∼◦ (f+

A

∼◦ g+B))
∼◦ g+B
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= ((f+
A

∼◦ h+2

C )
∼◦ (f+

A

∼◦ (g+B
∼◦ g+B)))

∼◦ g+B
= ((f+

A

∼◦ h+2

C )
∼◦ (g+B

∼◦ (f+
A

∼◦ g+B)))
∼◦ g+B

= (g+B
∼◦ ((f+

A

∼◦ h+2

C )
∼◦ (f+

A

∼◦ g+B)))
∼◦ g+B

⊆ (g+B
∼◦ X+

S )
∼◦ g+B ⊆ g+B ,

and

(f+2

A

∼◦ g+2

B )
∼◦ h+2

C = (f+2

A

∼◦ g+2

B )
∼◦ (h+

C

∼◦ h+
C) = (h+

C

∼◦ h+
C)
∼◦ (g+

2

B

∼◦ f+2

A )

= ((g+
2

B

∼◦ f+2

A )
∼◦ h+

C)
∼◦ h+

C ⊆ X
+
S

∼◦ h+
C ⊆ h+

C .

Therefore (f+2

A

∼◦ g+2

B )
∼◦ h+2

C ⊆ f+
A ∩ g+B ∩ h+

C , and similarly (f−
2

A

∼
? g−

2

B )
∼
? h−

2

C ⊇
f−A ∪ g−B ∪ h−C .

Thus (f
2

A � g
2

B) � h2

C v fA u gB u hC . Now for a ∈ S, there exist x,y ∈ S such
that

a ≤ ax · ay ≤ (ax · ay)x · (ax · ay)y = (ax · ay) · ((ax · ay)x)y

= (aa · xy) · ((ax · ay)x)y = (((ax · ay)x)y · xy)(aa)

= ((yx)(ax · ay) · xy)(aa) = ((yx)(yx · aa) · xy)(aa)

= ((yx)(a · (yx)a) · xy)(aa) = (a(yx · (yx)a) · xy)(aa)

= ((xy)(yx · (yx)a) · a)(aa) = ((x · yx)(y · (yx)a) · a)(aa)

= ((yx2)(yx · ya) · a)(aa) = ((yx2)(yy · xa) · a)(aa)

= ((yx2)(ax · y2) · a)(aa) = ((ax)(yx2 · y2) · a)(aa)

≤ (((ax · ay)x)(yx2 · y2) · a)(aa) = (((yx2 · y2)x)(ax · ay) · a)(aa)

= ((xy2 · yx2)(ax · ay) · a)(aa) = ((ax)((xy2 · yx2)(ay)) · a)(aa)

= ((((xy2 · yx2)(ay))x)a · a)(aa) = (((x · ay)(xy2 · yx2))a · a)(aa)

= (((a · xy)(xy2 · yx2))a · a)(aa) = (((yx2 · xy2)(xy · ea))a · a)(aa)

= (((yx2 · xy2)(ae · yx))a · a)(aa) = ((ae · (yx2 · xy2)(yx))a · a)(aa)

= ((ae · b)a · a)(aa), where b = (yx2 · xy2)(yx).

This showing that ((ae · b)a · a, aa) ∈ Aa. Therefore

f+2
A ((ae · b)a) = (f+

A

∼◦ f+
A )((ae · b)a) =

⋃
(ae·b,a)≤(ae·b,a)

f+
A (ae · b) ∩ f+

A (a)

⊇ f+
A (ae · (yx2 · xy2)(yx)) ∩ f+

A (a) ⊇ f+
A (a) ∩ f+

A (a) = f+
A (a),
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Also h+2

C (aa) = (h+
C

∼◦ h+
C)(ea · ea) ⊇ h+

C(a). Similarly we can show that g+
2

B (a) ⊇
g+B(a). Therefore

((f+2

A

∼◦ g+2

B )
∼◦ h+2

C )(a) =
⋃

a≤((ae·b)a·a)(aa)

{f+2

A ((ae · b)a) ∩ g+
2

B (a) ∩ h+2

C (aa)}

⊇ f+
A (a) ∩ g+B(a) ∩ h+

C(a),

which shows that (f+2

A

∼◦g+2

B )
∼◦h+2

C ⊇ f+
A∩g

+
B∩h

+
C and similarly (f−

2

A

∼
?g−

2

B )
∼
?h−

2

C ⊆
f−A ∪g

−
B∪h

−
C . Thus (f

2

A�g
2

B)�h2

C w fAugBuhC . Hence fAugBuhC = (f 2
A

∼◦g+2

B )
∼◦h2

C .
Sufficiency: Let fA be any DFS r-ideal and hA be any DFS l-ideal of S over U

respectively. Since XS is a DFS bi-ideal of S over U , we get

f+
A ∩ h+

C = f+
A ∩ X

+
S ∩ h+

C = (f+2

A

∼◦ X+2

S )
∼◦ h+2

C = (X+2

S

∼◦ f+2

A )
∼◦ h+2

C

= ((f+2

A

∼◦ X+
S )
∼◦ X+

S )
∼◦ h+2

C = ((X+
S

∼◦ f+2

A )
∼◦ X+

S )
∼◦ h+2

C

= (h+2

C

∼◦ X+
S )
∼◦ (X+

S

∼◦ f+2

A ) = (f+2

A

∼◦ X+
S )
∼◦ (X+

S

∼◦ h+2

C )

= ((f+
A

∼◦ X+
S )
∼◦ (f+

A

∼◦ X+
S ))

∼◦ ((X+
S

∼◦ h+
C)
∼◦ (X+

S

∼◦ h+
C))

= ((f+
A

∼◦ X+
S )
∼◦ (X+

S

∼◦ h+
C))

∼◦ ((f+
A

∼◦ X+
S )
∼◦ (X+

S

∼◦ h+
C))

⊆ (f+
A

∼◦ h+
C)
∼◦ (f+

A

∼◦ h+
C),

which shows that f+
A ∩h

+
C ⊆ (f+

A

∼◦h+
C)
∼◦ (f+

A

∼◦h+
C). Now for any a ∈ S, if a � bc,

for some b, c ∈ S, then the proof is straightforward. Let a ≤ bc, for some b, c ∈ S.
Then

((f+
A

∼◦ h+
C)
∼◦ (f+

A

∼◦ h+
C))(a) = ((f+

A

∼◦ f+
A )
∼◦ (h+

C

∼◦ h+
C))(a)

⊆ ((f+
A

∼◦ X+
S )
∼◦ (S

∼◦ h+
C))(a)

=
⋃
a≤bc

{(f+
A

∼◦ X+
S )(b) ∩ (X+

S

∼◦ h+
C)(c)}

=
⋃
a≤bc

{ ⋃
b≤lm

{f+
A (l) ∩ X+

S (m)} ∩
⋃
c≤op

{X+
S (o) ∩ h+

C(p)}

}

⊆
⋃
a≤bc

{ ⋃
b≤lm

{f+
A (lm)} ∩

⋃
c≤op

{h+
C(op)}

}
=
⋃
a≤bc

{f+
A (b) ∩ h+

C(c)} ⊆
⋃
a≤bc

{f+
A (bc) ∩ h+

C(bc)}

= f+
A (a) ∩ h+

C(a),



112 J. of Ramanujan Society of Mathematics and Mathematical Sciences

which implies that (f+
A

∼◦ h+
C)
∼◦ (f+

A

∼◦ h+
C) ⊆ f+

A ∩ h+
C and therefore f+

A ∩ h+
C =

(f+
A

∼◦ h+
C)
∼◦ (f+

A

∼◦ h+
C). Similarly f−A ∪ h

−
C = (f−A

∼
? h−C)

∼
? (f−A

∼
? h−C). Thus fA u hC =

(fA � hC) � (fA � hC). Let R and L be any right and left ideals of S. Then by
using Lemma 3.1, XR and XL are the DFS r-ideal and DFS l-ideal of S over U
respectively. Now by using Lemma 3.6, we get

XR∩L = XR u XL = (XR � XL) � (XR � XL) = (XR � XR) � (XL � XL)

= XR2 � XL2 = X(R2L2] = X(L2R2],

which implies that R ∩ L = (L2R2]. Now let a2 ∈ R, then a ≤ ax · ay = a2 · xy ∈
RS ⊆ R. Hence R is semiprime. Since (Sa2] and (Sa] are the right and left ideals
of S such that a2 ∈ (Sa2] and a ∈ (Sa], therefore

a ∈ (Sa2] ∩ (Sa] = ((Sa2](Sa2])(Sa2] · (Sa] ⊆ (SS](Sa2] · (Sa]

⊆ ((SS)(Sa2) · (Sa)] = ((a2S)S · Sa] = ((SS)(aa) · Sa]

= ((aa)(SS) · Sa] = ((Sa)a · Sa] ⊆ (Sa · Sa] = (aS · aS].

This implies that S is strongly regular.
Theorem 4.16. Let R (resp. L) be any right ideal (resp. left ideal) and fA (resp.
gB) be any DFS r-ideal over U (resp. DFS l-ideal over U) of a unitary ordered
AG-groupoid S. Then the following conditions are equivalent:
(i) S is strongly regular;
(ii) R ∩ L = (R3L] = (L3R] and R is semiprime;
(iii) fA u gB = f 3

A � gB = g3B � fA and fA is DFS semiprime.
Proof. (i) =⇒ (iii): Let fA and gB be any DFS r-ideal and DFS l-ideal of a
strongly regular S over U respectively. From Lemma 3.2, it is easy to show that
f+3
A � g

+
B v f+

A u g+B . Now for a ∈ S, there exist some x,y ∈ S such that

a ≤ ax · ay ≤ (ax · ay)x · (ax · ay)y = y(ax · ay) · x(ax · ay)

= (ax)(y · ay) · (ax)(x · ay) = (ax)(ay2) · (ax)(a · xy)

= (y2a)(xa) · (ax)(a · xy) = ((ax)(a · xy))(xa) · y2a
= ((ax)(a · xy))(ex · a) · y2a = ((ax)(a · xy))(ax · e) · y2a
= bc · y2a = d · y2a, where d = bc = ((ax)(a · xy))(ax · e).

Thus

((f+
A

∼◦ f+
A )
∼◦ f+

A )(d) =
⋃
d≤bc

{(f+
A

∼◦ f+
A )(b) ∩ f+

A (c)} ⊇ (f+
A

∼◦ f+
A )(b) ∩ f+

A (c)

=
⋃

b≤(ax)(a·xy)

{f+
A (ax) ∩ f+

A (a · xy)} ∩ f+
A (ax · e)

⊇ f+
A (ax) ∩ f+

A (a · xy) ∩ f+
A (ax · e) ⊇ f+

A (a).
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Therefore

(f+3
A

∼◦ g+B)(a) =
⋃

a≤d·y2a

{((f+
A

∼◦ f+
A )
∼◦ f+

A )(d) ∩ g+B(y2a)} ⊇ f+
A (a) ∩ g+B(a),

which shows that f+
A ∩ g

+
B ⊆ f+3

A

∼◦ g+B , and similarly f−A ∪ g
−
B ⊇ f−3A

∼
? g−B . Thus

fA u gB = f 3
A � gB, and by Lemma 4.13, f+

A is DFS semiprime. It is easy to show
that f 3

A � gB = g3A � fA, hence the proof is omitted.
(iii) =⇒ (ii): Let R and L be any right and left ideals of S. Then by us-

ing Lemma 3.1, XR and XL are the DFS r-ideal and DFS l-ideal of S over U
respectively. Now by using Lemma 3.6, we get

XR∩L = XR u XL = ((XR � XR) � XR) � XL = X(R3] � XL = X((R3]L] = X(R3L],

which implies that R ∩ L = (R3L] and by Lemma 3.3, R is semiprime. Also it
is easy to see that (R3L] = (L3R], hence the proof is omitted.

(ii) =⇒ (i) : Since (Sa2] and (Sa] are the right and left ideals of S such that
a2 ∈ (Sa2] and a ∈ (Sa], therefore by given assumption and Lemma 2.1, we have

a ∈ (Sa2] ∩ (Sa] = ((Sa2](Sa2])(Sa2] · (Sa] ⊆ (SS](Sa2] · (Sa]

⊆ ((SS)(Sa2) · (Sa)] = ((a2S)S · Sa] = ((SS)(aa) · Sa]

= ((aa)(SS) · Sa] = ((Sa)a · Sa] ⊆ (Sa · Sa] = (aS · aS].

Thus S is strongly regular.

Theorem 4.17. Let S be a unitary ordered AG-groupoid. Then the following
conditions are equivalent:
(i) S is strongly regular;
(ii) fA u gB = (f 3

A � gB)u (gB � f 3
A) and fA is DFS semiprime (for any DFS r-ideal

fA and DFS l-ideal gB of S over U);
(iii) fAugB = (f 3

A �gB)u(gB �f 3
A)) and fA is DFS semiprime (for any DFS r-ideal

fA and DFS bi-ideal gB of S over U);
(iv) fAu gB = (f 3

A � gB)u (gB � f 3
A) and fA is DFS semiprime (for any DFS r-ideal

fA and DFS generalized bi-ideal gB of S over U);
(v) fAugB = (f 3

A�gB)u(gB �f 3
A) and fA, gB are DFS semiprime (for DFS bi-ideals

fA, gB of S over U);
(vi) fA u gB = (f 3

A � gB) u (gB � f 3
A) and fA, gB are DFS semiprime (for DFS

generalized bi-ideals fA, gB of S over U).
Proof. (i) =⇒ (vi): Let fA and gB be DFS generalized bi-ideals of S over U .
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Now for a ∈ S, there exist x,y ∈ S such that

a ≤ ax · ay ≤ (ax · ay)x · (ax · ay)y = (ax · ay)(ax · ay) · xy
= (ax · ay)(aa · xy) · xy = (aa)((ax · ay)(xy)) · xy
= ((xy)(ax · ay))(aa) · xy = a(((xy)(ax · ay))a) · xy
= (xy)(((xy)(ax · ay))a) · a = (xy)(a(ax · ay) · xy) · a
= (xy)(ax · (ax · ay)y) · a = (xy)(ax · (y · ay)(ax)) · a
= (ax)(xy · (y · ay)(ax)) · a = ((xy · (ay2)(ax))x)a · a
= ((x · (ay2)(ax)) · xy)a · a = ((x · (aa)(y2x)) · xy)a · a
= ((aa · x(y2x)) · xy)a · a = ((aa · y2x2) · xy)a · a
= ((xy · y2x2) · aa)a · a = ((xy · x2y2) · aa)a · a
= ((y2x2 · yx) · aa)a · a = (y3x3 · aa)a · a = (aa · x3y3)a · a
= ((x3y3 · a)a)a · a = ((x3y3 · (ax · ay))a)a · a = ((x3y3 · (aa · xy))a)a · a
= ((aa · x4y4)a)a · a = ((x4y4 · a)a · a)a · a = ((x4y4 · (ax · ay))a · a)a · a
= ((aa · x5y5)a · a)a · a = ((y5x5 · aa)a · a)a · a = ((a · (y5x5)a)a · a)a · a
= ba · a, where b = (a · (y5x5)a)a · a.

Therefore

(f+3

A

∼◦ g+B)(a) =
⋃

a≤ba·a

{
f+3

A (ba) ∩ g+B (a)
}

⊇
⋃

ba≤ba

{f+2

A (((a · (y5x5)a)a · a)) ∩ f+
A (a)} ∩ g+B (a)

⊇
⋃

b≤(a·(y5x5)a)a·a

{f+
A ((a · (y5x5)a)a) ∩ f+

A (a)} ∩ f+
A (a) ∩ g+B (a)

⊇ f+
A ((a · (y5x5)a)a) ∩ f+

A (a) ∩ f+
A (a) ∩ g+B (a)

⊇ f+
A (a) ∩ f+

A (a) ∩ f+
A (a) ∩ g+B (a) = f+

A (a) ∩ g+B (a) ,

which shows that f+3

A

∼◦ g+B ⊇ f+
A ∩g

+
B and similarly we can show that g+B

∼◦f+3

A ⊇
f+
A ∩ g

+
B . Therefore (f+3

A

∼◦ g+B)∩ (g+B
∼◦ f+3

A ) ⊇ f+
A ∩ g

+
B . Similarly (f−

3

A

∼
? g−B)∪ (g−B

∼
?

f−
3

A ) ⊆ f−A ∪ g−B . It is easy to show that (f+3

A

∼◦ g+B) ∩ (g+B
∼◦ f+3

A ) ⊆ f+
A ∩ g+B and

(f−
3

A

∼
? g−B) ∪ (g−B

∼
? f−

3

A ) ⊇ f−A ∪ g−B . Thus fA u gB = (f
3

A � gB) u (gB � f
3

A).
(vi) =⇒ (v) =⇒ (iv)⇒ (iii) =⇒ (ii) are obvious cases.
(ii) =⇒ (i): Let fA be any DFS r-ideal and gB be any DFS l-ideal of S over

U . Since fA u gB = (f
3

A � gB) u (gB � f
3

A), therefore f+
A ∩ g+B ⊆ f+3

A

∼◦ g+B and
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f+
A ∩ g+B ⊆ g+B

∼◦ f+3

A . Let f+
A ∩ g+B ⊆ f+3

A

∼◦ g+B , but from Theorem 4.16, f+3

A

∼◦ g+B ⊆
f+
A ∩ g+B . Therefore f+

A ∩ g+B = f+3

A

∼◦ g+B and similarly f−A ∪ g−B = f−
3

A

∼
? g−B . Thus

fA u gB = f 3
A � gB therefore by using Theorem 4.16, S is strongly regular. Now

let f+
A ∩ g+B ⊆ g+B

∼◦ f+3

A . It is easy to show that g+B
∼◦ f+3

A ⊆ f+
A ∩ g+B , therefore

f+
A ∩ g

+
B = g+B

∼◦ f+3

A and similarly f−A ∪ g
−
B = g−B

∼
? f−

3

A .Thus fA u gB = gB � f+3

A and
therefore by using Theorem 4.16, S is strongly regular.

Theorem 4.18. Let S be a unitary ordered AG-groupoid. Then the following
conditions are equivalent:
(i) S is strongly regular;
(ii) Every ideal of S is semiprime;
(iii) Every bi-ideal of S is semiprime;
(iv) Every DFS bi-ideal of S is DFS semiprime;
(v) Every DFS generalized bi-ideal of S is DFS semiprime;
(vi) For every DFS bi-ideal fA of S over U , fA(a) = fA(a2), ∀ a ∈ S;
(vii) For every DFS generalized bi-ideal fA of S over U , fA(a) = fA(a2), ∀ a ∈ S.
Proof. (i) =⇒ (vii) : Let S be strongly regular and fA be a DFS generalized
bi-ideal of S. Let a ∈ S, then there exist b, c ∈ S such that a ≤ (ba2)c, therefore

a ≤ ba2 · c = (b · aa)c = (a · ba)c = (c · ba)a ≤ c(b(ba2 · c)) · a = b(c(ba2 · c)) · a
= b(ba2 · c2) · a = (ba2 · bc2)a = (b2 · a2c2)a = (a2 · b2c2)a = (a · b2c2)a2

≤ (ba2 · c)(b2c2) · a2 = (c2c)(b2 · ba2) · a2

= (c2b2)(c · ba2) · a2 ≤ (c2b2)(uv · ba2) · a2

= (c2b2)(a2v · bu) · a2 = (c2b2)(a2b · vu) · a2 = ((c2b2 · vu)b)(aa) · a2

= (ab)(a(c2b2 · vu)) · a2 = (aa)(b(b2c2 · vu)) · a2 = a2(b(b2c2 · vu) · a2.

Thus, we have f+
A (a) ⊇ f+

A (a2(b(b2c2 · vu)) · a2) ⊇ f+
A (a2) ∩ f+

A (a2) = f+
A (a2), and

similarly f−A (a) ⊆ f−A (a2). Thus fA(a) w fA(a2). Again

a2 = aa ≤ (ba2 · c)(ba2 · c) = (ba2 · ba2)(cc) = (bb · a2a2)c2 = b2(a2)2 · c2

= b2(a2a2) · c2 = a2(b2a2) · c2 = c2(b2a2) · a2 = (c2 · b2a2)(aa)

= (a · b2a2)(ac2) = (aa)(b2a2 · c2) = (b2a2 · c2)a · a = (c2a2 · b2)a · a
= ((c2 · aa)b2 · a)a = ((a · c2a)b2 · a)a = (ab2)(a · c2a) · a = a2(b2 · c2a) · a
= a2(c2 · b2a) · a = (aa)(c2 · b2a) · a = (b2a · c2)(aa) · a = a((b2a · c)a) · a,

therefore f+
A (a2) ⊇ f+

A (a((b2a · c)a) · a) ⊇ f+
A (a) ∩ f+

A (a) = f+
A (a) and similarly

f−A (a2) ⊆ f−A (a). Thus fA(a2) w fA(a). Hence fA(a2) = fA(a).
(vii) =⇒ (vi) and (vii) =⇒ (v) are obvious.
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(iv) =⇒ (iii) : It can be followed from Lemma 3.3.
(iii) =⇒ (ii) : It is obvious.
(ii) =⇒ (i) : Since (Sa2] is an ideal of a unitary ordered AG-groupoid S

containing a2, thus by using Lemma 2.1 applied, we have a ∈ (Sa2] = (SS · a2] =
(a2S · S] = ((aa · SS)S] = ((SS · aa)S] = (Sa2 · S]. Therefore S is strongly regular.

5. Conclusions
We have considered the following problems in detail:

i) Define and compare DFS left/right and bi-ideals of an ordered AG-groupoid and
respective examples are provided.
ii) Discuss the structural properties of a strongly regular ordered AG-groupoid in
terms of DFS left/right and bi-ideals.
iii) Compare a strongly regular class of an ordered AG-groupoid with other im-
portant classes of an ordered AG-groupoid, which will provide us a way to study
DFS-sets in more generalized form in future.

This paper generalized the theory of an AG-groupoid in the following ways:
i) In an AG-groupoid (without order) by using the DFS-sets.
ii) In an AG-groupoid (with and without order) by using fuzzy sets instead of
DFS-sets.

Some important issues for future work are:
i) To develop strategies for obtaining more valuable results in related areas.
ii) To apply these notions and results for studying DFS expert sets and applications
in decision making problems.
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