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1. Introduction and Preliminaries
In 1992, Matthews [17] introduced the notion of partial metric spaces. He

extended Banach’s contraction principle to partial metric spaces which is the ex-
tension of usual metric space. The existence of fixed point for mapping defined
on complete metric spaces (X, d) satisfy general contractive inequality of integral
type was established by Branciari [6]. This result which involves more general con-
tractive condition of integral type, was used by many authors to obtain some fixed
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point and common fixed point theorems on various spaces see eg., ([2], [4], [7], [8],
[9], [11], [14], [15], [16], [18], [22], [23], [24], [25]).

In 2002, Aamri and El-Moutawakil [1] defined the notion of (E.A) property for
self mappings which contains he class of non-compatible mappings in metric spaces.
It was pointed that (E.A) property allows replacing the completeness requirement
of the space with a more natural condition of closedness of the range as well as
relaxes the complexness of the whole space, continuity of one or more mappings and
containment of the range of one mapping into the range of other which is utilized
to construct the sequence of joint iterates. Subsequently, there are several results
proved for contraction mappings satisfying (E.A) property in partial metric spaces.
Most recently, Sintunavarat and Kumam [21] defined the notion of common limit
range CLR property in fuzzy metric spaces. In [21], it is observed that the notion of
CLR-property never requires the condition of the closedness of the subspace while
(E.A) property requires this condition for the existence of the fixed point.

Definition 1.1. A partial metric space (briefly PMS) is a pair (X, p) where
p : X ×X → R+ is continuous map and R+ = [0,∞) such that for all x, y, z ∈ X
(p1) p(x,x) = p(y,y) = p(x,y) ⇔ x = y,
(p2) p(x,x) ≤ p(x,y),
(p3) p(x,y) = p(y,x),
(p4) p(x,y) ≤ p(x,z) + p(z,y) - p(z,z).
Each partial metric p on X generates a T0 topology τp on X which has the family
of open p - balls

{Bp(x, ε) : x ∈ X, ε > 0},
as a base, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

1. A sequence {xn} in a PMS (X, p) converges to a point x ∈ X if and only if
p(x, x) = limn→∞ p(x, xn).

2. A sequence {xn} in a PMS (X, p) converges to a point x ∈ X if and only if
p(x, x) = limn→∞ p(x, xn).

3. A PMS (X, p) is said to be complete if every cauchy sequence in X converges,
with respect to τp, to a point x ∈ X such that

p(x, x) = lim
m,n→∞

p(xm, xn).

The following lemma states a new version of the continuity on partial metric.

Lemma 1.2. [10] Assume that xn → x and yn → y in PMS (X, p). Then

lim
n→∞

(p(xm, xn)−min{p(xn, xn), p(yn, yn)}) = p(x, y)−min{p(xn, xn), p(yn, yn)}.
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Remark 1.3. Let

p∗(x, y) = p(x, y)−min{p(x, x), p(y, y)} ∀x, y ∈ X. (1.1)

Therefore by the above Lemma limn→∞ p
∗(xn, yn) = p∗(x, y), when xn → x and

yn → y in PMS.
Let L(R+) denote the Lebesgue integrable functions with finite integral and

USC(R+) denote the upper semi-continuous functions.

Φ := {ϕ : R+ → R+ : ϕ ∈ L(R+),

∫ ε

0

ϕ(t)dt > 0, ε > 0}

and

Ψ := {ψ : R+ → R+ : ψ ∈ USC(R+), ψ(0) = 0 and ψ(t) < t; ∀t > 0}.

A pair of self mappings F and G on X is weakly compatible if there exists a point
x ∈ X such that Fx = Gx implies FGx = GFx i.e., they commute at their coin-
cidence points.
The following are partial metric version of metric ones in ([1], [12], [22]).

Definition 1.4. Let (X, p) be a partial metric space for the self mappings F,G, S, T :
X → X. If there exist two sequences xn and yn in X such that

lim
n→∞

Fxn = lim
n→∞

Gxn = lim
n→∞

Syn = lim
n→∞

Tyn = t ∈ X,

then the pair (F,G) and (S, T ) satisfy the common (E.A) property.

Definition 1.5. Let (X, p) be a partial metric space for the self mappings F,G, S, T :
X → X. If there exist two sequences xn and yn in X such that

lim
n→∞

Fxn = lim
n→∞

Gxn = lim
n→∞

Syn = lim
n→∞

Tyn = t ∈ G(X) ∩ T (X),

then the pair (F,G) and (S, T ) satisfy the common limit range property with respect
to the mapping G and T , denoted by CLRGT .

The purpose of this paper to employ the common CLR-property to obtain
common fixed point results for two pair of weakly compatible mappings satisfying
generalized contractive condition of integral type on partial metric spaces.

2. Main Results
In this section, we establish common fixed point theorems for weakly compatible

mappings using CLR and common (E.A) properties.

Theorem 2.1. Let (X, p) be a partial metric space and F , G, S and T be four
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self-mappings on X satisfying the following conditions:
(1) The pair (F,G) and (S, T ) share (CLRGT ) property;

(2)
∫ p(Fx,Sy)
0

ϕ(t)dt ≤ ψ
( ∫ C1

F,G,S,T (x,y)

0 ϕ(t)dt
)
∀x, y ∈ X, where (ϕ, ψ) ∈ Φ×Ψ and

C1
F,G,S,T (x,y) = max

{
p(Fx, Sy), p(Fx,Gx), p(Gy, Ty),

1

2

[
p(Fx, Ty) + p(Sy,Gx)

]
p∗(Sy, Ty)p(Fx,Gx)

1 + p(Gx, Ty)
,
p∗(Fx, Sy)p(Fx, Ty)

1 + p(Gx, Fx)

}
.

If the pairs (F,G) and (S, T ) are weakly compatible, then F , G, S and T have a
unique common fixed point in X.
Proof. By (CLRGT ) property for (F,G) and (S, T ), there exist two sequences xn
and yn in X such that

lim
n→∞

Fxn = lim
n→∞

Gxn = lim
n→∞

Syn = lim
n→∞

Tyn = z, (2.1)

for some z ∈ G(X) ∩ T (X).
Since z ∈ G(X), then there exists a point u ∈ X such that Gu = z. Now we claim
that Fu = Gu. To prove the claim, let Fu 6= Gu. By putting x = u and y = yn in
condition (2) of above theorem, we have∫ p(Fu,Syn)

0

ϕ(t)dt ≤ ψ
( ∫ C1

F,G,S,T (u,yn)

0

ϕ(t)dt
)
, (2.2)

We have

C1
F,G,S,T (u,yn) = max

{
p(Fu, Syn), p(Fu,Gu), p(Gyn, T yn),

1

2

[
p(Fu, Tyn)

+ p(Syn, Gu)
]p∗(Syn, T yn)p(Fu,Gu)

1 + p(Gu, Tyn)
,
p∗(Fu, Syn)p(Fu, Tyn)

1 + p(Gu, Fu)

}
,

taking limit n→∞

lim
n→∞

C1
F,G,S,T (u,yn) = max

{
p(Fu, z), p(Fu, z), p(z, z),

1

2

[
p(Fu, z) + p(z, z)

]
p∗(z, z)p(Fu, z)

1 + p(z, z)
,
p∗(Fu, z)p(Fu, z)

1 + p(z, Fu)

}
= max

{
p(Fu, z), p(Fu, z), p(z, z),

1

2
[p(Fu, z) + p(z, z)]

0,
p∗(Fu, z)p(Fu, z)

1 + p(z, Fu)

}
= p(Fu, z),

(2.3)
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because

p(Gu, Tyn) = p(z, Tyn)→ p(z, z)

p(Gu, Fu) = p(z, Fu)

p(Syn, Gu) = p(Syn, z)→ p(z, z)

p∗(tyn, Syn)→ p(z, z) = 0

p∗(Fu, Tyn)→ p∗(Fu, z) ≤ p(Fz, z)

p∗(Fu, Syn)→ p∗(Fu, z) ≤ p(Fz, z),

from equation (2.1)
p∗(Fu, Tyn)→ p∗(Fu, z) = p(Fu, z)−min{p(z, z), p(Fu, Fu)}. If p(z, z) < p (Fu,
Fu) then p∗(Fu, z) = p(Fu, z)− p(z, z)

(p(Fu, z)− p(z, z))p(Fu, z)

1 + p(z, Fu)
≤ p(Fu, z)

and if p(z, z) > p(Fu, Fu)

(p(Fu, z)− p(Fu, Fu))p(Fu, z)

1 + p(z, Fu)
≤ p(Fu, z).

So ∫ p(Fu,z)

0

ϕ(t)dt = lim sup
n→∞

∫ p(Fu,Syn)

0

ϕ(t)dt

≤ lim sup
n→∞

ψ
(∫ C1

F,G,S,T (u,yn)

0

ϕ(t)dt
)

≤ ψ
(

lim sup
n→∞

∫ C1
F,G,S,T (u,yn)

0

ϕ(t)dt
)

= ψ
(∫ p(Fu,z)

0

ϕ(t)dt
)

<

∫ p(Fu,z)

0

ϕ(t)dt,

which is contradiction thus Fu = Gu and hence

Fu = Gu = z. (2.4)
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Similarly we can show that Sv = Tv and hence

Sv = Tv = z. (2.5)

From (2.4) and (2.5),
Fu = Gu = z = Sv = Tv. (2.6)

Now we have to show that z is a common fixed point of F,G, S and T . Since the
pair (F,G) and (S, T ) are weakly compatible, by using (2.6) we have

Fu = Gu⇒ GFu = FGu⇒ Fz = Gz, (2.7)

Sv = Tv ⇒ TSv = STv ⇒ Sz = Tz, (2.8)

Next we have to show that Fz = z. For this suppose Fz 6= z using condition (2)
in theorem 2.1, putting x = z and y = v, we have∫ p(Fz,Sv)

0

ϕ(t)dt ≤ ψ
( ∫ C1

F,G,S,T (z,v)

0

ϕ(t)dt
)
.

By (2.6) and (2.7), we have

C1
F,G,S,T (z,v) = max

{
p(Fz, z), p(Fz, z), p(z, z),

1

2

[
p(Fz, z) + p(z, z)

]
p∗(z, z)p(Fz, z)

1 + p(z, z)
,
p∗(Fz, z)p(Fz, z)

1 + p(z, Fz)

}
= p(Fz, z),

and
∫ p(Fz,z)
0

ϕ(t)dt ≤ ψ
( ∫ p(Fz,z)

0
ϕ(t)dt

)
<
∫ p(Fz,z)
0

ϕ(t)dt, which is contradiction.
Thus Fz = z and from (2.7), we can write

Fz = Gz = z. (2.9)

Similarly, let x = u and y = z in condition (2) of theorem 2.1,

Sz = Tz = z. (2.10)

Hence By (2.9) and (2.10), we get

Fz = Gz = Sz = Tz = z. (2.11)
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Shows that, z is a common fixed point of F , G, S and T . For uniqueness we
assume that z1 and z2 are two distinct common fixed points of F , G, S and T .
Then replacing x by z1 and y by z2 in condition (2) of above theorem, we have∫ p(z1,z2)

0

ϕ(t)dt =

∫ p(Fz1,Sz2)

0

ϕ(t)dt ≤ ψ
(∫ C1

F,G,S,T (z1,z2)

0

ϕ(t)dt
)
.

Since C1
F,G,S,T (z1,z2)

= p(z1, z2) So∫ p(z1,z2)

0

ϕ(t)dt ≤ ψ
(∫ p(z1,z2)

0

ϕ(t)dt
)
<

∫ p(z1,z2)

0

ϕ(t)dt

Which is a contradiction and thus z1 = z2. Hence F , G, S and T have a unique
common fixed point in X.

By the help of the theorem 2.1, we easily deduce the following corollaries.

Corollary 2.2. Let (X, p) be a partial metric space and F , G and T be three
self-mappings on X satisfying in the following conditions:
(1) The pair (F,G) and (F, T ) share (CLRGT ) property;

(2)
∫ p(Fx,Fy)
0

ϕ(t)dt ≤ ψ
( ∫ C1

F,G,F,T (x,y)

0 ϕ(t)dt
)
∀x, y ∈ X, where (ϕ, ψ) ∈ Φ×Ψ and

C1
F,G,F,T (x,y) = max

{
p(Fx, Fy), p(Fx,Gx), p(Gy, Ty),

1

2
[p(Fx, Ty) + p(Fy,Gx)]

p∗(Fy, Ty)p(Fx,Gx)

1 + p(Gx, Ty)
,
p∗(Fx, Fy)p(Fx, Ty)

1 + p(Gx, Fx)

}
.

If the pairs (F,G) and (F, T ) are weakly compatible, then F , G and T have a unique
common fixed point in X.

Corollary 2.3. Let (X, p) be a partial metric space and F and T be two self-
mappings on X satisfying in the following conditions:
(1) The pair (F, T ) share (CLRT ) property;

(2)
∫ p(Fx,Fy)
0

ϕ(t)dt ≤ ψ
( ∫ C1

F,T,F,T (x,y)

0 ϕ(t)dt
)
∀x, y ∈ X, where (ϕ, ψ) ∈ Φ×Ψ and

C1
F,T,F,T (x,y) = max

{
p(Fx, Fy), p(Fx, Tx), p(Ty, Ty),

1

2
[p(Fx, Ty) + p(Fy, Tx)]

p∗(Fy, Ty)p(Fx, Tx)

1 + p(Tx, Ty)
,
p∗(Fx, Fy)p(Fx, Ty)

1 + p(Tx, Fx)

}
.

If the pair (F, T ) are weakly compatible, then F and T have a unique common fixed
point in X.
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In a similar way we establish the following result.

Theorem 2.4. Let (X, p) be a partial metric space and F , G, S and T be four
self-mappings on X satisfying in the following conditions:
(1) The pair (F,G) and (S, T ) share (CLRGT ) property;

(2)
∫ p(Fx,Sy)
0

ϕ(t)dt ≤ ψ
( ∫ C2

F,G,S,T (x,y)

0 ϕ(t)dt
)
∀x, y ∈ X, where (ϕ, ψ) ∈ Φ×Ψ and

C2
F,G,S,T (x,y) = max

{
p(Fx, Sy), p(Fx,Gx), p(Gy, Ty),

1

2
[p(Fx, Ty) + p(Sy,Gx)]

p∗(Sy, Ty)p(Fx,Gx)

1 + p(Gx, Ty)
,
p∗(Fx, Sy)p(Fx, Ty)

1 + p(Gx, Fx)

}
.

If the pairs (F,G) and (S, T ) are weakly compatible, then F , G, S and T have a
unique common fixed point in X.

In general CLRGT property implies the common property (E.A) but the con-
verse is not true. So replacing CLRGT property by common property (E.A) in
Theorem 2.1 and Theorem 2.4, we get the following results, because the (E.A)
property together with the closedness property of a suitable subspace gives rise to
the closed range property.

Corollary 2.5. Let (X, p) be a partial metric space and F , G, S and T be four
self-mappings on X satisfying in the following conditions:
(1) The pair (F,G) and (S, T ) share (E.A) property such that T (X) (or G(X)) is
closed subspace of X;

(2)
∫ p(Fx,Sy)
0

ϕ(t)dt ≤ ψ
( ∫ C1

F,G,S,T (x,y)

0 ϕ(t)dt
)
∀x, y ∈ X, where (ϕ, ψ) ∈ Φ×Ψ.

If the pairs (F,G) and (S, T ) are weakly compatible, then F , G, S and T have
a unique common fixed point in X.

Corollary 2.6. Let (X, p) be a partial metric space and F , G, S and T be four
self-mappings on X satisfying in the following conditions:
(1) The pair (F,G) and (S, T ) share (E.A) property such that T (X) (or G(X)) is
closed subspace of X;

(2)
∫ p(Fx,Sy)
0

ϕ(t)dt ≤ ψ
( ∫ C2

F,G,S,T (x,y)

0 ϕ(t)dt
)
∀x, y ∈ X, where (ϕ, ψ) ∈ Φ×Ψ and

C2
F,G,S,T (x,y) = max

{
p(Fx, Sy), p(Fx,Gx), p(Gy, Ty),

1

2
[p(Fx, Ty) + p(Sy,Gx)]

p∗(Sy, Ty)p(Fx,Gx)

1 + p(Gx, Ty)
,
p∗(Fx, Sy)p(Fx, Ty)

1 + p(Gx, Fx)

}
.

If the pairs (F,G) and (S, T ) are weakly compatible, then F , G, S and T have a
unique common fixed point in X.
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One can obtained other consequences from theorem 2.4 and corollaries 2.5 and
2.6 in a similar way as obtained from theorem 2.1.
If we replace C1

F,G,S,T (x,y) by C3
F,G,S,T (x,y), then Theorem 2.1 and ??? are still valid.

Similarly, theorem 2.4 and Corollary 2.6 are still valid, if we replace C2
F,G,S,T (x,y) by

C4
F,G,S,T (x,y). i. e.

C3
F,G,S,T (x,y) = max

{
p(Fx, Sy), p(Fx,Gx), p(Gy, Ty),

1

2
[p(Fx, Ty) + p(Sy,Gx)]

p∗(Sy, Ty)p(Fx,Gx)

1 + p(Gx, Ty)
,
p∗(Fx, Sy)p(Fx, Ty)

1 + p(Gx, Fx)

}
,

and

C4
F,G,S,T (x,y) = max

{
p(Fx, Sy), p(Fx,Gx), p(Gy, Ty),

1

2
[p(Fx, Ty) + p(Sy,Gx)]

p∗(Sy, Ty)p(Fx,Gx)

1 + p(Gx, Ty)
,
p∗(Fx, Sy)p(Fx, Ty)

1 + p(Gx, Fx)

}
.

3. Example
In this section, we apply our main result to prove the following:

Example 3.1. Suppose X = R+ and p(x, y) = max{x, y}; then (X, p) is a PMS.
Define four self mappings F , S, T and G on X by

F (x) =
x2

2
+

1

2
, G(x) = x2, S(x) = x, T (x) =

2

x2 + 1
.

Let xn = {1 + 1
n
}n∈N and yn = { n

n+1
}n∈N be two sequences, so we have

limn→∞F (xn) = limn→∞G(xn) = limn→∞S(yn) = limn→∞T (yn) = 1.

Also 1 ∈ T (X) ∩G(X) = (0, 2] ∩ R+,

Hence (F,G) and (S, T ) satisfy CLRGT property. It is easy to check that the
pair (F,G) and (F,G) is weakly compatible at x = 1 as a coincidence point. To
verify condition (2) of theorem 2.1, let us define φ, ψ : R+ → R+ by φ(t) = t and
ψ(t) = t3

3
.

So

F (2) =
5

2
, G(2) = 4, S(

1

2
) =

1

2
, T (

1

2
) =

8

5
, and C1(

5

2
,
1

2
) = 4.

Thus we obtain ∫ p(F (2),S( 1
2
))

0

φ(t)dt =

∫ 2

0

tdt = 2.
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On the other hand

ψ
(∫ C1(2,

1
2
)

0

ϕ(t)dt
)

= ψ
(∫ 4

0

tdt
)

= ψ(8) =
512

3
.

Hence ∫ p(F (2),S( 1
2
))

0

φ(t)dt ≤ ψ
(∫ C1(2,

1
2
)

0

ϕ(t)dt
)
.

Thus all the conditions of Theorem 2.1, so we get 0 as common fixed point of have
mappings F , G, S and T .

Remark 3.2. Replacing the partial metric p in (X, p) by metric d we can get the
similar results given in [19].
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