
J. of Ramanujan Society of Mathematics and Mathematical Sciences
Vol. 8, No. 1 (2020), pp. 07-30

ISSN (Online): 2582-5461

ISSN (Print): 2319-1023

LINEAR RECURSIVE RELATIONS FOR BERNOULLI NUMBERS
AND APPLICATIONS

H. Belbachir, E. V. P. Spreafico* and M. Rachidi*

U S T H B, Faculté de Mathématiques,
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1. Introduction
Bernoulli numbers have been extensively studied in the literature, since they

arise in many area of theoretical and applied mathematics, and also have wide-
ranging of applications in applied sciences and engineering. These numbers con-
tinue to attract much attention, especially, several properties of recurrence relations
for generating Bernoulli numbers are considered in many studies (see for example
[4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17], and reference therein). In general, the Bernoulli

numbers Bn and Bernoulli numbers B
(k)
n of order k ≥ 2 are commonly defined

through their associated generating function, namely,

t

et − 1
=

+∞∑
n=0

Bn
tn

n!
(1)

and (
t

et − 1

)k
=

+∞∑
n=0

B(k)
n

tn

n!
. (2)

For reason of convenience, in the sequel B
(k)
n will be referred to as Bernoulli num-

bers of order k ≥ 2. The generating functions defining some usual known sequences
of numbers, as Fibonacci and Lucas numbers, are rational functions. For general-
ized Fibonacci sequences, the generating function is also a rational function (see
[15]). Moreover, each kind of these sequences of numbers satisfies a specific linear
recursive relation of finite order. Conversely, the generating function defined by
a linear recursive relation of finite order is a rational function. Taking into ac-
count the preceding facts and that the generating functions (1)-(2) of Bn and B

(k)
n

are not rational functions, comes the following natural question: are there some
kind of linear relations for generating recursively the Bernoulli numbers Bn and
Bernoulli numbers B

(k)
n ? Recall that, in the literature, there are several recursive

relationships linked to Bernoulli numbers Bn and Bernoulli numbers B
((k)
n , but they

are not linear with constant coefficients, (see, for example, [10, 12] and references
therein). However, observing (1)-(2) the denominators in the quotient of gener-
ating functions are infinite series. Comparing with known sequences of numbers
whose generating functions are rational, the recurrence relationship for Bernoulli
numbers Bn and B

(k)
n , if they exist, must be of infinite order.

In this context, we are interested to establish linear recursive relations of Fi-
bonacci type of infinite order, for generating the Bernoulli numbers Bn and B

(k)
n .

This recursive process is based on the so called generalized Fibonacci sequences of
infinite order. Such sequences have been introduced and developed in [3, 13]. These
sequences are defined as follows. Let {ai}i≥0 and {αi}i≥0 be two sequences of real
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or complex numbers. Suppose that, for every N ∈ N, there exists i > N such that
ai 6= 0. The associated sequence of infinite order or the so-called ∞-generalized
Fibonacci sequence {wn}n∈Z is defined by,

wn = α−n for n ≤ 0,

wn =
∞∑
i=0

aiwn−i−1 for n ≥ 1. (3)

The sequences {ai}i≥0 and {αi}i≥0 are called the coefficients sequence and initial
sequence, respectively. The right side of Expression (3) represents a series, there-
fore, for the existence of wn it is important to worry about the convergence of this
series (for more details see [3, 13], and references therein). In this study, we are
also concerned in the connection between sequences (3) and a specific family of se-
quences defined by linear recursive relation of finite order. In fact, it was shown in
[3] that sequences (3) can be studied using properties of a family of linear difference
equations of finite order r ≥ 2 defined by,

un+1 = b0un + . . .+ br−1un−r+1, for n ≥ r − 1, (4)

where b0, b1, . . . , br−1 are the constant coefficients and u0 = α0, . . . , ur−1 = αr−1 are
the initial conditions. For such sequences, known in the literature as r-generalized
Fibonacci sequences, the analytic formula for un is given by

un =
l∑

i=1

(
si−1∑
j=0

βi,jn
j

)
λni , for every integer n ≥ 0, (5)

where λ1, ... λl are the roots of the characteristic polynomial Q(z) = zr − b0zr−1 −
· · · − br−1, of multiplicities s1, ... ,sl, respectively. Generally, the scalars βi,j (1 ≤
i ≤ l, 0 ≤ j ≤ si− 1) are obtained by solving the generalized Vandermonde system

of equations
∑l

i=1

(∑si−1
j=0 βi,jn

j
)
λni = αn, n = 0, 1, . . . , r− 1 (see, for example, [2,

18]). In addition, we will resort to the combinatorial formula of the general term
un given by,

un =
r−1∑
i=0

Aiρ(n− i, r), for every n ≥ r, (6)

where Ai = ar−1ui + ...+ aiur−1, for 0 ≤ i ≤ r − 1, and

ρ(n, r) =
∑

k0+2k1+···+rkr−1=n−r

(k0 + · · ·+ kr−1)!

k0!k1! . . . kr−1!
ak00 . . . a

kr−1

r−1 , (7)
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with ρ(r, r) = 1 and ρ(n, r) = 0 for 0 ≤ n ≤ r− 1 (see, for instance, [[3], references
therein], [18]). Expressions of type (7) where considered by Philippou et al. (see,
for example, [15] and references therein).

The purpose of this study is to establish that the Bernoulli numbers Bn and
B

(k)
n are generated by some linear recursive relations of order infinity of type (3).

We show that this method represents a natural way for obtaining linear recursive
relation generating Bn and B

(k)
n , which is an answer to our precedent question.

Moreover, we establish some compact combinatorial formulas for Bn and B
(k)
n . On

the other side, we develop an analytic approximation process of Bn and B
(k)
n , based

on the approximation of the sequence (3) by a family of linear recursive sequences
of finite order (4). In the same way, we improve a combinatorial approximation

process of Bn and B
(k)
n . The main idea behind our study, is the closed relation

between the exponential generating function (1) and the characteristic functions
of the sequence (3). Connections with the partial Bell polynomials and Stirling
numbers of the second kind are discussed. Moreover, applications to Euler numbers,
Genocchi numbers and zeta functions are also addressed.

The content of this paper is organized as follows. In Section 2 we recall some
basic view of sequences (3) and results on the Bernoulli numbers Bn and B

(k)
n ,

using properties of sequences (3), are established. Section 3 is devoted to explore
a connection between partial Bell Polynomials, sequences (3), Bernoulli numbers
and Stirling numbers of second order. In Section 4 an approximation processes
of the Bernoulli numbers are provided from the approximation of the sequence
(3), by a specific family of linear recursive sequences of finite order. In section 5
related applications to Genocchi numbers, Euler numbers and zeta function are
also considered. Finally, concluding remarks are given.

2. Bernoulli numbers and truncated sequences (3)

2.1. Truncated sequences (3). In this subsection we recall some basic elements
of the linear recursive sequences (3), which are important in sequel of this study.
Let {wn}n∈Z be a sequence (3) of coefficients and initial data {ai}i≥0 and {αi}i≥0,
respectively. As said before, the general term wn (n ≥ 1) is a numerical series.
Therefore, for the existence of wn, when n ≥ 1, a necessary and sufficient condition,
labeled (C∞), was formulated in [3, Proposition 2.1] as follows:

(C∞): The series
∑∞

i=0 ai+n−1αi converges for all n ≥ 1.

When αj = 0, for all j ≥ k + 1, the condition (C∞) is verified and we have

wn+1 =
∑n+k

j=0 ajwn−j, for all n ≥ 0. In such case, the sequence {wn}n∈Z is called
a k-truncated sequence (3). Especially, when αj = δj,k for all j ≥ 0, where δj,k is
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the Kronecker symbol, the associated sequence (3), denoted by {ω(k)
n }n∈Z, is called

an elementary k-truncated sequence (3). Let F∞ = F∞({ai}i≥0) be the vector
space (over C) of sequences (3) of (fixed) coefficients {ai}i≥0 such that their initial
sequences {αi}i≥0 satisfy the condition (C∞). A straightforward long verification

allows us to establish that the set S = {{ω(k)
n }n∈Z; k ∈ N} of elementary k-truncated

sequences (3), is a basis of the vector space F∞. More precisely, for every {wn}n∈Z ∈
F∞, we have wn =

∑+∞
k=0 αkω

(k)
n for all n ∈ Z. Moreover, it was proved in [13] that

every {wn}n∈Z ∈ F∞ takes the combinatorial form wn =
∑n

s=1Asρ(n − s, 0) with
As =

∑+∞
m=0 as+m−1αm and

ρ(n, 0) =
∑

k0+2k1+···+nkn−1=n

(k0 + · · ·+ kn−1)!

k0! · · · kn−1!
ak00 . . . a

kn−1

n−1 , (8)

such that ρ(0, 0) = 1 and ρ(−k, 0) = 0 for every k ≥ 1. Especially, we have the
following useful property.

Proposition 2.1. (see [13]) The combinatorial formula of {ω(0)
n }n∈Z is

ω(0)
n = ρ(n, 0), for every n ≥ 1,

where ρ(n, 0) is defined as in (8).

Throughout the rest of this work the sequence {ω(0)
n }n∈Z will play a central

role. Therefore, for reasons of necessity of the clarity of the rest of this text, the
sequence {ω(0)

n }n∈Z is simply denoted by {vn}n∈Z.
On the other hand, a direct computation shows that the generating function of

{vn}n∈Z is,

f(t) =
∞∑
n=0

vnt
n =

1

Q(t)
, (9)

where Q(t) = 1 −
∑∞

j=0 ajt
j+1 is the so-called the characteristic function of the

sequence (3) (for more details see [3, 13]). Conversely, let Q(t) be a complex
function which is analytic in open disk D(0;R) centered at 0, with R > 0. Suppose
that Q takes the form Q(t) = 1−

∑∞
j=0 ajt

j+1 in D(0;R). Since Q(0) = 1 6= 0 then

f(t) =
1

Q(t)
has a Taylor expansion in the D(0;R) given by,

f(t) =
1

1−
∑∞

j=0 ajt
j+1

=
∞∑
n=0

wnt
n. (10)

And the identity Q(t)f(t) = 1 implies that we have wn+1 =
∑n

j=0 ajwn−j, for all
n ≥ 0, where w0 = 1 and w−j = 0, for all j ≥ 1. Hence, {wn}n∈Z is nothing else
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but the linear sequence of infinite order {vn}n∈Z.

2.2. Bernoulli numbers and sequences (3)
Let {Bn}n≥0 be the sequence of Bernoulli numbers defined by their associated

exponential generating function (1). Observing that we can write t
et−1 =

1

Q(t)
,

where Q(t) = 1 −
∑+∞

n=0 ant
n+1 with an = − 1

(n+ 2)!
. Comparing the right sides

of (1) and (10) where Q(t) = 1 −
∑+∞

n=0 ant
n+1, with an = − 1

(n+ 2)!
, we get the

result.

Theorem 2.2. The Bernoulli numbers are expressed in terms of a specific linear
recursive sequence (3) as follows,

Bn = n!× v[1]n , (11)

where {v[1]n }n∈Z is the sequence (3), whose coefficients and initial values are an =

− 1

(n+ 2)!
(n ≥ 0), v

[1]
0 = 1 and v

[1]
−j = 0 for all j ≥ 1, respectively. In addition,

the combinatorial formula of Bn is given by,

Bn = n!
∑

k0+2k1+···+nkn−1=n

(−1)k0+···+kn−1
(k0 + · · ·+ kn−1)!

k0! · · · kn−1!

n−1∏
j=0

[
1

(j + 2)!

]kj
. (12)

Moreover, the sequence
{
Bn

n!

}
n≥0 satisfies the following linear recursive relation,

Bn+1

(n+ 1)!
= a0

Bn

n!
+ a1

Bn−1

(n− 1)!
+ · · ·+ an

B0

0!
. (13)

Proof. Indeed, Expression (11) is obtained from (1) and (9) by identification of
the terms of the two series. In addition, using Proposition 2.1 and Expression
(8), we obtain the combinatorial formula (12) of the Bernoulli numbers. Second,

Expression (11) shows that vn =
Bn

n!
, and by substitution in (3) we derive the

linear recursive formula (13). �
In fact, Expression (13) shows that the sequence

{
Bn

n!

}
n≥0 satisfies the recursive

relation of type (3). This assertion represents a linear recursive process for gen-

erating the Bernoulli numbers. Since an = − 1

(n+ 2)!
, Expression (13) takes the

following form,

Bn+1

(n+ 1)!
= −

n∑
k=0

Bn−k

(k + 2)!(n− k)!
= −

n∑
k=0

Bk

k!(n− k + 2)!
. (14)
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Moreover, the recursive formulas (13)-(14) allows us to recover the following clas-
sical expression,

Corollary 2.3. The Bernoulli numbers Bn satisfy the identity

n+1∑
k=0

(n+ 2)!

(n− k + 2)!
× Bk

k!
=

n+1∑
k=0

(
n+ 2

k

)
Bk = 0. (15)

Proof. Expression (13) is equivalent to
Bn+1

(n+ 1)!
+

n∑
k=0

Bk

k!
× 1

(n− k + 2)!
= 0, and

multiplying both sides by (n + 2)! we get the requested identity, namely, formula
(15). �

Furthermore, since the function f(t) = t
et−1 satisfies f(−t) = t+ f(t), we show

that the equality f(−t) =
∑∞

n=0(−1)nvnt
n=t +

∑∞
n=0 vnt

n implies that v2n+1 = 0,
for every n ≥ 1. Consequently, Expression (11) attests that B2n+1 = 0, for every
n ≥ 1. Since all the odd Bernoulli numbers vanish except B1 = −1

2
and B0 = 1,

Expression (14) gives,

Bn Value Decimal Value (5 digits)
B0 1 1.0000
B1

−1
2
−0.50000

B2
1
6

0.16667
B4

−1
30
−0.03333

B6
1
42

0.02381
B8

−1
30
−0.03333

B10
6
66

0.07576
B12

−691
2730

−0.25311
B14

7
6

1.16667
B16

−3617
510

−7.09216
B18

43867
798

54.97118
B20

−174611
330

−529.12424
B22

854513
138

6192.12319

Table 1: Terms of Bernoulli numbers sequence

B2n+2 = −1

2

[
2n+ 1

(2n+ 3)(2n+ 2)
+

n−1∑
s=0

1

(s+ 1)

(
2n+ 2

2s+ 2

)
B2n−2s

]
, for every n ≥ 0.

Let the first terms of the sequence in Table 1.
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2.3. Bernoulli numbers B
(k)
n of order k ≥ 2 and sequences (3)

Recall that the Bernoulli numbers B
(k)
n of order k ≥ 2 are defined by the

generating function (2). By considering (10) with Q(t) = 1 +
+∞∑
j=0

1

(j + 2)!
tj+1 we

get, (
t

et − 1

)k
=

(
1

Q(t)

)k
=

(
+∞∑
n=0

v[1]n t
n

)k

=
+∞∑
n=0

[ ∑
p1+···+pk=n

v[1]p1 · · · v
[1]
pk

]
tn,

where {v[1]n }n∈Z is the sequence (3), whose coefficients and initial values are an =

− 1

(n+ 2)!
(n ≥ 0) , v

[1]
0 = 1 and v

[1]
−j = 0, for all j ≥ 1. Therefore, by applying

(11)-(12), we succeed the result.

Theorem 2.4. Bernoulli numbers B
(k)
n (n ≥ 0) of order k ≥ 2, satisfy the identity,

B(k)
n = n!

∑
p1+···+pk=n

v[1]p1 · · · v
[1]
pk

=
∑

p1+···+pk=n

(
n

p1, . . . , pk

)
Bp1 · · ·Bpk , (16)

where the Bp1 , · · · , Bpk are the Bernoulli numbers. Moreover, the combinatorial

formula of the B
(k)
n (n ≥ 1) is

B(k)
n = n!

∑
p1+···+pk=n

ρv(p1, 0) · · · ρv(pk, 0),

where the ρv(n, 0) are as in (8) with aj = − 1

(j + 2)!
.

The simple decomposition

(
t

et − 1

)k+1

=

(
t

et − 1

)
.

(
t

et − 1

)k
allows us to

achieve a recursive process to construct the B
(k+1)
n with the aid of B

(k)
s . Indeed, a

direct computation, using (2) and (10), shows that
B

(k+1)
n

n!
=

n∑
s=0

v
[1]
n−s

B
(k)
s

s!
. Hence,

we can state the following corollary.

Corollary 2.5. For every n ≥ 1, we have

B(k+1)
n =

n∑
s=0

(
n

s

)
Bn−sB

(k)
s and B

(k+1)
n+1 = B

(k)
n+1 −

n∑
s=0

1

j + 2

(
n+ 1

s+ 1

)
B

(k)
n−j.
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More generally, the forgoing process linking Bn and sequences (3), can also be

considered for Bernoulli numbers B
(k)
n . Indeed, the B

(k)
n can be expressed in terms

of a specific sequence (3). More precisely, if we set H(t) = 1 +
∑+∞

j=0 βjt
j, where

βj =
1

(j + 1)!
, a straightforward computation shows that H(t)k = 1−

+∞∑
m=0

bm,kt
m+1,

where

bm,k = −
∑

j1+···+jk=m+1

k∏
s=1

1

(js + 1)!
. (17)

Therefore, using (10), we obtain

(
t

et − 1

)k
=

1

H(t)k
=

+∞∑
n=0

Wn,kt
n, where {Wn,k}n∈Z

is a sequence (3) of initial data W0,k = 1, W−j,k = 0, for j ≥ 1, and coefficients bn,k
(n ≥ 0) are as in (17). Thus, following (2) we derive the property.

Theorem 2.6. Under the preceding data, the Bernoulli numbers B
(k)
n of order

k ≥ 2 take the following form,

B(k)
n = n!Wn,k, for every n ≥ 0, (18)

where {Wn,k}n∈Z is a sequence of type (3), of initial data W0,k = 1, W−j,k = 0 for
j ≥ 1 and coefficients bn,k are as in (17). Moreover, the combinatorial formula of

the B
(k)
n in terms of the coefficients bn,k (n ≥ 0) is given by,

B(k)
n = n!ρk(n, 0) = n!

∑
s0+2s1+···+nsn−1=n

(s0 + s1 + · · ·+ sn−1)!

s0!s1! . . . sn−1!
bs00,kb

s1
1,k · · · b

sn−1

n−1,k,

(19)
where the bn,k are as in (17).

Results of Theorem 2.4, namely, expression (11), implies that
B

(k)
n

n!
= Wn,k.

Hence, it ensue that the sequence

{
B

(k)
n

n!

}
n≥0

satisfies the recursive relation of

type (3), whose coefficients bn,k are given by (17). Therefore, we have a linear

recursive process for generating the Bernoulli numbers B
(k)
n . As a consequence of

Theorems 2.4 and 2.6, we have the corollary.

Corollary 2.7. Under the preceding data we have the following identity,∑
p1+···+pk=n

(
n

p1, . . . , pk

)
Bp1 · · ·Bpk =
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n!
∑

s0+2s1+···+nsn−1=n

(s0 + · · ·+ sn−1)!

s0! · · · sn−1!
bs00,k · · · b

sn−1

n−1,k,

where Bn are the Bernoulli numbers and the bn,k are as in (17).
It seems for us that the identity of the Corollary 2.7 is not current in the

literature.

3. Bernoulli numbers, sequences (3) and partial Bell polynomials
It seems for us that the combinatorial formula (12) for the Bernoulli numbers

is not known in the literature under this form. Nonetheless, this formula allows us
to connect the Bernoulli numbers with some special case of the alternate sum of
partial Bell polynomials (see [5]), defined by their generating function as follows,

∞∑
n=k

Bn,k (x1, x2, . . .)
tn

n!
=

1

k!

(
∞∑
m=1

xm
tm

m!

)k

. (20)

The explicit formula of the Bn,k (x1, x2, . . .) is

Bn,k (x1, x2, . . .) =
∑

k0+2k1+···=n
k0+k1+···=k

n!

k0!k1! · · · (1!)k0 (2!)k1 · · ·
xk01 x

k1
2 · · · . (21)

Note that the Formula (21) admits a finite number of terms according to k0 +2k1 +
· · · = n, and at most the last term of the product xk01 x

k1
2 · · · is xn. In the sequel

we can use one of the two notations Bn,k (x1, x2, . . .) or Bn,k (x1, x2, . . . , xn), for
more details we can refer to [5], where Comtet gave an important impulsion for
the development of Bell polynomials. The (exponential) partial Bell polynomials
Bn,k (x1, x2, . . .) make it possible to generate several family of Stirling numbers of
the second kind S(n, k) and the m-associate Stirling numbers of the second kind
Sm(n, k), where m ≥ 1, namely,

S(n, k) = Bn,k (1, 1, 1, . . .) and Sm(n, k) = Bn,k (0, . . . , 0, 1, 1, . . .) . (22)

where there is m consecutive zeros in the expression of Bn,k (0, . . . , 0, 1, 1, . . .).

Lemma 3.1. (see [5]) For every k,m ≥ 1 and n ≥ k, we have,

Bn,k

(
1

2
,
1

3
,
1

4
, . . .

)
=

n!

(n+ k)!
Bn+k,k (0, 1, 1, . . .) (23)
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Bn,k

((
m+ 1

1

)−1
,

(
m+ 2

2

)−1
, . . .

)
=

n!

(n+mk)!
Bn+mk,k (0, . . . , 0, 1, 1, . . .) (24)

The following theorem shows that the partial Bell polynomials are related to
sequences (3).

Theorem 3.2. The linear recursive sequence of infinite order {v[1]n }n∈Z satisfies
the following identity,

v[1]n =
∑
k≥0

(−1)kBn,k

(
1

2
,
1

3
, . . . ,

1

n+ 1

)
.

Proof. We develop the summation formula according to the expression of partial
Bell polynomials,

v[1]n =
∑

k0+2k1+···+nkn−1=n

(−1)k0+···+kn−1
(k0 + · · ·+ kn−1)!

k0! · · · kn−1!

n−1∏
j=0

[
1

((j + 2)!)kj

]

=
∑
k≥0

(−1)k
∑

k0+2k1+···+nkn−1=n
k0+k1+···+kn−1=k

k!

k0!k1! · · · kn−1!

[
1

2!

]k0 [ 1

3!

]k1
· · ·
[

1

(n+ 1)!

]kn−1

=
∑
k≥0

(−1)k
∑

k0+2k1+···+nkn−1=n
k0+k1+···+kn−1=k

k!

k0! · · · kn−1! (1!)k0 · · · (n!)kn−1
×

×
(

1

2

)k0
· · ·
(

1

n+ 1

)kn−1

=
∑
k≥0

(−1)kBn,k

(
1

2
,
1

3
, . . . ,

1

n+ 1

)
. �

As a consequence of the proof of Theorem 3.2 and Lemma 3.1, it ensues that
the Bernoulli numbers Bn are linked to the partial Bell polynomials as follows.

Corollary 3.3. Bernoulli numbers Bn satisfy the property,

Bn = n!
∑
k≥0

(−1)kBn,k

(
1

2
,
1

3
, . . . ,

1

n+ 1

)
, for every n ≥ 0.
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Furthermore, Expressions (22) and (23) imply that the following identity holds.

Corollary 3.4. The linear recursive sequence of infinite order {v[1]n }n∈Z satisfy the
identity,

v[1]n = n!
∑
k≥0

(−1)k

(n+ k)!
S(n+ k, k).

Involving (22)-(23) and Corollary 3.4 we get the following corollary, which allows
us to formulate the Bernoulli numbers in terms 1-associate Stirling numbers of the
second kind.

Corollary 3.5. Bernoulli numbers Bn satisfy the equality,

Bn = (n!)2
∑
k≥0

(−1)k

(n+ k)!
S(n+ k, k) for every n ≥ 0.

Moreover, in a similar way to that of the association between Bernoulli numbers
Bn and sequences (3), we can also study the closed relation between the sequence
{Wn,k}n∈Z and partial Bell polynomials. Indeed, we have the following results.

Theorem 3.6. The sequence {Wn,k}n∈Z satisfy the following property

Wn,k =
∑
m≥0

(
−1

k!

)m
Bn,m

((
k + 1

1

)−1
,

(
k + 2

2

)−1
, . . . ,

(
k + n

n

)−1)
.

Proof. We develop the summation formula to get the expression of partial Bell
polynomials. A direct computation implies that the bm,k given by (17) can be
written under the form,

bm,k = −
∑

j1+···+jk=m+1

k∏
s=1

1

(js + 1)!
= − 1

(m+ k + 1)!
km+k+1. (25)

Therefore, according to (17), (25) and (19), we have

Wn,k =
∑

k0+2k1+···+nkn−1=n

(−1)k0+···+kn−1
(k0 + · · ·+ kn−1)!

k0! · · · kn−1!

n−1∏
j=0

[
1

((j + k + 1)!)kj

]

=
∑
m≥0

(−1)m
∑

k0+2k1+···+nkn−1=n
k0+k1+···+kn−1=m

m!

k0! · · · kn−1!

[
1

(k + 1)!

]k0
· · ·
[

1

(k + n)!

]kn−1
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=
∑
m≥0

(−1)m
∑

k0+2k1+···+nkn−1=n
k0+k1+···+kn−1=m

m!

k0! · · · kn−1!

[
1!

(k + 1)!

]k0
· · ·
[

n!

(k + n)!

]kn−1

=
∑
m≥0

(
−1

k!

)m ∑
k0+2k1+···+nkn−1=n
k0+k1+···+kn−1=m

m!

k0! · · · kn−1!

[
1!k!

(k + 1)!

]k0
· · ·
[

n!k!

(k + n)!

]kn−1

=
∑
m≥0

(
−1

k!

)m
Bn,m

((
k + 1

1

)−1
,

(
k + 2

2

)−1
, . . . ,

(
k + n

n

)−1)
. �

As a consequence of Theorem 3.6, the Bernoulli numbers B
(k)
n are related to the

partial Bell polynomials as follows.

Corollary 3.7. The Bernoulli numbers B
(k)
n satisfy the following property,

B(k)
n = n!

∑
m≥0

(
−1

k!

)m
Bn,m

((
k + 1

1

)−1
,

(
k + 2

2

)−1
, . . . ,

(
k + n

n

)−1)
,

for every n ≥ 0.
In addition, Expressions (22) and (24) imply that the following identity holds.

Corollary 3.8. The sequence {Wn,k}n∈Z satisfies the following identity

Wn,k = n!
∑
m≥0

(
−1

k!

)m
1

(n+mk)!
Sk(n+mk,m),

for every n ≥ 0 and k ≥ 1.
Here also, the Bernoulli numbers B

(k)
n of order k ≥ 2, can be expressed in terms

of the m-associate Stirling numbers of the second kind. Using relations (22) and
(24), we derive the following corollary.

Corollary 3.9. The Bernoulli numbers B
(k)
n satisfy the following identity,

B(k)
n = (n!)2

∑
m≥0

(
−1

k!

)m
1

(n+mk)!
Sk(n+mk,m),

for every n ≥ 0.

4. Approximation of Bernoulli numbers and sequences of type (3)
Many results and algorithms have been provided in the literature for approxi-

mating the Bernoulli numbers (see for example [1] and references therein). In this
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section, we are concerned in a new type of approximation of Bernoulli numbers Bn

and B
(k)
n , founded on the approximation of sequences (3) by a specific family of

generalized Fibonacci sequences of finite order.

4.1. Linear and combinatorial approximation of Bernoulli numbers
Let {wn}n∈Z be a sequence (3). It was established in [3] that {wn}n∈Z can be ap-
proximated by a family of generalized Fibonacci sequence of order r ≥ 2. That
is, let {w(r)

n }n≥−r+1, where r ≥ 2, be the sequence defined by w
(r)
j = αj for

−r + 1 ≤ j ≤ 0 and

w
(r)
n+1 =

r−1∑
i=0

ai,rw
(r)
n−i+1 for n ≥ 0, (26)

where ai,r = ai (0 ≤ i ≤ r−1). The approximation [3, Theorem 3.1] asserts that the

general term wn given by (3) exists if and only if the sequence {w(r)
n }r≥1 converges,

for every fixed n ≥ 1. Furthermore, in this case we have lim
r→+∞

w(r)
n = wn, for all

n ≥ 1.
Now, we apply the preceding linear approximation of sequences (3) to the se-

quence {v[1]n }n∈Z defining the Bernoulli numbers (1), where the coefficients are aj =

− 1

(j + 2)!
and initial data v

[1]
0 = 1 and v

[1]
−j = 0, for j ≥ 1. Since v

[1]
n+1 =

n∑
j=0

ajv
[1]
n−j,

for all n ≥ 0, it is clear that v
[1]
n exists, for every n ≥ 1. Therefore, for each fixed

n, the general term v
[1]
n is the limit of the sequence {v(r)n }r≥1 (see [3, Theorem 3.1].

On the other hand, it is derived from (6)- (7) that the combinatorial formula of

the linear recursive sequence {v(r)n }n≥−r+1 is given by,

v(r)n =
∑

s0+2s1+···+rsr−1=n

(s0 + s1 + · · ·+ sr−1)!

s0!s1! · · · sr−1!
as00 a

s1
1 · · · a

sr−1

r−1 , for every n ≥ 0,

where aj = − 1

(j + 2)!
(see [3] and references therein). Combining this discussion

with Theorem 2.2 we show that the following linear and combinatorial approxima-
tions properties of the Bernoulli numbers, with the aid of a specific family of linear
recursive sequences of finite order (26), are given as follows.

Proposition 4.1. Under the preceding data, the Bernoulli numbers Bn are ap-
proximated in terms of sequences (26) under the form,

Bn = n!× lim
r→+∞

v(r)n ,



Linear Recursive Relations for Bernoulli Numbers and Applications 21

where {v(r)n }n≥−r+1 is of type (26), with coefficients aj = − 1

(j + 2)!
for j = 0, 1,

. . . , r − 1, and initial data v
(r)
0 = 1, v

(r)
−j = 0 for j = 1, . . . , r − 1. Moreover, a

combinatorial approximation of the Bn is given by,

Bn = n! lim
r→+∞

[ ∑
s0+2s1+···+rsr−1=n

(−1)
∑r−1

j=0 sj

( ∑r−1
j=0 sj

s0, . . . , sr−1

)[r−1∏
j=0

1

((j + 2)!)

]sj]
.

(27)

Formula (27) shows that for a large r we can write,

Bn ≈ n!v(r)n

and

Bn ≈ n!
∑

s0+2s1+···+rsr−1=n

(−1)
∑r−1

j=0 sj

( ∑r−1
j=0 sj

s0, . . . , sr−1

)[r−1∏
j=0

1

((j + 2)!)

]sj
.

Similarly, Theorem 2.6, namely identities (18)- (19), shows that the approximation

of the B
(k)
n in terms of family of linear recursive sequences (26), can also be provided

as follows.

Proposition 4.2. The approximations of the B
(k)
n in terms of sequences (26) and

their combinatorial form are given by,

B(k)
n = n! lim

r→+∞
W

(r)
n,k =

= n! lim
r→+∞

[ ∑
s0+2s1+···+rsr−1=n

(−1)
∑r−1

j=0 sj

( ∑r−1
j=0 sj

s0, . . . , sr−1

) r−1∏
j=0

(b
(r)
j,k)

sj

]
,

where {W (r)
n,k}n≥−r+1 is of type (26), the coefficients b

(r)
n,k are as in (17) and initial

data are W
(r)
0,k = 1, W

(r)
−j,k = 0 for j = 1, . . . , r − 1.

Similarly, formula of Proposition 4.2 shows that, for a large r, we can write,

B(k)
n ≈ n!W (r)

n

and

B(k)
n ≈ n!

∑
s0+2s1+···+rsr−1=n

(−1)
∑r−1

j=0 sj

( ∑r−1
j=0 sj

s0, . . . , sr−1

) r−1∏
j=0

(b
(r)
j,k)

sj .
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4.2. Analytic approximation of Bernoulli numbers
Let {wn}n∈Z be a sequence (3). For every fixed r ≥ 2, consider the polynomial

Qr(z) = 1−
∑r−1

j=0 ajz
j+1. It is clear that the characteristic polynomial of sequences

(26) is Pr(z) = zrQr(
1
z
). Let λ1,r, . . . , λsr,r be the roots of Pr(z), of multiplicities

d1,r, . . ., dsr,1, respectively. Formula (5) implies that the analytic formula of the

sequence {w(r)
n }n≥−r+1 is w(r)

n =
sr∑
i=1

di,r−1∑
j=0

β
(r)
i,j n

j

λni,r for n ≥ −r + 1 (see for ex-

ample [2, 18]).

Lemma 4.3. Let Pr(z) = zr +
r−1∑
j=0

1

(j + 2)!
zr−j+1 be the characteristic polynomial

of the linear recursive sequence (26). Then, every (characteristic) root λ of Pr(z)
is simple.
Proof. Let Sr+1(z) =

∑r
j=0

1
j!
zj = ez −

∑+∞
j=r+2

1
j!
zj. We show easily that

dSr+1

dz
(z) = Sr(z) and Sr+1(z) = 1 + zHr(z), where Hr(z) = 1 +

∑r−1
j=0

1
(j+2)!

zj+1

and we verify that Pr(z) = zrHr(
1
z
). If λ is a root of Pr(z), then λ 6= 0 and

Hr(
1
λ
) = 0, Sr+1(

1
λ
) = 1. Suppose now that λ is of order ≥ 2, then dPr

dz
(λ) = 0.

Since dPr

dz
(z) = rzr−1Hr(

1
z
)− zr−2 dHr

dz
(1
z
), we derive that dHr

dz
( 1
λ
) = 0. Moreover, the

relation dSr+1

dz
(z) = Hr(z) + z dHr

dz
(z) implies that dSr+1

dz
( 1
λ
) = 0 and thus Sr(

1
λ
) = 0.

On the other hand, Sr+1(z) = Sr(z) + 1
(r+1)!

zr+1 therefore

Sr+1(
1

λ
) = Sr(

1

λ
) +

1

(r + 1)!

1

λr+1
=

1

(r + 1)!

1

λr+1
= 1.

Hence, we have λr+1 = 1
(r+1)!

and then λ = 1
n+1
√

(r+1)!
> 0 is a root of Pr(z), which

is impossible since Pr(
1

n+1
√

(r+1)!
) > 0. Therefore, every root λ of Pr(z) is simple. �

For reason of clarity, let recall the following result of [2].

Lemma 4.4. (see [2, Theorem 2.2]) Suppose that the roots λ1, . . . , λr of the char-
acteristic polynomial Q(z) = zr − b0zr−1 − · · · − br−2z − br−1 of the sequence (26),
are simple. Then, the analytic formula of the sequence {un}n≥0 is given by

un =
r∑
i=1

1

Q′(λi)

(
r∑
p=1

Ap

λi
p+1

)
λi
n,

for n ≥ r, where Am = br−1um + · · ·+ bmur−1.

Let {v[1]n }n∈Z be the sequence of type (3) defining the Bernoulli numbers Bn.

Since v
[1]
−j = 0, for j ≥ 1, the conditions (C∞) is satisfied. The approximation
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process of [3, Theorem 3.1] shows that, for each fixed n, the general term v[1]n can
be expressed in terms of sequences of type (4) as in (26), namely, v[1]n = lim

r→+∞
v(r)n .

Therefore, since Lemma 4.3 proclaim that the characteristic roots λ1,r, . . . , λr,r
of Pr(z) = zr + 1

2
zr−1 + · · · + 1

r!
z + 1

(r+1)!
are simple, Lemma 4.4 implies that the

analytic expression (5) of the sequence {v(r)n }n≥−r+1 takes the form,

v(r)n =
r∑
i=1

1

P ′r(λi,r)

(
r∑
p=1

Ap,r

λi,r
p+1

)
λni,r,

where Am,r = ar−1v
(r)
m + · · · + amv

(r)
r−1. In summary, combining the approximation

process of sequences (3) by linear recursive sequences of finite order of [3, Theo-
rem 3.1], with Lemma 4.3, we derive the following result on the approximation of
Bernoulli numbers.

Theorem 4.5. Under the preceding data and notations of Propositions 4.1 and
4.2, the analytic approximation of Bernoulli numbers as follows,

Bn = n!× lim
r→+∞

[
r∑
i=1

1

P ′r(λi,r)

(
r∑
p=1

Ap,r

λi,r
p+1

)
λni,r

]
,

where λ1,r, . . . , λr,r are the roots of Pr(z) = zr + 1
2
zr−1 + · · · + 1

r!
z + 1

(r+1)!
, and

Am,r = ar−1v
(r)
m + · · ·+ amv

(r)
r−1.

The former result shows that, for a large r, we can write,

Bn ≈ n!×

[
r∑
i=1

1

P ′r(λi,r)

(
r∑
p=1

Ap,r

λi,r
p+1

)
λni,r

]
,

where λ1,r, . . . , λr,r are the simple roots of Pr(z) = zr + 1
2
zr−1 + · · ·+ 1

r!
z + 1

(r+1)!
,

and Am,r = ar−1v
(r)
m + · · ·+ amv

(r)
r−1.

Results of Theorem 4.5 and formulas (16), may contribute to establish the

analytic approximations of the Bernoulli numbers B
(k)
n of order k ≥ 2.

5. Applications to Genocchi numbers, Euler numbers and Zeta function
It is well known that the Bernoulli numbers Bn are related to other important

classes of numbers, especially the Genocchi numbers Gn and Euler numbers En
(see for example [1, 5, 6, 8, 18]). These two classes of numbers are defined by the
two following generating functions,

2t

et + 1
=

+∞∑
n=0

Gn
tn

n!
and

2et

e2t + 1
=

+∞∑
n=0

En
tn

n!
.



24 J. of Ramanujan Society of Mathematics and Mathematical Sciences

On the other hand, these two families of numbers are related to Bernoulli numbers
Bn thorough the two identities,

G2n = 2(22n − 1)B2n and E2n+1 = (22n − 1)
22n+1

n+ 1
B2n.

(see for example, [6, 8]). Therefore, results of Sections 2 and 4 on Bernoulli numbers
can contribute to obtain some properties for the Genocchi and Euler numbers, with
the aid of those of sequences (3). Particularly, Theorem 2.2 permits to get the
proposition.

Proposition 5.1. Under the preceding data, the Genocchi and Euler numbers G2n

and E2n+1 are expressed in terms of the linear recursive sequences of infinite order,
as follows,

G2n = 2(22n − 1)(2n)!× v[1]2n and E2n+1 = (22n − 1)(2n)!
22n+1

n+ 1
× v[1]2n,

where {v[1]n }n∈Z is a sequence (3), whose coefficients are an = − 1

(n+ 2)!
(n ≥

0) and initial values are v
[1]
0 = 1 and v

[1]
−j = 0 for all j ≥ 1. Moreover, the

combinatorial formulas of G2n and E2n+1 are,

G2n = 2(22n − 1)(2n)! Ω(n) and E2n+1 = (22n − 1)(2n)!
22n+1

n+ 1
Ω(n),

where

Ω(n) =
∑

∑2n−1
j=0 (j+1)kj=2n

(−1)
∑2n−1

j=0 kj
(
∑2n−1

j=0 kj)!

k0! · · · k2n−1!

2n−1∏
j=0

[
1

((j + 2)!)kj

]
.

On the other side, Propositions 4.1, 5.1 and Theorem 4.5 show that the ap-
proximation process of [3, Theorem 3.1], can also be applied for approaching the
Genocchi and Euler numbers G2n and E2n+1, in terms of the family of linear se-

quences {v(r)n }n≥−r+1 of finite order of type (26).

Proposition 5.2. Linear approximation. Under the preceding data, the Genoc-
chi and Euler numbers G2n and E2n+1 are approximated as follows,

G2n = 2(22n − 1)(2n)! lim
r→+∞

v
(r)
2n and E2n+1 = (22n − 1)(2n)!

22n+1

n+ 1
lim

r→+∞
v
(r)
2n ,
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where {v(r)n }n≥−r+1 is of type (26), with coefficients aj,r = − 1

(j + 2)!
for n =

0, 1, . . . , r − 1, and initial data v
(r)
0 = 1, v

(r)
−j = 0 for j = 1, . . . , r − 1.

The combinatorial approximation of G2n and E2n+1 can be provided from (27)
as follows,

G2n = 2(22n − 1)(2n)! lim
r→+∞

Ωn(r) and E2n+1 = (22n − 1)(2n)!
22n+1

n+ 1
lim

r→+∞
Ωn(r),

where

Ωn(r) =
∑

s0+2s1+···+rsr−1=n

(−1)
∑r−1

j=0 sj

( ∑r−1
j=0 sj

s0, · · · , sr−1

)[r−1∏
j=0

1

((j + 2)!)

]sj
.

In addition, the analytic approximation of Gn and En are obtained using Lemma
4.3 and result of Proposition 5.2. Indeed, we have the proposition.

Proposition 5.3. Analytic approximation. The analytic approximations of
Genocchi and Euler numbers G2n and E2n+1 are given by the formulas,

G2n = 2(22n−1)(2n)!× lim
r→+∞

Λn(r) and E2n+1 = (22n−1)(2n)!
22n+1

n+ 1
× lim
r→+∞

Λn(r),

where

Λn(r) =
r∑
i=1

1

P ′r(λi,r)

(
r∑
p=1

Ap,r

λi,r
p+1

)
λ2ni,r, (28)

such that λ1,r, . . . , λr,r are the simple roots of Pr(z) = zr+ 1
2
zr−1 + · · ·+ 1

r!
z+ 1

(r+1)!

and Am,r = ar−1v
(r)
m + · · ·+ amv

(r)
r−1.

Consequently, we deduce from Propositions 5.2-5.3, that for a large r we can
write,

G2n ≈ 2(22n − 1)(2n)!v
(r)
2n and E2n+1 ≈ (22n − 1)(2n)!

22n+1

n+ 1
v
(r)
2n ,

and

G2n ≈ 2(22n − 1)(2n)!× Λn(r) and E2n+1 ≈ (22n − 1)(2n)!
22n+1

n+ 1
× Λn(r),

where Λn(r) is as in (28).
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Finally, Bernoulli numbers are also related to the well known zeta function

defined by ζ(n) = 1 +
1

2n
+

1

3n
+

1

4n
+ · · · . The well known result of Euler asserts

that,

ζ(2n) =
(−1)n+1(2π)2n

2[(2n)!]
B2n,

for every n ≥ 1 (see for example [6]). Therefore, by Theorem 2.2, we have the
following properties of the zeta function.

Proposition 5.4. Under the preceding data, the zeta function satisfies the identity,

ζ(2n) =
(−1)n+1(2π)2n

2
v
[1]
2n, for every n ≥ 1,

where {v[1]n }n∈Z is the sequence (3) defining the Bernoulli numbers. Moreover, the
combinatorial formula of the zeta function is,

ζ(2n) =
(−1)n+1(2π)2n

2

∑
∑2n−1

j=0 (j+1)kj=2n

(−1)
∑2n−1

j=0 kj
(
∑2n−1

j=0 kj)!

k0! · · · k2n−1!

2n−1∏
j=0

1

((j + 2)!)kj
.

Similarly, as for Bernoulli numbers, Euler and Genocchi numbers, the approx-
imation process of [3, Theorem 3.1], can also be applied for approaching the zeta
function.

Proposition 5.5. For every n ≥ 1, the zeta function can be approached in terms
of the linear sequence {v(r)n }n≥−r+1 of type (26) as follows,

ζ(2n) =
(−1)n+1(2π)2n

2
lim

r→+∞
v
(r)
2n ,

Moreover, its analytic approximation is given,

ζ(2n) =
(−1)n+1(2π)2n

2
× lim

r→+∞

[
r∑
i=1

1

P ′r(λi,r)

(
r∑
p=1

Ap,r

λi,r
p+1

)
λ2ni,r

]
,

where where λ1,r, . . . , λr,r are the roots of Pr(z) = zr + 1
2
zr−1 + · · ·+ 1

r!
z + 1

(r+1)!
,

and Am,r = ar−1v
(r)
m + · · ·+ amv

(r)
r−1.

In the best of our knowledge, it seems for us that results of Propositions 5.1,
5.2 and 5.4 are not known in the literature, at least under these forms.



Linear Recursive Relations for Bernoulli Numbers and Applications 27

6. Concluding remarks and perspectives

In this study, we had emphases the closed connection between Bernoulli num-
bersBn, Bernoulli numbersB

(k)
n of order k (k ≥ 1) and the generalized Fibonacci se-

quences of order infinity. This new relationship has allowed us to establish some lin-
ear and combinatorial compact formulas of Bernoulli numbers Bn and B

(k)
n (k ≥ 1).

Moreover, new and known identities were founded. In addition, the approximations
method of Bn and B

(k)
n (k ≥ 1) are also provided, starting from the approximation

of sequences (3) by a specific family of linear recursive sequences of finite order
(4). The link with the partial Bell polynomials has been considered. Moreover,
the closed relationship between Bernoulli numbers and other king of numbers such
that Genocchi numbers Gn and Euler numbers En, allows us to provide properties
and explicit formulas for Gn and En, similar to those of Bn and B

(k)
n . Finally, the

expression of the zeta function ζ(n) in terms of the Bernoulli numbers Bn, also
permits to set analogous properties and explicit formulas for ζ(n).

It seems for us that our approach of Bernoulli numbers Bn and B
(k)
n is not

current in the literature. Furthermore, this approach can be also applied to the
study of the Genocchi numbers G

(k)
n and Euler numbers E

(k)
n of order k ≥ 2 can

also be studied with the aid of properties of sequences (3) and their underlying
techniques. Moreover, applications to Bernoulli polynomials, to Genocchi and Eu-
ler polynomials are provided. Some results in this direction have been already
established.

Finally, the asymptotic behavior for a sequence (3) has been studied in [3], and
the open question consists in how to apply result of [3, Theorem 5.2] for studying

the asymptotic behavior of the Bernoulli numbers Bn and B
(k)
n . Some numerical

tests show us that the treatment of this question is not an easy task.
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