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Abstract: In this paper we prove that a Bochner flat Kaehler Norden manifold
is holomorphically projectively flat provided the x-scalar curvature tensor S(e;, €;)
vanish. We also show that a Kaehler-Norden manifold is Bochner symmetric if
and only if it is locally symmetric and a Kaehler-Norden manifold is Bochner semi-
symmetric if and only if it is semi-symmetric.
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1. Introduction

An even dimensional differentiable manifold M?" is said to be an anti-Kaehler
manifold (Kaehler-Norden manifold) [11] if a complex structure J of type (1, 1) and
a pseudo-Riemannian metric g of the manifold satisfies the following conditions:

J? =1, (1.1)

g(JX,JY) = —g(X,Y), (1.2)

and
VJ =0, (1.3)
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for any XY € x(M), where x(M) is Lie algebra of vector fields on M?** and V
is Levi-Civita connection of g. The metric g necessary have neutral signature (n,
n). We know that such type of two dimensional manifold is flat, so through out
this paper we have considered the manifold of dimension > 4. Arif Salimov and
Sibel Turanli [13] studied curvature properties of anti-Kachler-Codazzi manifolds
in 2013. Other differential Geometers [14, 9, 10] also studied Kaehler-Norden man-
ifold by different approaches. In 1997, F. Defever, R. Deszcz and L. Verstraelen
[8] studied pseudosymmetric para-Kaehler manifold and proved that every semi-
Riemannian Ricci-pseudosymmetric para-Kaehler manifold (M?", J, g) of dimen-
sion > 4 is Ricci-semisymmetric. They also shown that the Weyl pseudosymmetric
para-Kaehler manifold (M?",.J,g) of dimension > 4 is Weyl semi-symmetric. In
2000, K. Sluka [14] proved that every pseudosymmetric, Ricci-pseudosymmetric and
Weyl pseudosymmetric Kaehler-Norden manifold (M?", ], g) are semi-symmetric,
Ricci-semisymmetric and semi-symmetric respectively. She also constructed an
example of holomorphically projectively flat as well as semi-symmetric and lo-
cally symmetric Kaehler-Norden manifolds. After then in 2014, De and Majhi
[9] studied the properties of the quasi-conformal curvature tensor of Kaehler-
Norden manifolds. They proved that a Kaehler-Norden manifold (M?*",J, g) is
quasi-conformally semi-symmetric if and only if it be semi-symmetric. We have
gone through the above developments and then planed to study the Bochner semi-
symmetric Kaehler-Norden manifold.

Before equation (1.4), Let R(X, Y) and R be curvature operator and Riemannian
Christoffel curvature tensor respectively then

R(X,Y) =[Vx,Vy] = Vix v, (1.4)

R(X,Y,2,W) = g(R(X,Y)Z, ). (1.5)
We know that the Ricci tensor S is defined by

S(X,Y) =trace{Z — R(Z,X)Y}. (1.6)

According to [3] the tensors defined in (1.4), (1.5) and (1.6) have the following
properties

R(JX,JY) = —R(X,Y), R(JX,Y)=R(X,JY),

S(JY, Z) = trace {X — R(JX,Y)Z} , S(JX,Y) = S(JY,X), (1.7)
S(JX,JY) = —S(X,Y).
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If we take @ as the Ricci operator then the Ricci tensor of type (0,2) in terms of
Q is defined as

S(X,Y) =g(QX,Y), (1.8)
where
QY = — Z eiR(ei, Y)el-,
and {eq, g, €3....... ,€n} is an orthonormal basis and ¢; are the indicators of e;.

The Reimannian metric g in terms of e; and ¢; are given by
(a) € =g(e;i,e) = =1,
(b) g(Jei,ei) = 0.

The notion of Bochner curvature tensor B on a Kaehler manifold was given by S.
Bochner in 1994. The Bochner curvature tensor B is defined by [2]

1
2(n + 2)
4 g(Y,V)S(Z,U) — g(Y,U)S(Z,V) + S(JY,V)g(JZ,U)

— S(IY, D)g(JZ, V) + S(JZ,U)g(JY, V) — g(JY,U)S(JZ,V)

(1.9)

B(Y,Z,UV)=R(Y,ZUYV) - {S(Y, V)g(Z,U) — S(Y,U)g(Z,V)

—2S(JY, Z)g(JU, V) — 29(JY, Z)S(JU, V)} (1.10)
T2t 2@2n 1) {Q(Z’ U)g(Y,V) —g(Y,U)g(Z,V)

+9(JZ,U)g(JY, V) = g(JY,U)g(JZ,V) —29(JY, Z)g(JU, V)},

where 1 is a scalar curvature of the manifold.
Putting Y = Je;, Z = JZ and U = e; and using equation (1.9) in above equation
we have

> eg(B(Jei, JZ)e;, V) = {1 + %} S(Z,V)
’ . 61 2) (1.11)
- 2n + 4 r9(J2, V) +19(2, V)] - (2n + 21)(271 + 4)g<Z’ V)

where r* denote *-scalar curvature , which is defined as the trace of JQ.
The holomorphic projective curvature tensor is defined by [16]

1
P(Y.Z,U,V) = R(Y.Z.UV) = —[S(Z.U)g(Y.V) = S(Y.U)g(Z.V) (112)

— S(JZ,U)g(JY, V) + S(JY,U)g(JZ,V)].
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From equation (1.12) by straight forward calculation we have

P<Y7 Z7 U7 V) = —P(Z,Y, U7 V)7
P(JY,JZ,U,V) = —P(Y, Z,U,V),
> eP(ei, Z,U Je)) =0, > eP(Y,Z e e) =0

2. On a Bochner Flat Kaehler-Norden Manifold
A Kaehler-Norden manifold (M?",J, g) is said to be Bochner flat Kaehler-Norden
manifold if and only if the Bochner curvature tensor vanishes identically i.e.

(1.13)

B(Y,Z,U,V) =0. (2.1)

Therefore from equation (1.11), we get

{1 + —(;nii) } S(2,V) + 2n1+ [79(JZ.V) +rg(Z.V)]

r(e; + 2) B
Tt nt@ V) =0

after equation (2.2), Putting Z =V = ¢;, we get

(2¢; +4) ei(e; +2) -
{1+ 2n +4 _(2n+2)(2n+4)}r_0’ (2.3)

this implies
r=20, (2.4)

Now from equations (2.2) and (2.4), we have

*

r

SN et

g(JZ, V). (2.5)

Using (2.1), (2.4) and (2.5) in equation (1.10), we have

*

(2n+ ¢+ 8)(n +2)

R(Y,Z,UV) = — 9(Y; Z2)g(JU, V) +g(U,V)g(JY, Z)]. (2.6)

A Kaehler-Norden manifold (M?", ., g) is said to be holomorphically flat if and
only if the holomorphic projective curvature tensor vanishes identically i.e.

P(Y,Z,U,V)=0. (2.7)
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Therefore from equation (1.12) and (2.7), we get

R(Y,Z,U V) = [S(Z,U)g(Y,V) =S, U)g(Z,V)

(n—2) (2.8)
- SWJZ,U)g(JY,V)+ S(JY,U)g(JZ,V)].
From equation (2.5) and (2.8), we have

*

r

R(Y,Z,UV) = [9(JY,U)g(Z,V) — g(JZ,U)g(Y,V)

(n—2)(2n + ¢ + 8) (2.9)
—9(Z,U)g(JY,V) 4+ g(Y,U)g(JZ, V)],

from equation (2.6) and (2.9), we get

*

T T 9m g DIV +eUVIgY, 2)

- . — (2.10)
= D@ eI Ve V) - g2, DY, V)

- g(Z, U)g(JY, V) +g(Y7 U)g(‘]Z’ V)]

Putting U =V = ¢; in equation (2.10), we get
reg(JY,Z) =0, (2.11)

which implies
r*=0. (2.12)

Thus we conclude:

Theorem 2.1. If a Bochner flat Kaehler-Norden manifold (M?", J, g) be holomor-
phically projectively flat then x-scalar curvature tensor will vanish.

3. Bochner Semisymmetric Kaehler-Norden Manifolds
Let (M, g) be a Riemannian manifold and V be the Levi-Civita connection of (M, g)
then a Riemannian manifold is said to be locally symmetric if VR = 0, where R is
the Riemannian curvature tensor of (M, g). After [1], The locally symmetric mani-
fold have been extended by different differential Geometer such as semi-symmetric
manifold by Szabo [15] and B. B. Chaturvedi and B. K. Gupta [4, 5, 6, 7, 12].
According to Z. 1. Szab o [15], a manifold M is said to be semi-symmetric manifold
if

(R(X,Y).R)(UV)W =0, X,Y,UV,W e x(M) (3.1)
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where X and Y are vector fields.

A Bochner curvature tensor is said to be Bochner parallel if the covariant derivative
of Bochner curvature tensor vanish i.e. VB = 0, and this type of manifold is called
Bochner symmetric manifold.

Taking covariant derivative of equation (1.11) and using VB = 0, we get

€ + 4
1+ 5w sz v)
2n+4 (3.2)
1 dr(X)(e; + 2) '
dr* (X Z dr(X)g(Z — Z, V) =0.
+ gy aldr (X)g(JZ, V) +dr(X)g(Z, V)] (2n+2>(2n+4>g( V) =0
Now putting Z =V = ¢; in above equation we have
1 — dr(X)=0 3.3
S T O R o TG A (33)
which implies
dr(X) = 0. (3.4)
Again putting above equation in (3.2), we get
1
VxS (Y, V)= ——————dr*(X)g(JY, V). 3.5
(VxS)Y.V) = =g @ (X)al Y. ) (35
Putting Y = JY in above equation we get
1
SHIY, V)= ——dr*(X)g(Y,V 3.6
(VX )( ) ) (2n+61+8)r( )g( ) )a ( )
again replacing Y and V in equation (3.6) by e;, we get
e
l— —— )dr*(X) =0 3.7
this implies
dr*(X) = 0, (3.8)
putting above value in equation (3.5), we have
(VxS)(Y,V)=0. (3.9)

Now taking covariant derivative of equation (1.10) and using equation (3.4) and
(3.9), we get
(Vx B)(Y, Z,U.V) = (Vx R)(Y, Z,U, V). (3.10)
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Thus we conclude:

Theorem 3.1. A Kaehler-Norden manifold (M?",J, g) is Bochner symmetric if
and only if it 1s locally symmetric.

A Kaehler-Norden manifold is said to be Bochner semi-symmetric Kaehler-
Norden manifold if Bochner curvature tensor of the manifold satisfies

(R(X,Y).B)(U V)W =0, X,Y.U,V,W € y(M) (3.11)

for all vector fields X and Y.
Now we propose:

Theorem 3.2. A Kaehler Norden manifold (M*", J, g) is Bochner semi-symmetric

iof and only if it 1s semi-symmetric.
From equation (1.11) we have

(e +4)

1 *
ZQB(JQ, JZ)€i7: {1 + m} QZ+m[T JZ+7‘Z]—

r(e; +2)
(2n+2)2n+4) "’
(3.12)

i

where r* is the x-scalar curvature which is defined by the trace of JQ.

If Bochner curvature tensor in Kaehler-Norden manifold satisfies R.B = 0 then
from equation (3.12) we have R.QQ = 0 and hence R.S = 0. Since we know that the
Ricci tensors are defined by S(X,Y) = g(QX,Y) and S(JX,Y) = ¢g(QJX,Y) then
from equation (1.10) if R.B =0 and R.S = 0 then we get R.R = 0. Conversely if

RR=0=RS=0= RQ=0, (3.13)

then from (3.12), we have R.B=0.
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