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Abstract: Vaccination is most essential for the elimination of infectious dis-
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1. Introduction

Vaccination is mainly considered as one of the outstanding medical achieve-
ments of modern civilization. Vaccination gained rising popularity and success
after eradicating smallpox that was responsible for centuries of the outbreak of
1976. Because of vaccines, childhood diseases were commonplace less than a gener-
ation ago is now increasingly rare. However, now vaccination is an ordinarily used
method to control illnesses such as polio, tuberculosis, and measles. Customarily,
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there are diverse schedules of dosage for various diseases and vaccines. For some
infections, vaccinated individuals should take doses several times, and there must
be some fixed time interval between a couple of doses. For example, Gabbuti et
al. [2] suggested that vaccination of hepatitis B can confer long-term immunity
and that immunological memory can remain the loss of antibody. Hence, routine
booster doses of the vaccine do not appear necessary to maintain long-lasting pro-
tection in successfully vaccinated immunocompetent individuals. For a given set of
population, the ratio of susceptive who goes on to vaccination depends on myriad
factors, one of which is the availability of the required resources.

Vaccination is administering a vaccine to spur an individual’s immune system
to improve adaptive immunity to an epidemic. Vaccines can limit or enhance mor-
bidity from infection. Vaccination is the most effective tool for checking infectious
diseases Gabbuti et al. [2]. Much thought has been paid to creating and inves-
tigating epidemic models with vaccination to gain insights into vaccination’s role
in the last decades. For example, by including a continuous vaccination strategy
into a classical susceptible-infectious-recovered model, Liu et al. [6] presented a
vaccination model characterized by a system of four ordinary differential equations
(ODEs). It is ascertained that vaccination has an effect of reducing the basic repro-
duction number. It is also confirmed that the basic reproduction number governs
the global dynamics of the model. In the presented model, the populations are
divided into susceptible, vaccinated, infective, and recovered.

On the other hand, vaccinated individuals are considered to have partial im-
munity, and therefore the dynamic relationships with infectious individuals may
moderate compared with those of susceptible. In this sense, the ongoing vaccina-
tion strategy can be assessed by the basic reproduction number because of the two
infection paths: the vaccinated infection path and the susceptible infection path.
Presently, it has been perceived that the transmission dynamics of several diseases
could not be correctly interpreted by the traditional compartmental epidemic mod-
els with no age structure. Models with (continuous) age structures are represented
by a hybrid system of ODEs and partial differential equations (PDEs) (Webb [11]).
Following is the vitality of the research works [3, 4, 6, 7, 8], Wang et al. [9] formed
an SVEIR model with the composition of infection age. Under the hypothesis that
the infectious class’s removal rate is constant rather than a function of the infection
age, the model can be recreated as a differential equation with an infinite delay.

Duan et al. [1] studied an SVIR model’s global stability with the vaccination
age. Correlated with the models in [6, 9]; in this, the model did not consider that
vaccinated peoples still have the possibility of being infected by contact with in-
fected peoples. Following the line of Liu et al.[6] and Wang et al.[9] and believing
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that before receiving immunity, the vaccinees still has the possibility of being in-
fected by contact with infected peoples, Wang et al. [10] reviewed the dynamics of
a hybrid system of the SVIR model with the infection age.

2. Model Formulation
In Islam [3], the Susceptible-Vaccinated-Infected-Recovered model with Bi-

linear incidence rate was considered as:

dS
dt

= (1− p)A+ Λ− αSI − (µ+ φ)S

dV
dt

= φS − σαV I − µV

dI
dt

= pA+ αSI + σαV I − (µ+ γ + β)I

dR
dt

= γI − µR


In this paper, we are considering an SVIR epidemic model with the saturated
incidence rate αSI

1+αI
, based on the above motivations. The model described under

the framework of the following nonlinear ordinary differential equations:

dS
dt

= (1− p)Λ + β − αSI
1+αI

− (µ+ ϕ)S

dV
dt

= ϕS − σαV I − µV

dI
dt

= pΛ + αSI
1+αI

+ σαV I − (µ+ δ + λ)I

dR
dt

= λI − µR


(2.1)

where S(t) > 0, V (t) > 0, I(t) > 0 and R(t) > 0 denoted the divisions of the
population that are susceptible, vaccinees, infectious, and recovered at time t,
respectively. We model new infections using the saturated incidence rate αSI

1+αI
,

where α is the contact rate that is sufficient to transmit the disease. We also
considered a constant recovery rate λ ≥ 0. With the help of a factor σ, the vaccine
has the effect of reducing the susceptibility to infection, so that σ = 0 indicates
that the vaccine is thoroughly efficient in preventing infection, while σ = 1, implies
that the vaccine is thoroughly inefficient. ϕ is the rate at which the susceptible
population is vaccinated. x

′
= f(x) is disease-related death rate, µ is natural death

rate which is not related to the disease. The population is renewed in two type,
birth and immigration. We believe that all newborns enter the susceptible class at
the constant rate of β and there is a constant incoming flow of immigrants.
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Table 1: Biological meanings of parameters in equation (2.1)

Parameter Meaning

Λ Constant transition of new members into the population per

unit time, where fraction ρ of emigrants is infective (0 ≤ ρ ≤ 1)

α Disease contact rate

ϕ Rate at which the vaccination of the susceptible population

µ Constant per capita natural death rate

λ Fraction of infective recovers in unit time

β Constant natural birth rate, with all newborns getting into

the susceptible class

δ Disease induced death rate

σ Reflects the effect of vaccine reducing the infection rate

αN Infectious contact rate per person in unit time.

2.1. Boundedness of the system

We examine the boundness property of the total population in the system:
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Theorem 2.1. The solution of the system (2.1) is uniformly bounded.
Proof. The sum of the susceptible, infective, vaccinated, and recovered class is
the entire population, that is

N(t) = S(t) + V (t) + I(t) +R(t), therefore

dN(t)

dt
=
dS(t)

dt
+
dV (t)

dt
+
dI(t)

dt
+
dR(t)

dt
(2.2)

Using equation (2.1) and (2.2)

dN(t)

dt
= Λ + β − µN − δI

Then we obtained

dN

dt
= Λ + β − µN − δI i.e

dN

dt
= µN ≤ Λ + β

Now using the theory of the differential inequality and integrating both sides of
the above inequality, we get

0 < N(S, V, I, R) ≤ Λ + β

µ
(1− e−µt) +N

(
S(0), V (0), I(0), R(0)

)
e−µt

Now taking limit, t→∞, we get 0 < N ≤ Λ+β
µ

Consequently all the general solution of equation (2.1) that initiating at {R4
+/0}

are confined in the region.

R =

{
(S, V, I, R) ∈ R4

+ : S, V, I, R ≥ 0, N =
Λ + β

µ
+ ξ

}
For any ξ > 0 and for t→∞.Hence the theorem proved.

We can obtain an substitute model but equivalent model by substituting S with
N − V − I −R. Reformulate model can be expressed by following

dV
dt

= ϕ(N − I −R)− σαV I − (µ+ ϕ)V

dI
dt

= ρΛ + αI
1+αI

(N − I −R)− αV I
(

1
1+αI

− σ
)
− (µ+ δ + λ)I

dR
dt

= λI + µR

dN
dt

= Λ + β − µN − δI


(2.3)
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Jacobean matrix of above system is given by

J =


−σαI − µ− ϕ −ϕ− σαV −ϕ ϕ

−αI
(

1
1+αI − σ

)
− αI

1+αI + (N − V − I −R) α
(1+αI)2 + σαV − (µ+ δ + λ) −αI

1+αI
αI

1+αI

0 λ −µ 0
0 −δ 0 −µ


3. Equilibrium Conditions

For equilibrium points of the system (2.3), we have

ϕ(N − I −R)− σαV I − (µ+ ϕ)V = 0 (3.1)

ρΛ +
αI

1 + αI
(N − I −R)− αV I

( 1

1 + αI
− σ

)
− (µ+ δ + λ)I = 0 (3.2)

λI − µR = 0 (3.3)

Λ + β − µN − δI = 0 (3.4)

From equation (3.1), (3.3) and (3.4) we get

N =
Λ + β − δI

µ
,R =

λI

µ
, V =

ϕ{Λ + β − (µ+ δ + λ)I}
µ(σαI + µ+ ϕ)

and by substituting

these value in equation (3.2), we get

A1I
3 + A2I

2 + A3I + A4 = 0 (3.5)

Where, A1 = α2σ
{

(µ+ δ + λ)(1 + µ+ ϕ)
}

A2 = (Λ + β)α2σ(1− ϕ) + (µ+ δ + λ){µ+ ασϕ− αϕ− αµ2 − ϕµ}
+ α(µ+ ϕ)(δ + λ)− ρΛα2µσ

A3 = µ(µ+ ϕ)(α− δ − λ− µ− ραΛ)ρΛαµσ − α(Λ + β)(µ+ σϕ)

A4 = −ρΛµ(µ+ ϕ)

4. Vaccine Reproductive Number
Suppose that the case when there are no infective immigrants that is. ρ = 0,

therefore from equation (2.3) we get

dV
dt

= ϕ(N − I −R)− σαV I − (µ+ ϕ)V

dI
dt

= αI
1+αI

(N − V − I −R) + ασV I − (µ+ δ + λ)I

dR
dt

= λI − µR

dN
dt

= Λ + β − µN − δI


(4.1)
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For equilibrium points of the system (4.1), we have

ϕ(N − I −R)− σαV I − (µ+ ϕ)V = 0 (4.2)

αI

1 + αI
(N − V − I −R) + ασV I − (µ+ δ + λ)I = 0 (4.3)

λI − µR = 0 (4.4)

Λ + β − µN − δI = 0 (4.5)

From equation (4.4) and (4.5), we have N =
Λ + β − δI

µ
and R =

λI

µ
From equation (4.3) we can easily see that I = 0 that is diseases dies out.
By using equation (4.2), we can evaluate the other equilibrium values at disease-free

equilibrium (DFE) of R = 0, N =
Λ + β

µ
, and V = ϕ(Λ+β)

µ(µ+ϕ)
.

So the diseases free equilibrium E0(V, I, R,N) =

(
ϕ(Λ + β)

µ(µ+ ϕ)
, 0, 0,

(Λ + β)

µ

)
Now Jacobean matrix at E0 is

J =


−(µ+ ϕ) −ϕ− σαφ(Λ+β)

µ(µ+ϕ)
−ϕ ϕ

0 α
(

Λ+β
µ
− (1− σ)ϕ(Λ+β)

µ(µ+ϕ)

)
− (µ+ δ + λ) 0 0

0 λ −µ 0
0 −δ 0 −µ


The eigenvalues of the J0 are given by

λ1 = λ2 = −µ, λ3 = −(µ+ ϕ), λ4 = α
(Λ + β

µ
− (1− σ)

ϕ(Λ + β)

µ(µ+ ϕ)

)
− (µ+ δ + λ)

Since for the positive parameter λ1, λ2 and λ3 are negative, only condition for
stability of disease free equilibrium is λ4 < 0 i.e.

α
(Λ + β

µ
− (1− σ)

ϕ(Λ + β)

µ(µ+ ϕ)

)
< (µ+ δ + λ)⇒ (αϕσ + αµ)(Λ + β)

µ(µ+ ϕ)(µ+ δ + λ)
< 1

Therefore we can represent a vaccine reproductive number R(ϕ) = (αϕσ+αµ)(Λ+β)
µ(µ+ϕ)(µ+δ+λ)

<
1.

The vaccine reproduction number is less than one if and only if a disease-free
equilibrium is locally asymptotically stable, in the lack of vaccine (ϕ = 0). We

represent the basic reproduction number as R0 =
α(Λ + β)

µ(µ+ δ + λ)
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5. When There Are No Infective Immigrants
Case (I) for the case σ = 1 and ρ = 0

Investigate two extreme cases of endemic equilibrium for the model (2.1), case
is when the vaccine is useless, and there is no infective immigrant that is σ = 1
and ρ = 0 then our system (2.1) becomes

dS
dt

= Λ + β − αSI
1+αI

− (µ+ ϕ)S

dV
dt

= ϕS − αV I − µV

dI
dt

= αSI
1+αI

+ αV I − (µ+ δ + λ)I

dR
dt

= λI − µR


(5.1)

Where, N(t), S(t) + V (t) + I(t) + R(t), note that R(ϕ) diminishes to R0 when
σ = 1. By using equilibrium conditions and substitution, we have the following
relations are mentioned below:

R∗ =
λI

µ
, V ∗ =

ϕ(Λ + β)(1 + αI)

(µ+ αI){αI(1− µ− ϕ)− (µ+ ϕ)}
, and

B1I
2 +B2I +B3 = 0, where (5.2)

B1 = α2(1− µ− ϕ)

B2 = −α

{
µ2 + µϕ+ ϕ+

(Λ + β)(1 + ϕ)α

(µ+ δ + λ)

}
,

B3 = −(µ+ ϕ)

{
µ+

α(Λ + β)

(µ+ δ + λ)

}
The preceding equation will have a positive root if ∆ > 0 and R0 > 1, and I∗ is
given by

I∗ =
α
{
µ2 + µϕ+ ϕ+ (Λ+β)(1+ϕ)α

(µ+δ+λ)

}
±
√

∆

2α2(1− µ− ϕ)

where

∆ =

√√√√α2

{
µ2 + µϕ+ ϕ+

(Λ + β)(1 + ϕ)α

(µ+ δ + λ)

}2

+ 4α2(1− µ− ϕ)(µ+ ϕ)

{
µ+

α(Λ + β)

(µ+ δ + λ)

}

Presently an endemic equilibrium allows to a real positive solution of equation
(5.2). Observe that B1 > 0 and that B3 < 0 precisely when R0 > 1, It can
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also be inferred that B2
2 − 4B1B3 when B3 < 0. Simply conclude that there is

precisely endemic equilibrium when R0 > 1 as there are two real roots, and the
multiplication of those two roots are negative. On the contrariety, we can observe
that B3 > 0, if R0 < 1. Perceive that there are precisely two changes in the sign of
coefficients of the equation (5.2) if coefficient B2 < 0 and none when B2 > 0. By
Descartes’ rule of signs, one can conclude that the maximum number of endemic
equilibrium is two when basic reproduction number less than one, and B2 < 0,
and if B2 > 0 and basic reproduction number is smaller than one, then there is no
endemic equilibrium. However, it is explained that if basic reproduction number
less than one then it is always the case that the system does not have any endemic
equilibrium.
Case (II) for the case σ = 0 and ρ = 0

If we assume that there are no infective emigrants and vaccine is completely
effective that is ρ = 0 and σ = 0 then model can be represented by

dS
dt

= Λ + β − αSI
1+αI

− (µ+ ϕ)S

dV
dt

= ϕS − µV

dI
dt

= αSI
1+αI

− (µ+ δ + λ)I

dR
dt

= λI − µR


(5.3)

with N(t) = S(t) + V (t) + I(t) + R(t), By using equilibrium conditions R∗ =
λI

µ
, V ∗ =

ϕS

µ
and S∗ =

(µ+ δ + λ)(1 + αI)

α
and substitution, we have the follow-

ing relation are mentioned below:

I∗ =

{
α(Λ + β)− (µ+ ϕ)(µ+ δ + λ)

}
α(1 + µ+ ϕ)(µ+ δ + λ)

which exist only when R0 > 1

Case (III) for the case 0 < σ < 1 and ρ = 0

We need to assume the more general case when the vaccine is partly infective
and when there are no infective emigrants. Symbolic denoted by 0 < σ < 1, and
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ρ = 0. The model given by

dS
dt

= Λ + β − αSI
1+αI

− (µ+ ϕ)S

dV
dt

= ϕS − σαV I − µV

dI
dt

= αSI
1+αI

+ σαV I − (µ+ δ + λ)I

dR
dt

= λI − µR


(5.4)

With relation N(t) = S(t) + V (t) + I(t) + R(t), By using equilibrium conditions
R∗ = λI

µ
,

S∗ =
(1 + αI)(Λ + β){

αI + (µ+ ϕ)(1 + αI)
} , V ∗ =

ϕ(1 + αI)(Λ + β)

(µ+ σαI)
{
αI + (µ+ ϕ)(1 + αI)

}
After complicated calculation, we get the quadratic equation of I as

C1I
2 + C1I + C3 = 0

Where, C1 = (1 + µ+ ϕ)(µ+ δ + λ)σα2

C2 = αµ(1 + µ+ ϕ)(µ+ δ + λ) + (µ+ δ + λ)(µ+ ϕ)ασ − α2σ(Λ + β)

− α2σϕ(Λ + β)

C3 = µ(µ+ ϕ)(µ+ δ + λ)− α(Λ + β)(µ+ ϕσ) = µ(µ+ ϕ)(µ+ δ + λ)[1−R(ϕ)]

Here, endemic equilibrium allows for a real positive solution of the equation (5.5).
Observe that C1 > 0 and that C3 < 0 accurately when vaccine reproduction num-
ber is less than one. Also seen that C2

2 − 4C1C3 > 0, when C3 < 0. It can be easily
concluded that there is precisely one endemic equilibrium when vaccine reproduc-
tion number is greater than one, as there are two real roots, and the multiplication
of those two roots are negative. On the other hand, we can see that C3 > 0 if
vaccine reproduction number is less than one. See that there are precisely two
changes in the sign of coefficients of the equation (5.5) if coefficient C2 < 0 and
none when C2 > 0. By Descartes’ rule of signs one can conclude that the maximum
number of endemic equilibrium is two when C2 < 0 and vaccine reproduction num-
ber R(ϕ) < 1, and if R(ϕ) < 1 and C2 > 0 then there is no endemic equilibrium.
However, it is explained that if vaccine reproduction number less than one then it
is always the case that the system does not have any endemic equilibrium.
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Proposition 5.1. If R(ϕ) < 1 then for the model (5.4) with R(ϕ) = (αϕσ+αµ)(Λ+β)
µ(µ+ϕ)(µ+δ+λ)

,
there is no endemic equilibrium.
Proof. Firstly we consider R(ϕ) < 1 and C2 < 0

R(ϕ) < 1⇔ (αϕσ + αµ)(Λ + β) < µ(µ+ ϕ)(µ+ δ + λ) (5.6)

C2 < 0⇔ αµ(1 + µ+ ϕ)(µ+ δ + λ) + (µ+ δ + λ)(µ+ ϕ)ασ − α2σ(Λ + β)

− α2σϕ(Λ + β) < 0 (5.7)

Combining equation (5.6) and (5.7), we have

(µ+ δ + λ)(µ2 + µ+ µϕ+ µσ + ϕσ) <
σµ(µ+ ϕ)(µ+ δ + λ)

(µ+ σϕ)

After some expansion and calculation we have

σϕµ+ σϕµ2 + σϕ2µ+ σ2ϕµ+ σ2ϕ2 + µ2 + µ3 + µ2ϕ < 0

This is a contradiction for all non negative parameters. Therefore R(ϕ) < 1 and
C2 < 0 is impossible. So when R(ϕ) < 1 and C2 > 0. Observed that R(ϕ) < 1
corresponds to C3 > 0. Also clearly C1 > 0, so by Descartes rule of signs there is
no endemic equilibrium for R(ϕ) < 1.

6. When There Are No Disease Fatalities But Infective Immigrants

In this section, we assume that there is a constant flow of infective immigrants
into host population and no disease fatality i.e. δ = 0 and ρ 6= 0. Based on this
supposition equation (2.1) becomes:

dS
dt

= (1− ρ)Λ + β − αSI
1+αI

− (µ+ ϕ)S

dV
dt

= ϕS − σαV I − µV

dI
dt

= ρΛ + αSI
1+αI

+ σαV I − (µ+ λ)I

dR
dt

= λI − µR


(6.1)

With relation N(t) = S(t) + V (t) + I(t) +R(t)⇒ dN
dt

= Λ + β − µN
By using theory of autonomous system limt→∞

dN
dt

= 0 so limt→∞N(t) = Λ+β
µ

= ξ

(say)
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So replacing S by ξ − I − V −R, we reduced system of equations

dV
dt

= ϕ(ξ − I − V −R)− σαV I − µV

dI
dt

= ρΛ + αI
1+αI

(ξ − V − I −R) + ασV I − (µ+ λ)I

dR
dt

= λI − µR

 (6.2)

6.1. Equilibrium conditions
Endemic equilibrium conditions are

ϕ(ξ − I − V −R) = σαV I + µV ⇒ ξ − I − V −R =
σαV I + µV

ϕ
ρΛ

I
= (µ+ λ)− α

1 + αI
(ξ − V − I −R)− ασV, ξ =

Λ + β

µ

By using above conditions, we get
R∗ = λI

µ
, V ∗ = ϕ(Λ+β)−ϕI(µ+λ)

µ+ϕ+σαI
and I is given by following relation

f(I) = D1I
3 +D2I

2 +D3I +D4 = 0, where

D1 = 2α2σϕ(µ+ λ)

D2 = αϕ
[
(µ+ λ)(µ+ ϕ) + (µ+ λ)σ + (µ+ ασϕ)(µ+ λ)− ρΛασ − ασ(Λ + β)

]
D3 = ϕ(µ+ λ)(µ+ ϕ)− ρΛαϕσ − (µ+ ϕ)ρΛαϕ− αϕ(µ+ σαϕ)(Λ + β)

− ρΛϕ(µ+ ϕ)

D4 = −ρΛϕ(µ+ ϕ)

Since D4 < 0 for positive parameter, then f(0) < 0 and limt→∞ f(I) =∞ so that
∃ one or three positive roots I∗

We have df(I)
dt

= 3D1I
2 + 2D2I +D3.

If f(I) = 0 has three different positive roots then df(I)
dt

= 0 necessity have two
different roots by using Rolle’s Theorem. D2 < 0 and D3 > 0 is necessary condition
to three positive endemic equilibrium.

7. Stability Analysis
7.1. Local Stability

In this section, the local stability analysis of disease-free and endemic equilib-
rium is discussed.
Theorem 7.1. The disease-free equilibrium E0 is locally asymptotically stable
when the basic reproduction number R0 < 1, and is unstable when R0 > 1.
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Proof. The Jacobean matrix of the system (1) at

E0(S, V, I, R) = E0
(

Λ+β
µ+ϕ

, Λ+β
µ(µ+ϕ)

, 0, 0
)

is given by

J(E0) =


−(µ+ ϕ) 0 −α(Λ+β)

(µ+ϕ)
0

ϕ −µ −ασ(Λ+β)
µ(µ+ϕ)

0
αI

1+αI
0 α(Λ+β)

(µ+ϕ)
+ ασϕ(Λ+β)

µ(µ+ϕ)
− (µ+ δ + λ) 0

0 0 λ −µ


The characteristic equation of J(E0) is∣∣∣∣∣∣∣∣∣
−(µ+ ϕ)− λ1 0 −α(Λ+β)

(µ+ϕ)
0

ϕ −µ− λ1 −ασ(Λ+β)
µ(µ+ϕ)

0
αI

1+αI
0 α(Λ+β)

(µ+ϕ)
+ ασϕ(Λ+β)

µ(µ+ϕ)
− (µ+ δ + λ)− λ1 0

0 0 λ −µ− λ1

∣∣∣∣∣∣∣∣∣ = 0

⇒ (µ+ ϕ+ λ1)(µ+ λ1)2

{
α(Λ + β)

(µ+ ϕ)
+
ασϕ(Λ + β)

µ(µ+ ϕ)
− (µ+ δ + λ)− λ1

}
Clearly, the three eigenvalues have strictly negative real parts and fourth eigenvalue

is given by λ1 = (µ + δ + λ)
{

(Λ+β)(αµ+ασϕ)
µ(µ+ϕ)(µ+δ+λ)

− 1
}

. Fourth eigenvalue will negative

if R(ϕ) < 1. Hence the system (2.1) is locally asymptotically stable at disease-free
equilibrium E0 if R(ϕ) < 1, and unstable if R(ϕ) > 1.

Theorem 7.2. If the basic reproduction number R(ϕ) > 1, then the endemic
equilibrium point E∗(S∗, V ∗, I∗, R∗) is locally asymptotically stable.
Proof. The original system (2.1) can be reduced to the following system replacing
S by ξ − I − V −R, by using equation (6.2).

dV
dt

= ϕ(ξ − I − V −R)− σαV I − µV

dI
dt

= ρΛ + αI
1+αI

(ξ − V − I −R) + ασV I − (µ+ λ)I

dR
dt

= λI − µR


Jacobean matrix of the above system at E∗ is given by

J =

 −(ασI∗ + µ+ ϕ) −ασV ∗ − ϕ ϕ

ασI∗ − αI∗

1+αI∗ ασV ∗ + α(ξ−I∗−V ∗−R∗)
(1+αI∗) − α2I∗

(1+αI∗)2 −
αI∗

1+αI∗ − (µ+ λ) − αI∗

1+αI∗

0 λ −µ


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Using equilibrium condition ρΛ
I

= (µ+ λ)− ασV − α(ξ−I−V−R)
1+αI

, we have

J =

 −(ασI∗ + µ+ ϕ) −ασV ∗ − ϕ −ϕ
ασI∗ − αI∗

1+αI∗
−ρΛ

I∗
− α2I∗

(1+αI∗)2
− αI∗

1+αI∗
− αI∗

1+αI∗

0 λ −µ


The characteristic equation is given by λ3

1 + E1λ
2
1 + E2λ1 + E3 = 0

Where E1 = 2µ+ ϕ+ σαI + ρΛ
I∗

+ αI∗

1+αI∗
+ α2I∗

(1+αI∗)2

E2 = (2µ+ ϕ+ σαI)

{
ρΛ

I∗
+

αI∗

1 + αI∗
+

α2I∗

(1 + αI∗)2

}
+ µ(ασI∗ + µ+ ϕ) +

λαI∗

1 + αI∗

+ (ασV ∗ + ϕ)

(
ασI∗ − αI∗

1 + αI∗

)

E3 = (ασI∗ + µ+ ϕ)

[{
ρΛ

I∗
+

αI∗

1 + αI∗
+

α2I∗

(1 + αI∗)2

}
µ+

λαI∗

1 + αI∗

]

+

(
ασI∗ − αI∗

1 + αI∗

){
µ(ασV ∗ + ϕ) + λϕ

}
It is easy to seen E1 > 0, and E2, E3 > 0 if αI∗

1+αI∗
< 0, and E1E2 − E3 > 0. Hence

E∗ is locally asymptotically stable (by Routh-Hurwitz Theorem).

7.2. Global Stability
In this section, the Lyapunov function analyzes the global stability of the

disease-free and endemic equilibrium. Disease-free stability is presented in the
following form.
Theorem 7.3. The disease free equilibrium of the model (2.1) is globally asymp-
totically stable if R(ϕ) < 1.
Proof. To prove this result, we construct the following Lyapunov function:

L = k1(S − S0) + k2(V − V 0) + k3I + k4R (7.1)

where k1, k2, k3, k4 are positive constant to be determined later. By differentiating
equation (7.1) with respect to time, we get

L
′
= k1

[
(1− ρ)Λ + β − αSI

1 + αI
− (µ+ ϕ)S

]
+ k2[ϕS − σαV I − µV ]

+ k3

[
ρΛ +

αSI

1 + αI
+ σαV I − (µ+ δ + λ)I

]
+ k4[λI − µR]
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By some arrangements, we get

L
′
=

αSI

1 + αI
(k3 − k1) + σαV I(k3 − k2) + S{ϕk2 − (µ+ ϕ)k1} − k2µV

+ k1{(1− ρ)Λ + β}+ k3ρΛ− k3(µ+ δ + λ)I

Let us select the constants k1 = k2 = k3 = 1, then we get

L
′
= −

[
(µN − Λ− β) + δI

]
L
′
=
µ(µ+ ϕ)(µ+ δ + λ)

(αϕσ + αµ)

[
µN(αϕσ + αµ)

µ(µ+ ϕ)(µ+ δ + λ)
−R(ϕ)

]
− δI < 0

Since all parameters are positive and R(ϕ) < 1 then L
′
< 0. Thus, by Lasalle’s

invariant principle (Lasalle [5]), the disease free equilibrium E0 of the system (2.1)
is globally asymptotically stable in R, if R(ϕ) < 1.

8. Numerical Solution
We observed that vaccine reproduction number R(ϕ) plays an important role

to control the disease. Our main results show that if R(ϕ) < 1, the disease-free
equilibrium is globally stable and if R(ϕ) > 1 then the endemic equilibrium endures
and is globally stable. Besides this analytical study, we provide some numerical
solutions as under:

8.1. Case I: For diseases free equilibrium
If the parameters are chosen as follows:
α = 0.3,Λ = 0.009, δ = 0.01, β = 0.0002, σ = 0.09ρ = 0.5, ϕ0.009 and λ = 0.01
then by computing, vaccine reproduction number R(ϕ) = 0.2557 < 1 and sys-
tem (2.1) has a disease-free equilibrium. In this case, S(t) and V (t) tends to its
steady-state value while I(t) and R(t) tends to zero t → ∞ a. Hence the disease
disappeared in population and dies out. The numerical simulation is shown in
Figure 1(a) to 1(d). It follows that E0 is globally asymptotically stable.

8.2. Case II: For endemic equilibrium

If the parameters are chosen as follows:

α = 0.3,Λ = 0.09, µ = 0.09, δ = 0.001, β = 0.09, σ = 0.09ρ = 0.5, ϕ0.08 and
λ = 0.01 then by computing, Vaccine reproduction number R(ϕ) = 3.396622 > 1
and system (2.1). It is seen that all the component S(t), V (t), I(t) and R(t) tends
to their steady-state values as t→∞, the diseases becomes endemic (See in Figure
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Figure: 1(a) Figure: 1(b)

Figure: 1(c) Figure: 1(d)

Figure 1: For diseases free equilibrium

2(a)-2(d)).

9. Conclusions

The mathematical analysis of the SVIR epidemic model with non-linear in-
cidence has been presented. We have constructed a compartmental model with
vaccination and investigated their dynamical behaviors. Utilizing the Jacobean
matrix, we obtained their vaccine reproductive number R(ϕ) and basic reproduc-
tion number R0, which play a significant role. Vaccination is helpful for disease
control by decreasing the basic reproduction number. It has been observed that
the DFE is locally asymptotically stable if and only if the vaccine reproductive
number R(ϕ) < 1. When the vaccine is ineffective or completely useful, and there
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Figure: 2(a) Figure: 2(b)

Figure: 2(c) Figure: 2(d)

Figure 2: For endemic equilibrium

is no infective emigrant, the endemic equilibrium exists if and only if R0 > 1. With
infective immigrants, but when there are no disease fatalities, we give the condi-
tion for endemic equilibrium and their stability condition. This work also provides
a considerable role in the correlation of mathematical modelling and dynamical
aspects of some specific epidemic diseases.
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