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Abstract: This article presents a novel modeling corresponding to a mixed convec-
tive magnetohydrodynamic chemically reacting two-dimensional Williamson fluid
(a non-Newtonian fluid) through a vertical exponentially stretchable impermeable
surface followed by temperature and concentration distributions. Temperature,
concentration, stretching velocity and applied magnetic field are treated as func-
tions with exponential variation. Equations which are governing the flow and both
transfer rates (heat & mass) are transferred into ODEs and solved them by means
of a shooting technique along with RK-4th order method. Responses of dimen-
sionless quantities (fluid velocity, temperature and concentration) including with
friction coefficient, both transfer rates (heat and mass) corresponding to different
parameters are illustrated by means of plots and tables. From this study, we found
that the increased Williamson parameter and magnetic effect lowers the fluid veloc-
ity. Increased magnetic effect and thermal biot number elevates the temperature.
Furthermore, concentration boundary layer is observed to be thicker by concentra-
tion biot number and thinner by chemical reaction parameter.
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1. Introduction

From the last two decades there is noticeable significance on non-Newtonian
fluids because of their enormous applications in industries, engineering fields and
production fields also. Coal-oil slurries, shampoo, paints, clay coating and suspen-
sions, grease, cosmetic products, custard, physiological liquids such as blood, bile,
synovial fluids comes under this category. The simulation of such fluids and their
characteristics is a challenging area to the researchers. It is difficult to simulate the
critical characteristics of such fluids by using Navier-Stokes equations. To identify
a relation between shear stress and rate of strain in non-Newtonian fluids versus
viscous fluids is very complicated task. The visco-elastic characteristics in such
fluids will have more complexity in the obtained equations on comparison with
Navier-Stokes equations. In 1929, Williamson [28] considered the flow of pseudo
plastic materials and proposed a modeling with the equations to depict the pseudo
plastic fluid flows and their behavior explained with an experimental verification.
Williamson fluid is a pseudo plastic fluid and it belongs to non-Newtonian fluid
category. In recent years, appreciable investigations have been done by several re-
searchers on this fluid. Valid conclusions have been traced out by several authors
in their research works using different geometries.

The examination of two-dimensional flow over stretching surfaces is another im-
portant aspect of industrial as well as engineering applications. Paper production,
hot rolling, metal spinning, spinning of fibers, glass blowing, drawing plastic films
etc are examples of such application areas. The rate of change in temperature via
stretching surfaces is the reason for the quality of the final output. Stretching sur-
faces may be linear or non-linear, slandering, exponential, quadratic variations in
velocity as well as temperature fields. Magyari and Keller [17], Elbahbeshy [8] dis-
cussed the behavior and the characteristics of heat transfer along the exponentially
stretching surfaces. Partha et al. [22] concentrated on a mixed convective flow
and heat transfer characteristics via exponentially stretched surface in addition to
viscous dissipation. They have obtained similarity solutions from which they re-
ported the significant influence of viscous dissipation and buoyancy effects on flow
and heat transfer. Tsai et al. [27] focused on the flow as well as heat transfer by
using Chebyshev finite difference method with non-uniform heat source over an un-
steady stretching horizontal sheet. A numerical approach that gives the magnetic
field effects on thermal boundary layer over an exponentially stretching continuous
surface by Al-Odat et al. [1]. A similar investigation is discussed by Dulal Pal
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[20] which describes the mixed convective heat transfer through the exponential
stretching surface in the boundary layers with magnetic field. Khalili et al. [19]
studied the magnetohydrodynamic boundary layer flow and heat transfer behaviors
over an exponentially stretching sheet with chemical reaction, radiation and heat
sink. Isa et al. [23] team presented a similar study of magnetohydrodynamic mixed
convective flow and the transfer of heat using exponential temperature variation
past exponentially stretching sheet. Based on the above research works, a simi-
lar investigation carried out by Srinivasa Babu et al. [25] in which they reported
the magnetohydrodynamic mixed convective flow and behavior of heat transfer
along exponentially stretchable vertical sheet. Jayachandra Babu and Sandeep
[10] investigated the cross-diffusion effects of MHD non-Newtonian fluid flow over
a stretching slandering sheet. Anuar Ishak et al. [6] also discussed numerically
the phenomenon of heat transfer over an unsteady stretching surface. A similar
investigation found for three-dimensional flow and transfer rate of heat over an ex-
ponentially stretched surface by Liu et al. [16]. Mukhopadhyay et al [18] discussed
free convective boundary layer flow and heat transfer along a permeable stretch-
ing surface with additional impact of thermal radiation and viscosity variations.
Nadeem et al. [24] presented the thermal radiation effects on the boundary layer
flow of a Jeffrey fluid from an exponentially stretched sheet. By considering an in-
clined permeable stretching sheet along with the effects of non-linear radiation and
internal heat source, the behavior of flow and heat transfer for a magnetohydrody-
namic fluid has been worked out by Amit Parmar [21]. A mathematical analysis
has been reported by Ganesh Kumar et al. [9] in which they have presented the
two-phase boundary layer flow and heat transfer mechanism of a Williamson liquid
along with fluid particle suspension and non-linear thermal radiation effects over
a stretched sheet. Using a finite difference technique, Bilal et al. [7] discussed
and presented numerical results of Williamson fluid flow past a cylindrical surface
with a support of thermal stratification. Numerical works have been published on
micropolar fluids with different geometries and with various physical effects which
are mentioned in [3, 4, 12, 13, 14, 15]. Kumar et al. [5] studied numerically
the MHD Cattaneo-Christov flow over a cone and a wedge under variable heat
source/sink. Tlili et al. [26] discussed the stream and energy transport in MHD
dissipative ferro and hybrid ferrofluids under uneven heat rise/fall along with radi-
ation effects. They reported the simultaneous solutions for both ferro and hybrid
ferrofluid cases. Recently, Kumar et al. [2] reported the flow and heat trans-
fer characteristics of Casson fluid from an exponentially stretching curved surface
under thermal radiation and convective boundary conditions. Kumar et al. [11]
deliberated the convective heat transfer phenomenon in MHD micropolar fluid via
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an exponentially stretching curved surface near stagnation point along with ther-
mal radiation, non-uniform heat source/sink, Joule heating and variable thermal
conductivity.

Motivation from the above researchers and based on the available literature, we
studied numerically, the mixed convective MHD 2D Williamson fluid via exponen-
tially vertical stretching surface with appropriate conditions, both transfer rates
(heat and mass). Here R-K 4th order based on shooting technique is used to solve
the resultant equations. We considered applied convective boundary conditions,
exponential applied magnetic field B(x) = B0e

x/2L, Viscous dissipation, buoyancy
force taken into consideration. The results are discussed through plots and tables.

2. Problem formulation
Here we considered the incompressible and electrically conducting steady two-

dimensional flow of Williamson fluid along an exponentially vertical stretching
surface with exponential temperature and concentration distributions, subjected
to a transverse magnetic field is considered. x-axis is along the direction of the
surface and y-axis is taken to be perpendicular to sheet.
The stress tensor involved in Williamson model is given by [28]

S = −pI + τ (i)

τ =

[
µ∞ +

µ0 − µ∞
1− Γγ̇

]
γ̇ (ii)

Where p means the pressure, I means Identity vector, τ means extra stress tensor,
µ0 and µ∞ are the viscosity at zero shear rate and at infinity, Γ denotes the time
constant.
We consider the equation (ii), the case for which µ∞ = 0 and Γγ̇ < 1 and γ̇ can be
derived as

γ̇ =

√
1

2

∑
i

∑
j

γ̇ij γ̇ji =

√
1

2

∏
(iii)

Here
∏

taken as second invariant strain tensor.
So, equation (ii) becomes

τ =

[
µ0

1− Γγ̇

]
γ̇ or τ = µ0[1 + Γγ̇]γ̇ (based on binomial expansion) (iv)

The governing equations of this modeling are presented below :

∂u

∂x
+
∂v

∂y
= 0 (1)
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(3)

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
− k0(C − C∞) (4)

Where u and v are taken as components of velocity in the directions of x and y
respectively. T− the temperature, C− the concentration, g− the acceleration due
to gravity, ρ− the density, µ− the viscosity coefficient, ν− the kinematic viscosity,
Γ is a positive time constant, βT , βC are the coefficients of thermal as well as
concentration expansions, α− the thermal diffusivity, Dm− the diffusivity of the
medium, cp− specific heat capacity, k0− the reaction rate constant.

Figure -1: Flow pattern along the surface

Following are the boundary conditions of the present study:

u = Uw(x) = U0e
x/L, v = 0, T = Tw(x), C = Cw(x), − k∂T

∂y
= h1(T0 − T ),

−Dm
∂C

∂y
= h2(C0 − C) at y=0, u = 0, T → T∞, C → C∞ as y →∞ (5)

Here h1, h2 indicates coefficients of convective heat and mass transfer respectively
and ‘k′ is thermal conductivity. Tw(x) = T∞ + (T0 − T∞)eax/2L; Cw(x) = C∞ +
(C0 − C∞)ebx/2L are the temperature and concentration distributions respectively.
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The similarity variables are

η = y

√
U0

2Lν
ex/2L, ψ(x, y) =

√
2LU0νe

x/2Lf(η),

T (x, y) = T∞ + (T0 − T∞)eax/2Lθ(η), C(x, y) = C∞ + (C0 − C∞)ebx/2Lφ(η) (6)

The stream function ψ is introduced through u = ∂ψ
∂y

and v = −∂ψ
∂x

. Also, a, b are
similarity variables corresponding to temperature and concentration respectively
and treated them as parameters of the temperature distribution and concentration
distribution along the surface.
Using similarity variables (6), the equations (2)-(4) becomes

f ′′′(1 + Λf ′′) + ff ′′ − 2(f ′)2 + 2λe−2X
(
θe

aX
2 +Nφe

bX
2

)
− 2Mf ′ = 0 (7)

θ′′ + Pr(fθ′ − af ′θ) + Ec.Pr.e2X−aX
2 [2M(f ′)2 + (f ′′)2] = 0 (8)

φ′′ + Sc(fφ′ − bf ′φ)− Sc.Kr.e
−Xφ = 0 (9)

and the conditions will be

f = 0, f ′ = 1, θ =

(
1

BiT

)
θ′ + e−

aX
2 , φ =

(
1

BiC

)
φ′ + e−

bX
2 at η = 0

f ′ → 0, θ → 0, φ→ 0, as η →∞ (10)

Here X = x/L is the non-dimensional coordinate; BiT = h1y
ηk

, BiC = h2y
ηk

are the

Biot numbers (thermal and concentration); Λ = Γ

√
U3
0 e

3X

νL
is the Williamson pa-

rameter; Gr = gβT (T0−T∞)L3

ν2
is the thermal Grashof number and; Re = U0L

ν
is the

Reynolds number; λ = Gr
Re2

is the mixed convection parameter; N = βC(C0−C∞)
βT (T0−T∞)

is

the buoyancy ratio; Pr = ν/α is the Prandtl number; Ec =
U2
0

cp(T0−T∞)
is the Eckert

number; Sc = ν
Dm

is the Schmidt number; Kr = 2Lk0
U0

is the Chemical reaction

parameter; M = Ha2

Re
=

σB2
0L

ρU0
is magnetic field parameter.

The local skin friction is termed as τw = µ
[
∂u
∂y

+ Γ√
2

(
∂u
∂y

)]
y=0

and the dimensionless

friction coefficient is
Cfx

(Rex/2)−0.5 = f ′′(0)+ Λ
2
(f ′′(0))2, where Cfx = τw

ρU2
w

, Rex = xUw(x)
ν

(local Reynold’s number). Local Nusselt number, Nux is given by Nux = xqw
k(T0−T∞)

and the dimensionless heat transfer coefficient is Nux√
X/2
√
ReX

= θ′(0), where qw =

−k
(
∂T
∂y

)
y=0

is the heat flux at the wall.
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Also, local Sherwood number, Shx is given by Shx = xqm
Dm(C0−C∞)

and the dimen-

sionless mass transfer coefficient is Shx√
X/2
√
Rex

= −φ′(0), where qm = −Dm

(
∂C
∂y

)
y=0

is the mass flux at the wall.

3. Numerical Procedure
The non-linear ODEs from (7) to (9) including boundary conditions (10) solved

by make use of shooting method based on Runge – Kutta method in MATLAB.
For this, we have rewritten the equations (7), (8) and (9) into a set of seven
simultaneous ODEs as shown :
Let f1 = f, f2 = f ′, f3 = f ′′, f4 = θ, f5 = θ′, f6 = φ and f7 = φ′. (Here the prime
means derivative with respect to η). Thus f ′1 = f2, f ′2 = f3,

f ′3 =
1

(1 + Λf ′′)

[
2(f ′)2 − ff ′′ − 2λe−2X

(
θe

aX
2 +Nφe

bX
2

)
+ 2Mf ′

]
,

f ′4 = f5,

f ′5 = Pr(af ′θ − fθ′)− Ec.Pr.e2X−aX
2 [2M(f ′)2 + (f ′′)2],

f ′6 = f7,
f ′7 = Sc(bf ′φ− fφ′) + Sc.Kr.e

−Xφ.

For the responses of the system, we employed a shooting technique depending
on RK 4th order method. For one set of values of the parameters, values of f ′′(0),
θ′(0) and φ′(0) are assumed and the system of first order ordinary differential
equations is solved as an initial value problem from η = 0 to η = η∞ (η∞ is a
large value of η) using RK method. The values of f ′, θ and φ at η∞ are compared
with their expected values and accordingly f ′′(0), θ′(0) and φ′(0) are modified and
the system of equations again solved as an initial value problem. The procedure
is repeated a number of times till the values of f ′, θ and φ at η∞ are very close
to the expected values. By the above mentioned procedure we can get values of
f ′′(0), θ′(0) and φ′(0) for one set of values of the parameters of the study. Similarly
we determined the values of f ′′(0), θ′(0) and φ′(0) for all possible values of the
parameters of the study. Using the initial conditions, the equations are solved to get
the velocity, temperature and concentration distributions and also the quantities
like skin friction, heat and mass transfer rates. During this process, the step size
and convergence criteria are maintained as 0.001 and 10−6 in all cases.

4. Results and Discussion
Using a numerical method, the responses are observed for velocity of the fluid,

temperature distribution and concentration distribution for certain values of phys-
ical parameters given as M , a, b, Λ, Ec, Pr, λ, N , Sc, Kr, BiT , BiC and X
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which are included in the equations (7)–(9). The results obtained for a particular
selection of values given to the parameters utilized in the problem. The impacts of
velocity profile, both transfer rates (heat and mass) are presented through plots.
The calculated values of skin friction, Nusselt number and Sherwood number are
mentioned in Table-2 for distinct values of the important parameters of present
investigation.

Fig. 2 Consequence of M on Velocity Fig. 3 Consequence of λ on Velocity

Fig. 4 Consequence of Λ on Velocity

Variations in fluid velocity with different physical parameters are presented in fig-
ures 2 to 4. In Fig. 2, Fluid velocity is observed to be diminished with enhancement
in magnetic parameter (M). The reason behind it is the increased magnetic effect
leads to an enhancement of Lorentz forces and hence the magnitude of the velocity
is reduced. From fig. 3, it was identified that the dimensionless fluid velocity rises
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when increasing mixed convection parameter (λ) due to the buoyancy effect. From
fig. 4, it was found that fluid velocity slightly diminished with a rise in Williamson
parameter (Λ). By the increment in Λ, the fluid gets some resistance to flow, so
that the momentum boundary layer becomes thinner. We observed that there is
no much more variation in momentum boundary layer thickness for the parameters
M,Λ and λ.

The responses of temperature of the fluid θ(η) are shown in the figures 5 to 8.
Fig. 5 gives us the Eckert number (Ec) impact on temperature field. As Eckert
number is the ratio of advective transport to heat dissipation, internal heat will be
produced so that the temperature profiles are enhanced. From fig. 6, one can see
that whenever mixed convection parameter (λ) takes larger values, the temperature
becomes down. The impact of thermal biot number (BiT ) verses temperature field
was presented in fig. 7. The rising values of BiT expands the temperature of fluid
so that θ(η) and the thermal boundary layer thickness becomes heightened due to
increment in BiT . Similar behavior is observed in fig. 8 also. Whenever M takes
larger values, the temperature profile is increased. This is due to the transverse
effect of magnetic field on electrically conducting fluid is the reason for existence of
Lorentz’s forces. These forces slow down the motion of the fluid and rises the fluid
temperature. Therefore, thermal boundary layer is thicker with increased magnetic
effect.

Fig. 5 Consequence of Ec on
Temperature

Fig. 6 Consequence of λ on
Temperature
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Fig. 7 Consequence of BiT on
temperature

Fig. 8 Consequence of M on
temperature

The variations in concentration profile φ(η) are observed from the figures 9
to 11. Fig. 9 depicts the influence of chemical reaction parameter (Kr) on the
concentration field. There is some reduction in φ(η) with the enhanced values of
Kr. The consequence of concentration biot number (BiC) on concentration field is
observed in fig. 10. It is clear that the rise inBiC creates expansion in concentration
field so that concentration curves are heightened. This shows the enhanced effect
of BiC thicker the concentration boundary layer. From fig. 11 one can notice that
the concentration profile φ(η) is seen to be diminished by an increase in Schmidt
number (Sc).

Fig. 9 Consequence of Kr on
Concentration

Fig. 10 Consequence of BiC on
Concentration
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Fig. 11 Consequence of Sc on Concentration

Table-1 shows the values of Nusselt number ′− θ′(0)′ for different values of Prandtl
number while the remaining parameters taken to be Λ = λ = M = Ec = Sc =
Kr = 0 and a = b = 1 for comparing them with published results. These results
got good agreement with the published work.

Table 1: Comparison of ′−θ′(0)′ calculated by Khalili et al. [19] and present study

Pr Khalili et al. [19] Present study
1 0.954955 0.954953
2 1.471421 1.471422
3 1.869044 1.869042
5 2.500109 2.500107

In Table-2, the outcomes of non-dimensional parameters versus friction coef-
ficient, Nusselt number and Sherwood number are noted. It was noticed that
when the effect of magnetic field is increased, the friction coefficient and both
transfer rates are lowered. Enhancement in both thermal and concentration biot
numbers, gives a rise in skin friction and also in both transfer rates. The rise in
non-Newtonian fluid parameter (Williamson parameter) gives some decrement in
both transfer rates but skin friction is slightly increased. Friction coefficient and
heat transfer rate are lowered whenever the Schmidt number is increased but Sher-
wood number is slightly increased. The rise in Eckert number gives the decrement
in heat transfer while some increment is noticed in friction coefficient and Sherwood
number. The enhancement in mixed convection parameter implies the considerable
hike in skin friction and also in both transfer rates. Also skin friction and rate of
heat transfer are diminished but Sherwood number is slightly increased whenever
chemical reaction rate is increased.
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5. Conclusion

Numerical investigation corresponding to the behaviors of heat as well as mass
transfers from the exponentially vertical stretching surface of a steady two dimen-
sional Williamson fluid flow along with the influence of magnetic field, viscous
dissipation and admissible convective boundary conditions has been carried out.
From this study, we conclude that

� Increased Williamson parameter and magnetic effect lowers the fluid velocity.

� Enhanced magnetic effect and thermal biot number elevates the fluid tem-
perature.

� Concentration boundary layer is observed to be thicker by concentration biot
number and thinner by chemical reaction parameter.

� Fluid temperature is a decreasing function of mixed convection and increased
function of magnetic impact.

� It was also noticed that when the Schmidt number is increased the concen-
tration profile is reduced.

� Skin friction and both transfer rates (heat and mass) lowered by magnetic
effect and increased by both biot numbers.
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