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Abstract: In this article an investigation is done on hydromagnetic effects on
electrically conducting fluid past an exponentially accelerated infinite vertical plate
with exponentially varying temperature and concentration. The influence of ther-
mal diffusion and radiation absorption is considered in this analysis. The problem
is governed by coupled non-linear partial differential equations which are solved
by finite difference method. The plate temperature is increasing linearly with time
and the concentration level near the plate is increased. Among the effects of various
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physical parameters on the velocity, temperature, concentration, skin friction, Nus-
selt number and Sherwood number are broadly discussed with the help of graphs
and table.

Keywords and Phrases: Accelerated vertical plate, Soret effect, finite difference
method, radiation absorption and electrically conducting fluid.
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1. Introduction

Free convection flows are of a great attention in a number of industrial appli-
cations like as fibre and granular insulation; geothermal systems etc. convection in
porous media has application on geothermal energy recovery, oil extraction, ther-
mal energy storage and flow throughout filtering devices. The occurrences of mass
transfer are also very general in theory of stellar structure and remarkable erects
are detectable, at least on the solar surface. The study of influence of magnetic
field on free convection flow is main in liquid metal, electrolytes and ionized gases.
Hayat et al. [8] investigated MHD flow and heat transfer over permeable stretching
sheet with slip conditions. Cortell et al. [7] discussed MHD flow and mass trans-
fer of an electrically conducting fluid of second grade in a porous medium over
a stretching sheet with chemically reactive species. Khan et al. [9] investigated
MHD boundary layer flow of nanofluids containing gyro tactic microorganisms past
a vertical plate with navier slip. Pal et al. [13] analysed hall current and MHD
effects on heat transfer over an unsteady stretching permeable surface with thermal
radiation. Prakash et al. [14] discussed diffusion- thermo and radiation effects on
unsteady MHD flow through porous medium past an impulsively started infinite
vertical plate with variable temperature and mass diffusion. Chandra Reddy et al.
[1-3] analysed magnetohydrodynamic convective double diffusive laminar bound-
ary layer flow past an accelerated vertical plate as well as Soret and Dufour effects
on MHD free convection flow of Rivlin-Ericksen fluid past a semi-infinite vertical
plate. Further Chandra Reddy et al. [4] studied the properties of free convective
magneto-nanofluid flow past a moving vertical plate in the presence of radiation
and thermal diffusion. Madhumohana Raju et al. [10-12] explored about the Cas-
son fluid flow through rotating cone with non-linear convection and unsteady state
with porous medium. Recently Chandra Reddy et al. [5, 6] examined the proper-
ties of MHD natural convective heat generating/ absorbing and buoyancy effects
on chemically reactive magneto-nanofluid past a moving vertical plate. Motivated
by the above studies we considered and analysed radiation absorption and Soret
effects on MHD conducting fluid flow past an exponentially accelerated vertical
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plate with variable temperature and concentration.

2. Mathematical formulation
The unsteady MHD free convective fluid flow in the presence of thermal diffusion

and radiation absorption with variable temperature and concentration has been
considered. The physical model and coordinate system of the fluid flow is presented
in Figure 1. The flow is assumed to be in x∗-direction which is taken along the
vertical plate in the uphill direction. The y∗-axis is taken be normal to the plate.
Initially, it is assumed that both the fluid and the plate are at rest and maintained
at same temperature and concentration T ∗∞ and C∗∞ respectively. At any time
t∗ > 0 the temperature and concentration of the plate y∗ = 0 are raised to T ∗∞ +
(T ∗w−T ∗∞)ea

∗t∗ and C∗∞+(C∗w−C∗∞)ea
∗t∗ with time t and thereafter remains constant

and that of y∗ →∞ is lowered to T ∗∞ and C∗∞ respectively. A transverse magnetic
field of uniform strength is assumed to be applied perpendicular to the plate. The
induced magnetic field and viscous dissipation is assumed to be insignificant as the
magnetic Reynolds number of the flow is taken to be very small. The polarization
effects are assumed to be small and hence the electric field is also negligible. Based
on the above assumption with usual Boussineq’s approximation, the governing
equations and related boundary conditions of the problem are given by

∂u∗

∂t∗
= v

∂2u∗

∂y∗2
+ gβ∗(C∗ − C∗∞) + gβ(T ∗ − T ∗∞)− σB2

0

ρ
u∗ (1)

ρCp
∂T ∗

∂t∗
= k

∂2T ∗

∂y∗2
+Q1(C∗ − C∗∞) (2)

∂C∗

∂t∗
= D

∂2C∗

∂y∗2
+D1

∂2T ∗

∂y∗2
(3)

The boundary conditions related with the problem are u∗ = 0, C∗ = C∗∞, T ∗ = T ∗∞
for all y∗, t∗ ≤ 0
t∗ > 0 : u∗ = u0e

a∗t∗ , C∗ = C∗∞ + (C∗w − C∗∞)ea
∗t∗

T ∗ = T ∗∞ + (T ∗w − T ∗∞)ea
∗t∗ at y∗ = 0 (4)

u∗ → 0, C∗ → C∞, T ∗ → T∞ as y∗ →∞.
Where u∗ is the velocity of the fluid in x∗ directions, T ∗ is the temperature and C∗

is the concentration of the fluid respectively, g is the acceleration due to gravity, C∗∞
is the concentration in the fluid far away from the plate, C∗w is the concentration of
the plate, y∗ is coordinate axis normal the plate, B0 is the external magnetic field,
Q is the radiation absorption parameter, Cp is specific heat at constant pressure,
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T ∗∞ is the temperature of the fluid far away from the plate, T ∗w is the temperature
of the plate, M is the magnetic parameter, is the acceleration parameter, D1 is
the thermal diffusivity, u0 is the velocity of the plate, K Porous permeability,
D is the chemical molecular diffusivity, K is the permeability parameter, ρ is the
density, ν is kinematic viscosity and t∗ is the corresponding time, β is the volumetric
coefficient of thermal expansion and β∗ is the volumetric coefficient of expansion
with concentration respectively.

Here A =
u20
ν

, since the solutions of the governing equations under the bound-
ary conditions will be based on the finite difference method so it is necessary to
make the equation dimensionless. For this reason, now we introduce the following
dimensionless quantities.

U =
u∗

u0

, y =
y∗u0

ν
, θ =

T ∗ − T ∗∞
T ∗w − T ∗∞

, C =
C∗ − C∗∞
C∗w − C∗∞

, Gm =
νgβ∗(C∗w − C∗∞)

u3
0

,

Gr =
νgβ(T ∗w − T ∗∞)

u3
0

, a =
a∗ν

u2
0

, t
t∗u2

0

ν
, Pr =

µCp
k
, M =

σB2
0ν

ρu2
0

,

Sc =
ν

D
, So =

D1

ν

(T ∗w − T ∗∞)

(C∗w − C∗∞)
, Q =

ν(C∗w − C∗∞)Q1

u2
0(T ∗w − T ∗∞)ρCp

(5)

Then equation (1)-(3) and boundary conditions (4) leads to

∂U

∂t
= Grθ +GmC +

∂2U

∂y2
−MU (6)

∂C

∂t
=

1

Sc

∂2C

∂y2
+ S0

∂2θ

∂y2
(7)

∂θ

∂t
=

1

Pr

∂2θ

∂y2
+QC (8)

With the initial and boundary conditions t ≤ 0 : u = 0, θ = 0, C = 0 for all y

t > 0 : u = eat, θ = eat, C = eat for all y = 0 (9)

3. Method of Solution
The governing equations of the problem contain a system of partial differential

equations which are transformed by normal transformations into a non-dimensional
system of non-linear coupled partial differential equations with initial and boundary
conditions. Hence the solution of the problem would be based on advance numerical
methods. The finite difference method formula is used for solving our obtained
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non-similar coupled partial differential equations. From the concept of the above
discussion, for simplicity the explicit finite difference method has been used to solve
from equations (6) to (8) subject to the boundary condition by (9). To obtain the
difference equations the region of the flow is separated into a grid or mesh of lines
horizontally and vertical lines are taken along the plate. Here, the suffix i refer to
y and j to time. The mesh system is divided by taking ∆y = 0.1. From the initial
condition in (9), we have the following equivalent:

U(i, 0) = 0, θ(i, 0) = 0 C(i, 0) = 0 for all i (10)

The boundary conditions from (9) are expressed in finite-difference form as follows

U(0, j) = ea(j−1)∆t, θ(0, j) = ea(j−1)∆t, C(0, j) = ea(j−1)∆t ∀j

U(imax, j) = 0, θ(imax, j) = 0, C(imax, j) = 0 ∀ j

}
(11)

(Here imax was taken as 200).
Using the explicit finite difference approximation, the following appropriate set of
finite difference equations are obtained as;

θi,j+1 − θi,j =
∆t

Pr

(
θi−1,j − 2θi,j + θi+1,j

(∆y)2

)
+ ∆tQC(i, j) (13)

Ci,j+1 − Ci,j =
∆t

Sc

(
Ci−1,j − 2Ci,j + Ci+1,j

(∆y)2

)
+ ∆t(S0) (14)

Ui,j+1 − Ui,j = ∆tGrθ(i, j) + ∆tGmC(i, j) + ∆t

(
Ui−1,j − 2Ui,j + Ui+1,j

(∆y)2

)
−∆tMU(i, j) (15)

First θ(i, j+1) is computed from (13) and C(i, j+1) is computed from (14). Then
the velocity at the end of time step viz, U(i, j + 1) (i = 1 to 200) is computed
from (15) in terms of velocity, temperature and concentration at points on the
earlier time-step. The procedure is repeated until t = 0.5 (i.e. j = 500). During
computation ∆t was chosen as 0.001.

Also, the non-dimensional forms of skin friction (τ), heat transfer rate (Nu)
and mass transfer rate (Sh) are given as follows:

τ =

(
∂U

∂y

)
y=0

Nu =

(
∂θ

∂y

)
y=0

Sh =

(
∂C

∂y

)
y=0
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4. Results and Discussion

Firstly, the validation of the results obtained by finite difference method has
done by considering the published paper of Chandra Reddy et al. [3]. In order to get
a physical perception into the research work, broad reckonings have been executed
to analyse the effects of various persuading parameters on the dimensionless velocity
(U), temperature (θ) and concentration (C) profiles and also on the Skin-friction
(τ), Nusselt number (Nu) and Sherwood number (Sh). The effects of various
physical parameters viz., the Schmidt number (Sc), Soret number (S0), radiation
absorption parameter (Q), Grashof number (Gr), the modified Grashof number
(Gm), magnetic parameter (M), Prandtl number (Pr), Porous permeability (K)
are exhibited in the figures 1-6 and the table 1.

The effect of radiation absorption parameter (Q) on velocity and temperature
is plotted in Figs. 1-2. Increase in Q causes increase in u and θ. Also when it
decreases (negative values) the velocity comes down. The increase in temperature
is due to the rise of kinetic energy and thermal energy of the fluid. The momentum
and thermal boundary layers get thinner in case of radiation absorbing fluids.

The influence of Prandtl number (Pr) on temperature profile is shown in Fig.
3. Rising values of Prandtl number causes fall in temperature. Fig. 4 is plotted to
show the variation of Schmidt (Sc) number on concentration. It depreciates due
to the enhancement of Schmidt number. Concentration effect is due to the dimen-
sionless Sherwood number defined as the ratio of momentum diffusivity and mass
diffusivity and simultaneous momentum and mass diffusion convection process.

As we expected the rising values of Soret number improves the concentration
in the flow which is displayed in Fig. 5. Fig. 6 is portrayed to discuss the influence
modified Grashof number (Gm) on velocity. The improving (descending) values of
Gm lead to growth (decay) in the velocity profile. The modified Grashof number
physically improves the distance between the molecules and hence the velocity
grows.

We also extended the present work in analyzing the effects of special parameters
like skin friction, Nusselt number and Sherwood number on radiation absorption
parameter, Prandtl number, Schmidt number, Soret number, modified Grashof
number and magnetic parameter with the help of tabular values.

Table 1 shows skin friction decreases with the increase of radiation absorp-
tion parameter, Soret number and modified Grashof number and it increases with
the increase of magnetic parameter. Nusselt number fall down with the rise of
radiation absorption parameter and grows up with the enhancement of Prandtl
number, whereas Sherwood number escalates with the growth of Schmidt number
and decelerates with the decreasing values of Soret number.
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5. Conclusion
The investigation on this research work is summarized as follows:

� Velocity is increasing with the increase of radiation absorption parameter and
modified Grashof number.

� Temperature increases and decreases respectively with the increase of radia-
tion absorption and Prandtl number.

� Concentration decreases and increases respectively with the increase of Schmidt
number and Soret number.

� Skin friction decreases with the increase of radiation absorption parameter,
Soret number and modified Grashof number and it increases with the increase
of magnetic parameter.

� Nusselt number decreases with the increase of radiation absorption parame-
ter, where as it increases with the increase of Prandtl number.
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� Sherwood number increases with the increase of Schmidt number where as it
decreases with the increase of Soret number.
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