South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 3 (2020), pp. 157-170

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

NEW RESULTS OF bs- γ -OPEN MAPPINGS AND sb- γ -OPEN MAPPINGS IN TOPOLOGICAL SPACES

C. Sivashanmugaraja

Department of Mathematics, Periyar Government Arts College, Cuddalore - 607001, Tamil Nadu, INDIA

E-mail: csrajamaths@yahoo.co.in

(Received: May 24, 2020 Accepted: Sep. 09, 2020 Published: Dec. 30, 2020)

Abstract: In this paper, we introduce the notions of b- γ -continuous, b- γ -irresolute, b- γ -open, bs- γ -open and sb- γ -open mappings in topological spaces. With this notions, we also introduce b- γ -compact, b- γ -connected and b- γ -Lindelöff spaces Also we investigate some fundamental properties. Finally, we discuss the relationship among these mappings.

Keywords and Phrases: $bs-\gamma$ -open mappings, $sb-\gamma$ -open mappings, $b-\gamma$ - continuous, $b-\gamma$ -irresolute, $b-\gamma$ -open mappings.

2010 Mathematics Subject Classification: 54A05, 54C05, 54C10.

1. Introduction

In 1979, Kasahara [2] introduced the notion of an operation γ on topological spaces. After that the notion of γ -open sets was introduced by Ogata [3] in 1991. As a generalization of γ -open sets, Hariwan Z. Ibrahim [1] defined and investigated the notion of b- γ -open sets in general topological spaces. Recently, Sivashanmugaraja and Vadivel [5] introduced the notion of b- γ -open fuzzy sets in fuzzy topological spaces. The purpose of this paper is to introduce and investigate a new type of mappings called b- γ -continuous mappings, b- γ -irresolute, b- γ -open mappings and sb- γ -open mappings. Connected and compactness are powerful tools in topology but they have many dissimilar properties. The notions of b- γ -compact, b- γ -connected and b- γ -Lindelöff spaces are also introduced. Further, we

discussed some basic properties of these mappings.

2. Preliminaries

Throughout this paper, the space (X, τ) , and (Y, σ) or (simply X and Y) represent a topological space.

Definition 2.1. [3] Let X be a space and γ be an operation on τ . A subset A of X is called γ -open, if for every $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. Then, τ_{γ} denotes the set of all γ -open sets in X. Clearly $\tau_{\gamma} \subseteq \tau$. Complements of γ -open sets are called γ -closed.

Definition 2.2. [1] A subset A of a space X is said to be b- γ -open if $A \subseteq \tau_{\gamma}$ -int $(cl(A)) \cup cl(\tau_{\gamma}$ -int(A)).

Remark 2.1. [4] A subset A of X is called b- γ -closed if and only if its complement is b- γ -open. The collection of all b- γ -open and b- γ -closed sets of (X, τ) are denoted by b- $\gamma O(X)$ and b- $\gamma C(X)$ respectively.

Definition 2.3. [4] Let (X, τ) be a space and A be a subset of X. Then the b- γ -closure and b- γ -interior of A are defined as follows:

- (i) $bcl_{\gamma}(A)$) = $\bigcap \{B : A \subseteq B \text{ and } B \in b\text{-}\gamma C(X)\};$
- (ii) $bint_{\gamma}(A) = \bigcup \{B : A \supseteq B \text{ and } B \in b\text{-}\gamma O(X)\}.$

Definition 2.4. [4] Let (X, τ) be a space and A be a subset of X. Then A is said to be b- γ -neighborhood of a point $x \in X$, if there exists a b- γ -open set B such that $x \in B \subseteq A$.

The class of all b- γ -nbds of $x \in X$ is said to be b- γ -neighborhood system of x and represented by b- γ - N_x .

Definition 2.5. [1] A space (X, τ) is said to be:

- (i) $b-\gamma-T_1$, if for every $x, y \in X$ and $x \neq y$, there exists $b-\gamma$ -open sets U and V such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$;
- (ii) b- γ - T_2 , if for every $x, y \in X$ and $x \neq y$, there exists b- γ -open sets U, V and $U \cap V = \phi$ such that $x \in U, y \in V$.

Proposition 2.1. [4] Let A be a subset of a space X. Then, the following statements are hold:

- (i) A is b- γ -closed $\Leftrightarrow b$ - $\gamma Ds(A) \subset A$;
- (ii) A is $b-\gamma$ -open $\Leftrightarrow A$ is $b-\gamma$ -neighborhood for every point $x \in A$;

- (iii) $bcl_{\gamma}(A) = A \cup b \gamma Ds(A)$.
- 3. b- γ -continuous and b- γ -irresolute mappings

Definition 3.1. A mapping $f:(X, \tau) \to (Y, \sigma)$ is said to be b- γ -continuous, if $f^{-1}(A)$ is b- γ -open in X, for every open set A of Y.

Theorem 3.1. For a mapping $f:(X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is b- γ -continuous;
- (ii) $f^{-1}(B)$ is b- γ -closed in X, for every closed set B of Y,
- (iii) For every subset A of X, $f(bcl_{\gamma}(A)) \subseteq cl(f(A))$;
- (iv) For every subset B of Y, $bcl_{\gamma}(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

Proof. (i) \Leftrightarrow (ii) Evident.

(iii) \Leftrightarrow (iv) Let $B \subseteq Y$ and $A = f^{-1}(B)$. Then by hypothesis, we have $f(bcl_{\gamma}(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) = cl(B)$. Thus, $bcl_{\gamma}(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

Conversely, let $A \subseteq X$ and B = f(A). By hypothesis, we have, $bcl_{\gamma}(f^{-1}(f(A))) \subseteq f^{-1}(cl(f(A)))$. Thus, $f(bcl_{\gamma}(A)) \subseteq cl(f(A))$.

- (ii) \Leftrightarrow (iv) Let B be any subset of Y. Since, $f^{-1}(cl(B))$ is b- γ -closed and $f^{-1}(B) \subseteq f^{-1}(cl(B))$, $bcl_{\gamma}(f^{-1}(B) \subseteq f^{-1}(cl(B)))$.
- (iv) \Leftrightarrow (ii) Let B be any closed subset Y. By hypothesis, $bcl_{\gamma}(f^{-1}(B) \subseteq f^{-1}(cl(B)) = f^{-1}(B)$. Thus, $f^{-1}(B)$ is b- γ -closed.

Definition 3.2. A mapping $f:(X, \tau) \to (Y, \sigma)$ is called b- γ -irresolute if $f^{-1}(V)$ is b- γ -open in X, for every b- γ -open set V of Y.

Theorem 3.2. If $f:(X, \tau) \to (Y, \sigma)$ be a mapping, then the following are equivalent:

- (i) f is b- γ -irresolute;
- (ii) For each subset A of X, $f(bcl_{\gamma}(A)) \subseteq bcl_{\gamma}(f(A))$;
- (iii) $f^{-1}(K)$ is b- γ -closed in (X, τ) , for every b- γ -closed set K of (Y, σ) .
- **Proof.** (i) \Leftrightarrow (ii) Suppose that $x_1 \in f(bcl_{\gamma}(A))$ and V be any b- γ -open set containing x_1 . Then there exists a point $x_2 \in X$ and a b- γ -open set U such that $f(x_2) = x_1$ and $x_2 \in U$ and $f(U) \subseteq V$. Since $x_2 \in bcl_{\gamma}(A)$, $U \cap A \neq \phi$ and hence $\phi \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A)$. This implies $x_1 \in bcl_{\gamma}(f(A))$. Thus,

 $f(bcl_{\gamma}(A)) \subseteq bcl_{\gamma}(f(A)).$

(ii) \Leftrightarrow (iii) Let K be a b- γ -closed set in Y. Therefore, $bcl_{\gamma}(K) = K$. By hypothesis, we have $f(bcl_{\gamma}(f^{-1}(K)) \subseteq bcl_{\gamma}(f(f^{-1}(K))) = bcl_{\gamma}(K) = K$. Thus, $bcl_{\gamma}(f^{-1}(K)) \subseteq f^{-1}(K)$. Therefore $f^{-1}(K)$ is b- γ -closed.

 $(iii) \Leftrightarrow (i)$ Evident.

Theorem 3.3. Let $f: X \to Y$ be a b- γ -continuous one-one map and Y is T_2 ,-space then X is b- γ - T_2 space.

Proof. Let x and y be two distinct points in X then there exist open sets U and V in Y and $U \cap V \neq \phi$ such that $f(x) \in U$ and $f(y) \in V$. Since f is b- γ -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are b- γ -open in X containing x and y respectively. Therefore $f^{-1}(U) \cap f^{-1}(V) = \phi$. Hence, X is b- γ - T_2 .

Definition 3.3. A space (X, τ) is called:

- (i) b- γ -compact if for every b- γ -open cover of X has a finite subcover;
- (ii) b- γ -connected if it cannot be expressed as the union of two disjoint non-empty b- γ -open sets of X;
- (iii) $b-\gamma$ -Lindelöff if every $b-\gamma$ -open cover of X has a countable subcover.

Definition 3.4. A subset A of a space X is said to be b- γ -compact relative to X if every cover of A by b- γ -open sets of X has a finite subcover.

Example 3.1. Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a, b\}, \{c, d\}\}$. Define an operation γ on τ by $\gamma(A) = A$. Then clearly the space X is b- γ -compact. Since, for every b- γ -open cover of X has a finite subcover.

Example 3.2. Let $X = \{a, b, c, \}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Define an operation γ on τ by

$$\gamma(A) = \begin{cases} A, & \text{if } A = \{b\} \\ X, & \text{if } A \neq \{b\}. \end{cases}$$

Then the space X is b- γ -connected.

4. b- γ -open and b- γ -closed mappings

Definition 4.1. A mapping $f:(X, \tau) \to (Y, \sigma)$ is said to be

- (i) b- γ -open, if f(U) is b- γ -open in Y, for every open set U of X;
- (ii) b- γ -closed, if f(U) is b- γ -closed in Y, for every closed set U of X.

Theorem 4.1. For an one-one and onto mapping $f:(X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f^{-1} is b- γ -continuous;
- (ii) f is b- γ -open;
- (iii) f is b- γ -closed.

Proof. Evident.

Definition 4.2. Let (X, τ) be a topological space and A be a subset of X. Then the b- γ -border $(A) = A \setminus bint_{\gamma}(A)$. It is denoted by b- $\gamma Br(A)$.

Theorem 4.2. For a mapping $f:(X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is b- γ -open;
- (ii) For every $x \in X$ and every neighborhood U of x, there exists b- γ -open set V in Y containing f(x) such that $V \subseteq f(U)$;
- (iii) For every subset A of X, $f(int(A)) \subseteq bint_{\gamma}(f(A))$;
- (iv) For every subset B of Y, $int(f^{-1}(B)) \subseteq f^{-1}(bint_{\gamma}(B))$;
- (v) For every subset B of Y, $f^{-1}(b-\gamma Br(B)) \subseteq Br(f^{-1}(B))$;
- (vi) For every subset B of Y, $f^{-1}(bcl_{\gamma}(B)) \subseteq cl(f^{-1}(B))$.
- **Proof.** (i) \Rightarrow (ii) Let $x \in X$ and U be neighborhood of x. Then there exists an open set K such that $x \in K \subseteq U$ and hence $f(x) \in f(K) \subseteq f(U)$. Since f is b- γ -open, then f(K) is b- γ -open in Y. Take f(K) = V, we have $f(x) \in V \subseteq f(U)$.
- (ii) \Rightarrow (i) Let $x \in X$ and U be an open set containing x. Then U is neighborhood of every $x \in U$. By hypothesis, there exists a b- γ -open set V in Y such that $f(x) \in V \subseteq f(U)$. Hence, f(U) is b- γ -neighborhood of each $f(x) \in f(U)$. By Proposition 2.1, f(U) is b- γ -open in Y. Thus, f is b- γ -open mapping.
- (i) \Rightarrow (iii) Let $A \subseteq X$. Since $int(A) \subseteq A \subseteq X$, which is open.By hypothesis, f(int(A)) is b- γ -open in Y. Thus, $f(int(A)) \subseteq bint_{\gamma}(f(A))$, Hence $f(int(A)) \subseteq bint_{\gamma}(f(A)) \subseteq f(A)$.
- (iii) \Rightarrow (iv) Let $A = f^{-1}(B)$. Then by hypothesis, $f(int(f^{-1}(B)) \subseteq bint_{\gamma}(f(f^{-1}(B)))$. Therefore $int(f^{-1}(B)) \subseteq f^{-1}(bint_{\gamma}(f(f^{-1}(B)))) \subseteq f^{-1}(bint_{\gamma}(B))$.
- (iv) \Rightarrow (i) Let A be an open set in X. Then $f(A) \subseteq Y$ and by hypothesis,

- $int(f^{-1}(f(A))) \subseteq f^{-1}(bint_{\gamma}(f(A)))$. This implies that, $int(A) \subseteq f^{-1}(bint_{\gamma}(f(A)))$. Thus $f(int(A)) \subseteq bint_{\gamma}(f(A))$. Therefore, f is b- γ -open.
- (iv) \Rightarrow (v) Let $B \subseteq Y$. Then by hypothesis, $f^{-1}(B) \setminus f^{-1}(bint_{\gamma}(B)) \subseteq f^{-1}(B) \setminus int(f^{-1}(B))$. Therefore, $f^{-1}(b \gamma Br(B)) \subseteq Br(f^{-1}(B))$.
- $(v) \Rightarrow (iv)$ Let $B \subseteq Y$. Then $f^{-1}(B \setminus bint_{\gamma}(B)) \subseteq f^{-1}(B) \setminus int(f^{-1}(B))$ and hence $f^{-1}(B) \setminus f^{-1}(bint_{\gamma}(B)) \subseteq f^{-1}(B) \setminus int(f^{-1}(B))$. Therefore, $int(f^{-1}(B)) \subseteq f^{-1}(bint_{\gamma}(B))$.
- (i) \Rightarrow (vi) Let B be any subset of Y and $x \in f^{-1}(bcl_{\gamma}(B))$. Then $f(x) \in bcl_{\gamma}(B)$. Suppose that U is an open set containing x. By hypothesis, f(U) is b- γ -open in Y. Hence, $B \cap f(U) \neq \phi$. Thus $U \cap f^{-1}(B) \neq \phi$. Thus, $x \in cl(f^{-1}(B))$. So, $f^{-1}(bcl_{\gamma}(B)) \subseteq cl(f^{-1}(B))$.
- (vi) \Rightarrow (i) Let B be any subset of Y. Then $(Y \setminus B) \subseteq Y$. By hypothesis, $f^{-1}(bcl_{\gamma}(Y \setminus B)) \subseteq cl(f^{-1}(Y \setminus B))$ and hence $X \setminus f^{-1}(bint_{\gamma}(B)) \subseteq X \setminus int(f^{-1}(B))$ that implies $int(f^{-1}(B)) \subseteq f^{-1}(bint_{\gamma}(B))$. Then by (iv), f is b- γ -open.

Theorem 4.3. Let $f:(X, \tau) \to (Y, \sigma)$ be a b- γ -closed mapping. Then the following are hold:

- (i) If f is an onto and $f^{-1}(B)$, $f^{-1}(C)$ have disjoint neighborhoods of X, then B and C are disjoint of Y;
- (ii) For every subset A of X, $bint_{\gamma}(bcl_{\gamma}(f(A))) \subseteq f(cl(A))$.
- **Proof.** (i) Let P and Q be two disjoint neighborhoods of $f^{-1}(B)$ and $f^{-1}(C)$. Then there exists two b- γ -open sets U and V such that $f^{-1}(B) \subseteq U \subseteq P$, $f^{-1}(C) \subseteq V \subseteq Q$. But, f is an onto map, then $f(f^{-1}(B)) = B \subseteq f(U) \subseteq f(P)$, $f(f^{-1}(C)) = C \subseteq f(V) \subseteq f(Q)$. Since P and Q are disjoint, $f(P \cap Q) = \phi$ and hence $B \cap C \subseteq f(U \cap V) \subseteq f(P \cap Q) = \phi$. Therefore, P and P are disjoint of P.
- (ii) Since $A \subseteq cl(A) \subseteq X$ and f is a b- γ -closed mapping, f(cl(A)) is b- γ -closed in Y. Thus, $f(A) \subseteq bcl_{\gamma}(f(A)) \subseteq f(cl(A))$. Hence, $bint_{\gamma}(bcl_{\gamma}(f(A))) \subseteq f(cl(A))$.

Theorem 4.4. For a mapping $f:(X, \tau) \to (Y, \sigma)$, then the following are equivalent:

- (i) f is b- γ -closed;
- (ii) For each subset A of X, $bcl_{\gamma}(f(A)) \subseteq f(cl(A))$;
- (iii) If f is an onto, then for every subset B of Y and each open set U in X containing $f^{-1}(B)$, there exists a b- γ -open set V of Y containing B such that $f^{-1}(V) \subseteq U$.

Proof. (i) \Rightarrow (ii) Let cl(A) be closed subset of X. Since f is b- γ -closed, $f(cl(A)) \in b$ - $\gamma C(Y)$. Thus, $bcl_{\gamma}(f(A)) \subseteq f(cl(A))$.

(ii) \Rightarrow (i) Let A be a closed subset of X. By hypothesis, $bcl_{\gamma}(f(A)) \subseteq f(cl(A)) = f(A)$. Thus, $f(A) \in b-\gamma C(Y)$. Hence, f is b- γ -closed.

(i) \Rightarrow (iii) Let $V = Y \setminus (f(X \setminus U))$ and U is an open set of X containing $f^{-1}(B)$. Since f is b- γ -closed, V is b- γ -open in Y. But, $f^{-1}(B) \subseteq U$, then B is a subset of f(U) and $f(X \setminus U) \subseteq Y \setminus B$, that is, B is a subset of V. and $f^{-1}(V) \subseteq U$.

(iii) \Rightarrow (i) Let F be a closed subset of X and $y \in Y \setminus f(F)$. Then $f^{-1}(y) \in X \setminus F$, which is open in X. Hence by hypothesis, there exists a b- γ -open set V containing y such that $f^{-1}(V) \subseteq X \setminus F$. But f is an onto, then $y \in V \subseteq Y \setminus f(F)$ and $Y \setminus f(F)$ is the union of b- γ -open sets and hence, f(F) is b- γ -closed. Thus, f is b- γ -closed.

Remark 4.1. The restriction of b- γ -open mapping is may not be b- γ -open as shown in the following example.

Example 4.1. Let $X = Y = \{a, b, c, d\}$ with topologies $\tau = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Define an operation γ on σ by

$$\gamma(A) = \begin{cases} int(cl(A)), & \text{if } A \neq \{a\} \\ cl(A), & \text{if } A = \{a\}. \end{cases}$$

Also a mapping $f:(X, \tau) \to (Y, \sigma)$ is defined as f(a) = b, f(b) = d, f(c) = c and f(d) = a. Then clearly f is b- γ -open. Take $A = \{b, d\} \subseteq X$. Then $f_A: (A, \tau_A) \to (Y, \sigma)$ is not b- γ -open. Since $\{b, d\} \in \tau_A$ but $f(\{b, d\}) = \{a, d\} \notin b$ - $\gamma O(Y)$.

Remark 4.2. The composition of two b- γ -open mappings may not be b- γ -open as shown in the following example.

Example 4.2. Let $X = Y = Z = \{a, b, c\}$ with topologies $\tau_X = \{X, \phi, \{a, c\}\}, \tau_Y$ is an indiscrete topology and $\tau_Z = \{Z, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Define an operation γ on τ_Y and τ_Z by $\gamma(A) = A$ and

$$\gamma(A) = \begin{cases} A, & \text{if } A = \{b\} \\ X, & \text{if } A \neq \{b\}. \end{cases}$$

respectively. Also, $f:(X, \tau_X) \to (Y, \tau_Y)$ and $g:(Y, \tau_Y) \to (Z, \tau_Z)$ are identity mappings. Clearly, f and g are b- γ open but $(g \circ f)$ is not b- γ -open. Since $\{a, c\} \subseteq X$ is an open set of X, but $(g \circ f)(\{a, c\}) = \{a, c\} \notin b$ - $\gamma O(Z)$.

Theorem 4.5. Let $f: X \to Y$ and $g: Y \to Z$ be two mappings. Then the following are hold:

- (i) If f is an open and g is a b- γ -open mappings, then the composite map $g \circ f$ is b- γ -open;
- (ii) if f is an onto continuous map and the composite map $g \circ f$ is a b- γ -open mapping, then the map g is b- γ -open, ;
- (iii) If the composite map $g \circ f$ is an open and g is an one-one b- γ -continuous map, then the map f is b- γ -open, .
- **Proof.** (i) Let U be an open set in X. Since f is an open, f(U) is an open in Y. But g is a b- γ -open map, then g(f(U)) is b- γ -open set on Z. Hence, $g \circ f$ is b- γ -open.
- (ii) Let U be an open set in Y and f be a continuous map. Then $f^{-1}(U)$ is open in X. But $g \circ f$ is a b- γ -open map, then $(g \circ f)(f^{-1}(U))$ is b- γ -open in Z. Since f is onto, g(U) is b- γ -open in Z. Thus, g is b- γ -open.
- (iii) Let U be an open set in X, and $g \circ f$ be an open map. Then $(g \circ f)(U) = g(f(U))$ is open in Z. Since g is an onto b- γ -continuous map, f(U) is b- γ -open in Y. Thus, f is b- γ -open.
- **Theorem 4.6.** Let $f: X \to Y$ be a bijective b- γ -open mapping. Then the following statements are hold:
 - (i) If X is a T_i -space, then Y is b- γ - T_i where i = 1, 2;
 - (ii) If Y is a b- γ -compact (b- γ -Lindelöff) space, then X is compact (Lindelöff).
- **Proof.** (i) We prove that for the case of T_1 -space. Let $y_1, y_2 \in Y$ and $y_1 \neq y_2$. Then there exists $x_1, x_2 \in X$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is a T_1 -space, then there exists two open sets U, V of X such that $x_1 \in U$, $x_2 \notin U$ and $x_2 \in V$, $x_1 \notin V$. But, f is a b- γ -open map, then f(U) and f(V) are b- γ -open sets of Y with $y_1 \in f(U)$, $y_2 \notin f(U)$ and $y_2 \in f(V)$, $y_1 \notin f(V)$. Thus, Y is b- γ - T_1 .
- (ii) We prove that the theorem for b- γ -compact. Let $\{U_i : i \in I\}$ be a family of open cover of X and f be a onto b- γ -open mapping. Then $\{f(U_i) : i \in I\}$ is a b- γ -open cover of Y. But, Y is b- γ -compact space, hence there exists a finite subset I_o of I such that $Y = \bigcup \{f(U_i) : i \in I_0\}$ Then by one-one of f, $\{U_i : i \in I_0\}$ is a finite subfamily of X. Hence, X is compact.
- **Theorem 4.7.** If $f: X \to Y$ is a onto b- γ -open mapping and Y is b- γ -connected space, then X is connected.
- **Proof.** Assume that X is a disconnected space. Then there exists two non-empty sets U, V of X and $U \cap V = \phi$ such that $X = U \cup V$. But f is a onto b- γ -open map, then f(U) and f(V) are non-empty b- γ -open sets of Y and $f(U) \cap f(V) = \phi$

with $Y = f(U) \cup f(V)$, which is a contradiction to our assumption that Y is b- γ -connected.

5. sb- γ -open and sb- γ -closed mappings

Definition 5.1. A mapping $f:(X,\tau)\to (Y,\sigma)$ is called:

- (i) super b- γ -open (shortly, sb- γ -open), if the image of b- γ -open set of (X, τ) is open in (Y, σ) ;
- (ii) super b- γ -closed (shortly, sb- γ -closed), if the image of b- γ -closed set of (X, τ) is closed in (Y, σ) .

Example 5.1. Let $X = Y = \{a, b, c\}$ with topologies $\tau_X = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and τ_Y be the discrete topology. Define an operation γ on τ_X by

$$\gamma(A) = \begin{cases} int(cl(A)), & \text{if } a \in A \\ cl(A), & \text{if } a \notin A. \end{cases}$$

Also the map $f:(X,\tau_X)\to (Y,\tau_Y)$ is defined as $f(a)=b,\ f(b)=c$ and f(c)=a is sb- γ -open.

Theorem 5.1. If $f:(X, \tau) \to (Y, \sigma)$ is a mapping, then the following are equivalent:

- (i) f is sb- γ -open;
- (ii) for every $x \in X$ and each b- γ -neighborhood U of x, there exists a neighborhood V of f(x) such that $V \subseteq f(U)$;
- (iii) For every subset A of X, $f(bint_{\gamma}(A)) \subseteq int(f(A))$;
- (iv) For every subset B of Y, $bint_{\gamma}(f^{-1}(B)) \subseteq f^{-1}(int(B))$;
- (v) For every subset B of Y, $f^{-1}(Br(B)) \subseteq b \gamma Br(f^{-1}(B))$;
- (vi) For every subset B of Y, $f^{-1}(cl(B)) \subseteq bcl_{\gamma}(f^{-1}(B))$;
- (vii) If f is onto, then for every subset B of Y and for any set $F \in b\text{-}\gamma C(X)$ containing $f^{-1}(B)$, there exists a closed subset H of Y containing B such that $f^{-1}(H) \subseteq F$.

- **Proof.** (i) \Rightarrow (ii) Let $x \in X$ and U be a b- γ -neighborhood of x. Then there exists $K \in b$ - $\gamma O(X)$ such that $x \in K \subseteq U$ and hence $f(x) \in f(K) \subseteq f(U)$. Hence by hypothesis, $f(K) \in \sigma$ and containing f(x). Take f(K) = V, then $f(x) \in V \subseteq f(U)$. (ii) \Rightarrow (i) Let $x \in X$ and U be a b- γ -open set of X containing x. Then $f(x) \in f(U)$. Hence by hypothesis, there exists $V \in \sigma$ containing f(x) such that $f(x) \in V \subseteq f(U)$. Therefore, f(U) is neighborhood for $f(x) \in f(U)$. Hence f(U) is open in Y and therefore f is sb- γ -open.
- (i) \Rightarrow (iii) Let $A \subseteq X$. Since $bint_{\gamma}(A) \subseteq A \subseteq X$ is b- γ -open set and by hypothesis, $f(bint_{\gamma}(A)) \subseteq f(A)$ is open in Y. Thus, $f(bint_{\gamma}(A)) \subseteq int(f(A))$.
- (iii) \Rightarrow (iv) Let $A = f^{-1}(B)$. Then by hypothesis, $f(bint_{\gamma}(f^{-1}(B))) \subseteq int(f(f^{-1}(B)))$ $\subseteq int(B)$. Thus, $bint_{\gamma}(f^{-1}(B)) \subseteq f^{-1}(int(B))$.
- (iv) \Rightarrow (v) Let B be a subset of Y. Then by hypothesis and Definition 2.4, we have $f^{-1}(B) \setminus f^{-1}(int(B)) \subseteq f^{-1}(B) \setminus bint_{\gamma}(f^{-1}(B))$ and therefore, $f^{-1}(Br(B)) \subseteq b$ - $\gamma Br(f^{-1}(B))$.
- (v) \Rightarrow (iv) Let B be a subset of Y. Then by hypothesis and Definition 2.4, we have $f^{-1}(B \setminus int(B)) \subseteq f^{-1}(B) \setminus bint_{\gamma}(f^{-1}(B))$ and hence $f^{-1}(B) \setminus f^{-1}(int(B)) \subseteq f^{-1}(B) \setminus bint_{\gamma}(f^{-1}(B))$. Thus, $bint_{\gamma}(f^{-1}(B)) \subseteq f^{-1}(int(B))$.
- (iv) \Rightarrow (vi) Let B be a subset of Y. Then $Y \setminus B \subseteq Y$, hence by hypothesis, we have $bint_{\gamma}(f^{-1}(Y \setminus B)) \subseteq f^{-1}(int(Y \setminus B))$ and hence $X \setminus bcl_{\gamma}(f^{-1}(B)) \subseteq X \setminus f^{-1}(cl(B))$. Thus, $f^{-1}(cl(B)) \subseteq bcl_{\gamma}(f^{-1}(B))$.
- (vi) \Rightarrow (iv) Let B be a subset of Y. Then $Y \setminus B \subseteq Y$. So by hypothesis, we have $f^{-1}(cl(Y \setminus B)) \subseteq bcl_{\gamma}(f^{-1}(Y \setminus B))$ and hence $X \setminus f^{-1}(int(B)) \subseteq X \setminus bint_{\gamma}(f^{-1}(B))$. Thus, $bint_{\gamma}(f^{-1}(B)) \subseteq f^{-1}(int(B))$.
- (iv) \Rightarrow (i) Let A be a b- γ -open set in X. Then $f(A) \subseteq Y$ and by hypothesis, $bint_{\gamma}(f^{-1}(f(A))) \subseteq f^{-1}(int(f(A)))$. This gives that, $bint_{\gamma}(A) \subseteq f^{-1}(int(f(A)))$. Thus $f(bint_{\gamma}(A)) \subseteq int(f(A))$. Hence by (iii), f is sb- γ -open.
- (i) \Rightarrow (vii) Let $H = Y \setminus f(X \setminus F)$ and F be a b- γ -closed set of X containing $f^{-1}(B)$. Then $X \setminus F$ is a b- γ -open set. But f is a sb- γ -open mapping, then $f(X \setminus F)$ is open in Y. Therefore, H is a closed set of Y and $f^{-1}(H) = X \setminus f^{-1}f(X \setminus F) \subseteq X \setminus (X \setminus F) = F$.
- (vii) \Rightarrow (i) Let U be a b- γ -open set in X and put $B = Y \setminus f(U)$. Then $X \setminus U$ is b- γ -closed with $f^{-1}(B) \subseteq X \setminus U$. By hypothesis, there exists a closed set M of Y such that $B \subseteq M$ and $f^{-1}(M) \subseteq X \setminus U$. Hence, $f(U) \subseteq Y \setminus M$ and since $B \subseteq M$, then $Y \setminus M \subseteq Y \setminus B = f(U)$. Therefore $f(U) = Y \setminus M$ which is open. Thus, f is sb- γ -open.
- **Theorem 5.2.** Let $f:(X,\tau)\to (Y,\sigma)$ be an one-one and onto sb- γ -open mapping. Then the following are hold:

- (i) If X is a b- γ - T_i -space, then Y is T_i , where i = 1, 2;
- (ii) If Y is a compact (Lindelöff) space, then X is $b-\gamma$ -compact ($b-\gamma$ -Lindelöff).
- **Proof.** (i) We prove that for the case of b- γ - T_2 -space. Let $y_1, y_2 \in Y$ and $y_1 \neq y_2$. Then there exists $x_1, x_2 \in X$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is a b- γ - T_2 -space, then there exists two b- γ -open sets U, V of X and $U \cap V = \phi$ such that $x_1 \in U$ and $x_2 \in V$. But, f is sb- γ -open map, then f(U), f(V) are open sets of Y with $y_1 \in f(U)$, $y_2 \in f(V)$, and $f(U) \cap f(V) = \phi$. Thus, Y is T_2 .
- (ii) We prove that the theorem for b- γ -Lindelöff space. Let $\{U_i : i \in I\}$ be a family of b- γ -open cover of X and f be a onto sb- γ -open mapping. Then $\{f(U_i) : i \in I\}$ is an open cover of Y. But, Y is a Lindelöff space, hence there exists a countable subset I_0 of I such that $Y = \bigcup \{f(U_i) : i \in I_0\}$. Then by one-one of f, $\{U_i : i \in I_0\}$ is a countable subfamily of X. Therefore, X is b- γ -Lindelöff.

Theorem 5.3. If $f:(X,\tau)\to (Y,\sigma)$ is an onto sb- γ -open mapping and Y is a connected space, then X is b- γ -connected.

Proof. Obvious.

6. $bs-\gamma$ -open and $bs-\gamma$ -closed mappings

Definition 6.1. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be:

- (i) b-star- γ -open (shortly, bs- γ -open), if the image of b- γ -open set of (X, τ) is b- γ -open in (Y, σ) ;
- (ii) b-star- γ -closed (shortly, bs- γ -closed), if the image of b- γ -closed set of (X, τ) is b- γ -closed in (Y, σ) .

Theorem 6.1. Let $f: X \to Y$ be an 1-1 and onto mapping. Then the following statements are equivalent:

- (i) f is $bs-\gamma$ -closed;
- (ii) f is $bs-\gamma$ -open;
- (iii) f^{-1} is b- γ -irresolute.

Proof. Evident.

Example 6.1. Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a, c\}\}$. Define an operation γ on τ and σ by $\gamma(A) = A$. Also a mapping $f: (X, \tau) \to (Y, \sigma)$ which defined by f(a) = c, f(b) = a and f(c) = b. Then f is bs- γ -open.

Theorem 6.2. For a mapping $f: X \to Y$ the following statements are equivalent:

- (i) f is $bs-\gamma$ -open;
- (ii) For each $x \in X$ and each b- γ -neighborhood U of x, there exists $V \in b$ - $\gamma O(Y)$ containing f(x) such that $V \subseteq f(U)$;
- (iii) For every subset A of X, $f(bint_{\gamma}(A)) \subseteq bint_{\gamma}(f(A))$;
- (iv) For every subset B of Y, $bint_{\gamma}(f^{-1}(B)) \subseteq f^{-1}(bint_{\gamma}(B))$;
- (v) For every subset B of Y, $f^{-1}(b-\gamma Br(B)) \subseteq b-\gamma Br(f^{-1}(B))$;
- (vi) For every subset B of Y, $f^{-1}(bcl_{\gamma}(B)) \subseteq bcl_{\gamma}(f^{-1}(B))$.

Proof. It is similar to that of Theorem 5.1.

Theorem 6.3. If $f: X \to Y$ is an onto bs- γ -closed mapping and $f^{-1}(M)$, $f^{-1}(N)$ have disjoint b- γ -neighborhoods of X, then M and N are disjoint of Y. **Proof.** Evident.

Theorem 6.4. For a mapping $f: X \to Y$, then the following statements are equivalent:

- (i) f is $bs-\gamma$ -closed;
- (ii) For every subset A of X, $bcl_{\gamma}(f(A)) \subseteq f(bcl_{\gamma}(A))$;
- (iii) If f is an onto, then for every subset B of Y and for each b- γ -open set U of X containing $f^{-1}(B)$, there exists a b- γ -open set V of Y containing B such that $f^{-1}(V) \subseteq U$.

Proof. Evident.

Theorem 6.5. Let $f:(X,\tau_X)\to (Y,\tau_Y)$ and $g:(Y,\tau_Y)\to (Z,\tau_Z)$ be two mappings. Then the following statements are hold:

- (i) If f and g are bs- γ -open, then the composite map $g \circ f$ is a bs- γ -open mapping;
- (ii) If f is a onto b- γ -continuous mapping and the composite map $g \circ f$ is bs- γ -open, then g is b- γ -open.

Proof. (i) Let U be a b- γ -open in X and f be a b- γ -open mapping. Then f(U) is b- γ -open in Y. Since g is b- γ -open, g(f(U)) is b- γ -open in Z. Thus, $g \circ f$ is b- γ -open.

(ii) Let U be an open set in Y and f be a bs- γ -continuous mapping. Then $f^{-1}(U) \in$

b- $\gamma O(X)$. Since, $g \circ f$ is bs- γ -open, $(g \circ f)(f^{-1}(U))$ is b- γ -open in Z. Also, by onto of f, g(U) is b- γ -open in Z. Thus, g is b- γ -open.

Theorem 6.6. Let $f: X \to Y$ and $g: Y \to Z$ be two mappings.

- (i) If g is an one-one bs- γ -open mapping and $g \circ f$ is b- γ -irresolute, then f is b- γ -irresolute;
- (ii) If f is an onto bs- γ -open mapping and $g \circ f$ is b- γ -irresolute, then g is b- γ -irresolute,
- **Proof.** (i) Let U be a b- γ -open in Y. Then g(U) is b- γ -open in Z. Since, $g \circ f$ is b- γ -irresolute, $(g \circ f)^{-1}(g(U))$ is b- γ -open in X. Since g is an one-one map, $f^{-1}(U)$ is b- γ -open in X. Thus, f is b- γ -irresolute.
- (ii) Let V be a b- γ -open in Z. Then $(g \circ f)^{-1}(V)$ is b- γ -open in X. Since, f is a bs- γ -open mapping, $f((g \circ f)^{-1}(V))$ is b- γ -open in Y. Since f is a onto map, then $g^{-1}(V)$ is b- γ -open in Y. Thus, g is b- γ -irresolute.

Theorem 6.7. Let $f:(X,\tau)\to (Y,\sigma)$ be an one-one and onto b- γ -open mapping. Then the following statements are hold:

- (i) If X is a b- γ - T_i -space, then Y is b- γ - T_i , where i = 1, 2;
- (ii) If Y is a b- γ -compact (b- γ -Lindelöff) space, then X is b- γ -compact (b- γ -Lindelöff).

Proof. Evident.

Theorem 6.8. If $f:(X,\tau)\to (Y,\sigma)$ is a onto bs- γ -open mapping and Y is a b- γ -connected space, then X is b- γ -connected.

Proof. Evident.

7. Conclusion

In this paper, we introduced and investigated $b-\gamma$ -continuous, $b-\gamma$ -irresolute, $b-\gamma$ -open, $bs-\gamma$ -open and $sb-\gamma$ -open mappings. These maps are stated to be independent of each other. Similarly $b-\gamma$ -connected and $b-\gamma$ -compact have different notions. We have also discussed the relationships between these mappings in topological spaces. Applications of $b-\gamma$ -connected and $b-\gamma$ -compact will be discussed in my future work. There is a scope to study and extend these newly defined mappings.

8. Acknowledgment

I am thankful to the referees for their sincere, perfect and useful comments and suggestions which are more informative to the author and to put the paper in the present form.

References

- [1] Hariwan Z. Ibrahim, Weak forms of γ -open sets and New separation axioms, Int. J. Sci. Eng. Res., 3(5) (2012), 1-4.
- [2] Kasahara, S., Operation-Compact Spaces, Math. Japon. 24 (1979), 97-105.
- [3] Ogata, H., Operation on topological spaces and associated topology, Math. Jap., 36(1) (1991), 175-184.
- [4] Sivashanmugaraja, C., On a class of b- γ -open sets in a topological space, Malaya Journal of Matematik, Vol. 8, No. 3 (2020), 977-981.
- [5] Sivashanmugaraja, C. and Vadivel, A., Weak forms of fuzzy γ -open sets, Global Journal of Pure and Applied Mathematics, Vol. 13, No. 2 (2017), 251-261.