Fractional derivative formulae in the form of difference operators

Kuldeep Singh Gehlot and Jyotindra C. Prajapati*

Department of Mathematics,

Government Bangur College, Pali-306401, Rajasthan, India.

E-mail: drksgehlot@rediffmail.com

*Department of Mathematics, Faculty of Technology and Engineering, Marwadi Education Foundation Group of Institutions, Rajkot-360003, Gujarat, India. E-mail: jyotindra18@rediffmail.com

Abstract

This paper presents interdisciplinary work between Fractional Calculus and Numerical Analysis. Authors established new formulae of Fractional derivative in the form of Forward and Backward Differences. Fractional derivatives of x^n , $\cos x$ and General Class of polynomial $S_n^m(x)$ with the help of newly defined formulae also obtained.

Key Words: Forward Difference Operator, Backward Difference Operator, Fractional Derivative, Hypergeometric Function.

MSC(2000): 26A33, 33C05, 65Q10.

1. Introduction

1.1 Notations

Following notations used for deriving several results.

 Δ_h = Forward Difference Operator, ∇_h = Backward Difference Operator, D = Differential Operator, E = Shift Operator, I = Identity Operator, h = Interval of Differences, \mathbb{R} = Set of Real Numbers and \mathbb{N} = Set of Natural Numbers.

1.2 Definitions

Let $t \in \mathbb{R}$ and f(t) is a function of t then for $n \in \mathbb{R}$, following Operators defined as:

Shift Operator

$$E^{nh}f(t) = f(t+nh), \ E^{-jh}f(t) = f(t-jh)$$

Forward Difference Operator

$$\triangle_h f(t) = f(t+h) - f(t)$$

Backward Difference Operator

$$\nabla_h f(t) = f(t) - f(t-h)$$

Differential Coefficient

$$Df(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

1.3 Formulas

Well-known relationships between Shift Operator, Finite Differences and Differential Coefficient are given by

$$E^h \equiv e^{hD} \equiv I + \Delta_h \tag{1}$$

and

$$E^{-h} \equiv e^{-hD} \equiv I - \nabla_h \tag{2}$$

where $D \equiv \frac{1}{h} \left[\nabla_h + \frac{\nabla_h^2}{2} + \frac{\nabla_h^3}{3} - \dots \right]$

$$Df(t) = f^{(1)}(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h} = \lim_{h \to 0} \frac{\Delta_h f(t)}{h} = \lim_{h \to 0} \frac{\nabla_h f(t+h)}{h}$$
(3)

for higher order

$$D^{(n)}f(t) = f^{(n)}(t) = \lim_{h \to 0} \frac{\Delta_h^n f(t)}{h^n} = \lim_{h \to 0} \frac{\nabla_h^n f(t+nh)}{h^n}$$
(4)

$$\nabla_{h}^{n} f(t) = (I - E^{-h})^{n} f(t) = \sum_{j=0}^{n} (-1)^{j} {}^{n} C_{j} E^{-jh} f(t)$$
(5)

$$\nabla_{h}^{n} f(t) = \sum_{j=0}^{n} (-1)^{j \ n} C_{j} e^{-jhD} f(t)$$
(6)

$$\nabla_{h}^{n} f(t) = \sum_{j=0}^{n} (-1)^{j \ n} C_{j} \sum_{i=0}^{\infty} \frac{(-hjD)^{i}}{(i)!} f(t)$$
(7)

Formula for fractional order differences (CISM Lecture Notes [3]) defined as

$$\nabla_h^{\alpha} f(t) = \sum_{j=0}^{\infty} (-1)^{j \ \alpha} C_j E^{-jh} f(t) \tag{8}$$

$$\nabla_h^{\alpha} f(t) = \sum_{j=0}^{\infty} (-1)^{j \ \alpha} C_j e^{-jhD} f(t) \tag{9}$$

$$\nabla_{h}^{\alpha} f(t) = \sum_{j=0}^{\infty} (-1)^{j \ \alpha} C_{j} \sum_{i=0}^{\infty} \frac{(-hjD)^{i}}{(i)!} f(t)$$
(10)

2. Main results

Result 1. The fractional forward and backward differences formula in terms of Derivatives for $\alpha \in \mathbb{R}^+$

$$\Delta_h^{\alpha} f(t) = (hD)^{\alpha} \sum_{j=0}^{\infty} {}^{\alpha} C_j \left(\frac{hD}{2!} + \frac{h^2 D^2}{3!} + \dots \right)^j f(t)$$
(11)

and

$$\nabla_{h}^{\alpha} f(t) = (hD)^{\alpha} \sum_{j=0}^{\infty} {}^{\alpha}C_{j} \left(\frac{hD}{2!} - \frac{h^{2}D^{2}}{3!} + \dots \right)^{j} f(t)$$
(12)

Proof.

For forward difference, from equation (1), we have

$$\Delta_h f(t) = (e^{hD} - I)f(t) = hD \left[1 + \frac{hD}{2!} + \frac{h^2 D^2}{3!} + \dots \right] f(t)$$

for n^{th} difference, we get

$$\Delta_h^n f(t) = h^n D^n \left[1 + \left(\frac{hD}{2!} + \frac{h^2 D^2}{3!} + \dots \right) \right]^n f(t)$$

= $h^n D^n \sum_{j=0}^n {}^n C_j \left(\frac{hD}{2!} + \frac{h^2 D^2}{3!} + \dots \right)^j f(t)$

this formula can be generalized for fractional order differences (CISM Lecture Notes [3]) as

$$\Delta_h^{\alpha} f(t) = h^{\alpha} D^{\alpha} \sum_{j=0}^{\infty} {}^{\alpha} C_j \left(\frac{hD}{2!} + \frac{h^2 D^2}{3!} + \dots \right)^j f(t).$$

Similarly, for backward difference, from equation (2), we have

$$\nabla_h f(t) = (I - e^{-hD}) f(t)$$

= $hD \left[1 - \frac{hD}{2!} + \frac{h^2 D^2}{3!} - \dots \right] f(t)$

 n^{th} difference gives

$$\nabla_{h}^{n} f(t) = h^{n} D^{n} \left[1 - \left(\frac{hD}{2!} - \frac{h^{2}D^{2}}{3!} + \dots \right) \right]^{n} f(t)$$
$$= h^{n} D^{n} \sum_{j=0}^{n} {}^{n} C_{j} \left(\frac{hD}{2!} - \frac{h^{2}D^{2}}{3!} + \dots \right)^{j} f(t)$$

this formula can be generalized for fractional order differences (CISM Lecture Notes [3]) as

$$\nabla_h^{\alpha} f(t) = h^{\alpha} D^{\alpha} \sum_{j=0}^{\infty} {}^{\alpha} C_j \left(\frac{hD}{2!} - \frac{h^2 D^2}{3!} + \dots \right)^j f(t).$$

Result 2. Fractional Derivative formula in terms of Forward and Backward Differences are

$$D^{\alpha}f(t) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_{j}(-1)^{j} \sum_{i=0}^{\infty} {}^{-j}C_{i}(-1)^{i} \bigtriangleup_{h}^{i} f(t+\alpha h)$$
(13)

$$D^{\alpha}f(t) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_{j}(-1)^{j} \sum_{i=0}^{\infty} {}^{j}C_{i}(-1)^{i} \bigtriangledown_{h}^{i} f(t+\alpha h)$$
(14)

another forms

$$D^{\alpha}f(t) = \frac{\Delta_{h}^{\alpha}}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_{j}(-1)^{j}(\frac{\Delta_{h}}{2} - \frac{\Delta_{h}^{2}}{3} + \dots)^{j}f(t)$$
(15)

$$D^{\alpha}f(t) = \frac{\nabla_{h}^{\alpha}}{h^{\alpha}}(-1)^{2\alpha} \sum_{j=0}^{\infty} {}^{\alpha}C_{j}(\frac{\nabla_{h}}{2} + \frac{\nabla_{h}^{2}}{3} + \dots)^{j}f(t)$$
(16)

Proof From equations (4) and (5), we have

$$D^{n}f(t) = \lim_{h \to 0} \frac{1}{h^{n}} \sum_{j=0}^{n} {}^{n}C_{j}(-1)^{j}E^{-jh}f(t+nh)$$

this formula can be generalized for fractional order derivatives (CISM Lecture Notes [3]) as

$$D^{\alpha}f(t) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_{j}(-1)^{j}E^{-jh}f(t+\alpha h)$$
(17)

from (1), we have

$$E^{-jh} \equiv (I + \Delta_h)^{-j} \equiv \sum_{i=0}^{\infty} {}^{-j}C_i \Delta_h^i$$
(18)

and

$$E^{-jh} \equiv (I - \bigtriangledown_h)^j \equiv \sum_{i=0}^{\infty} {}^j C_i (-1)^i \bigtriangledown_h^i$$
(19)

from (17) and (18), we get

$$D^{\alpha}f(t) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_{j}(-1)^{j} \sum_{i=0}^{\infty} {}^{-j}C_{i}(-1)^{i} \bigtriangleup_{h}^{i} f(t+\alpha h)$$

This completes the proof of (13). Equations (17) and (19) leads to

$$D^{\alpha}f(t) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_{j}(-1)^{j} \sum_{i=0}^{\infty} {}^{j}C_{i}(-1)^{i} \bigtriangledown_{h}^{i} f(t+\alpha h)$$

This gives (14).

Again from (1), we have

$$D^{n}f(t) \equiv \frac{1}{h^{n}} \left[\Delta_{h} - \frac{\Delta_{h}^{2}}{2} + \frac{\Delta_{h}^{3}}{3} - \dots \right]^{n} f(t)$$
$$\equiv \frac{\Delta_{h}^{n}}{h^{n}} \left[1 - \left(\frac{\Delta_{h}}{2} - \frac{\Delta_{h}^{2}}{3} + \dots \right) \right]^{n} f(t)$$

using Binomial expansion, we obtain

$$D^{n}f(t) = \frac{\Delta_{h}^{n}}{h^{n}} \sum_{j=0}^{n} {}^{n}C_{j}(-1)^{j} \left(\frac{\Delta_{h}}{2} - \frac{\Delta_{h}^{2}}{3} + \dots \right)^{j} f(t),$$

this formula can be generalized for fractional order derivatives (CISM Lecture Notes [3]) as

$$D^{\alpha}f(t) = \frac{\Delta_h^{\alpha}}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_j(-1)^j \left(\frac{\Delta_h}{2} - \frac{\Delta_h^2}{3} + \dots \right)^j f(t).$$

This leads the proof of (15).

Again from (2), we have

$$D^{n}f(t) \equiv \frac{(-1)^{n}}{h^{n}} \left[-\nabla_{h} - \frac{\nabla_{h}^{2}}{2} - \frac{\nabla_{h}^{3}}{3} - \dots \right]^{n} f(t)$$

J. of Ramanujan Society of Math. and Math. Sc.

$$D^{n}f(t) \equiv \frac{(-1)^{2n} \nabla_{h}^{n}}{h^{n}} \left[1 + \left(\frac{\nabla_{h}}{2} + \frac{\nabla_{h}^{2}}{3} + \dots \right) \right]^{n} f(t)$$

using Binomial expansion, we obtain

$$D^{n}f(t) = \frac{(-1)^{2n} \nabla_{h}^{n}}{h^{n}} \sum_{j=0}^{n} {}^{n}C_{j} \left(\frac{\nabla_{h}}{2} + \frac{\nabla_{h}^{2}}{3} + \dots \right)^{j} f(t),$$

this formula can be generalized for fractional order derivatives (CISM Lecture Notes [3]) as

$$D^{\alpha}f(t) = \frac{(-1)^{2\alpha} \nabla_h^{\alpha}}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_j \left(\frac{\nabla_h}{2} + \frac{\nabla_h^2}{3} + \dots \right)^j f(t).$$

this follows the proof of (16).

Result 3. The Fractional derivative of x^n is given by

$$D^{\alpha}(x^{n}) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} \frac{(-\alpha)_{j} (x+\alpha h)^{n}}{(j)!} {}_{1}F_{0}\left[-n; -; \frac{jh}{x+\alpha h}\right]$$
(20)

where $\alpha \leq n$.

Proof From equation (17), we have

$$D^{\alpha}(x^{n}) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_{j}(-1)^{j}E^{-jh}(x+\alpha h)^{n},$$
(21)

using (2), we obtain

$$D^{\alpha}(x^{n}) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_{j}(-1)^{j} e^{-jhD}(x+\alpha h)^{n}$$
$$= \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_{j}(-1)^{j} \sum_{i=0}^{\infty} \frac{(-jhD)^{i}}{(i)!} (x+\alpha h)^{n}$$

this equation reduces to,

$$D^{\alpha}(x^{n}) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} {}^{\alpha}C_{j}(-1)^{j} \sum_{i=0}^{\infty} \frac{(-1)^{j}(hj)^{i}(n)!}{(i)!(n-i)!} (x+\alpha h)^{n-i}$$
(22)

The following result (23) mentioned in (Erdelyi et al [1], page 85)

$${}^{\alpha}C_{j} = \frac{(-1)^{j}\Gamma(j-\alpha)}{\Gamma(j+1)\Gamma(-\alpha)}$$
(23)

From (22) and (23), we obtain

$$D^{\alpha}(x^{n}) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} \frac{(-\alpha)_{j}(x+\alpha h)^{n}}{(j)!} \sum_{i=0}^{\infty} \frac{(-n)_{i}}{(i)!} \left(\frac{jh}{x+\alpha h}\right)^{i}$$
$$= \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} \frac{(-\alpha)_{j}(x+\alpha h)^{n}}{(j)!} \, _{1}F_{0}\left[-n; -; \frac{jh}{x+\alpha h}\right]$$

Result 4. The Fractional derivative of $\cos x$ is given by

$$D^{\alpha} \cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!} \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} \frac{(-\alpha)_{j} (x+\alpha h)^{2k}}{(j)!} {}_{1}F_{0}\left[-2k; -; \frac{jh}{x+\alpha h}\right]$$
(24)

Result 5. The Fractional derivative of $S_n^m(x)$ a general class of polynomial is given by

$$D^{\alpha}S_{n}^{m}(x) = \sum_{k=0}^{\frac{n}{m}} \frac{(-n)_{mk}}{(k)!} A_{m,k} \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} \frac{(-\alpha)_{j}(x+\alpha h)^{k}}{(j)!} {}_{1}F_{0}\left[-k;-;\frac{jh}{x+\alpha h}\right]$$
(25)

Proof. The general class of polynomial given by (Srivastava [2]), is

$$S_n^m(x) = \sum_{k=0}^{\frac{n}{m}} \frac{(-n)_{mk}}{(k)!} A_{m,k} x^k$$
(26)

where m is the arbitrary positive integer, the coefficient $A_{m,k}$; n, k > 0 are arbitrary constant real or complex.

Using the result of theorem 2 and equation (26), we immediately get the desire result.

Note: Thus, we can easily obtain fractional derivatives of all functions and polynomials which are in power series forms.

,

References

- Erdelyi, A. et al. Higher Transcendental Function, Vol 1, McGraw-Hill Book Company, INC., 1953.
- [2] Srivastava, H.M., A contour integral involving Fox's H-function, Indian J. Math. 14 (1972), 1-6.
- [3] CISM Lecturer Notes, Published in Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien and New York 1997, PP 277-290.