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Abstract: In this paper, we have studied ‘absorbing’ and ‘balanced’ sets in an Ex-
ponential Vector Space (evs in short) over the field K of real or complex numbers.
We have characterised a local base at the additive identity in terms of balanced
and absorbing sets in a topological evs over the field K. We have introduced the
concept of ‘bounded sets’ in a topological evs over the field K and characterised
them with the help of balanced sets. Finally we have introduced the concept of
‘radial’ evs which characterises an evs over the field K up to order-isomorphism.
It has been shown that “the usual subspace topology is the finest topology with
respect to which [0,∞) forms a topological evs over the field K”.
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1. Introduction
Exponential vector space is a new algebraic structure consisting of a semigroup,

a scalar multiplication and a compatible partial order which can be thought of as an
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algebraic axiomatisation of hyperspace in topology; in fact, the hyperspace C(X )
consisting of all non-empty compact subsets of a Hausdörff topological vector space
X was the motivating example for the introduction of this new structure. It was
introduced by S. Ganguly et al. in [2] with the name “quasi-vector space” (in short
“qvs”). In C(X ) we can find the following properties if addition and scalar multi-
plication are defined by: A+ B := {a+ b : a ∈ A, b ∈ B} and αA := {αa : a ∈ A}
where, A,B ∈ C(X ) and α belongs to the scalar field of X .
(i) C(X ) is closed under addition and scalar multiplication.
(ii) if A ⊆ B then αA ⊆ αB, for any scalar α (not necessarily non-negative).
(iii) (α+ β)A ⊆ αA+ βA, for any scalar α, β and any A ∈ C(X ); equality holds iff
A is a singleton set.
(iv) Singletons are the only invertible elements with respect to the aforesaid addi-
tion, {θ} acting as the identity (if θ is the identity of X ).

All these facts were considered to formulate the axioms of quasi-vector space.
Although C(X ) is the “founder” example of this structure, a large number of ex-
amples of such algebraic structure have been found in various branches of mathe-
matics viz. in number system, theory of matrices, collection of positive measures,
collection of non-negative functions, lattice theory, collection of subspaces of vector
space, to name a few (see [4], [5], [6], [7]).

However, we think that this newly defined structure is not merely a general-
isation of vector space bearing the name “quasi-vector space”, rather the axioms
of this new structure evolve a very rapid growth of the elements of the structure
with respect to the partial order and also evoke some sort of positiveness in each
element. Meanwhile, a vector space is evolved within this structure and positivity
of each element of the new structure is judged with respect to the elements of the
vector space generated. All these facts emerge some sort of exponential flavour
within the structure. Considering the importance and influence of the partial or-
der which prevails an essence of hyperspace in the entire structure we find that the
name “exponential vector space” should be a suitable nomenclature for the struc-
ture previously called “quasi-vector space”. The formal definition of an exponential
vector space is as follows :

Definition 1.1. [8] Let (X,≤) be a partially ordered set, ‘+’ be a binary operation
on X [called addition] and ‘·’: K ×X −→ X be another composition [called scalar
multiplication, K being a field]. If the operations and partial order satisfy the fol-
lowing axioms then (X,+, ·,≤) is called an exponential vector space (in short evs)
over K [This structure was initiated with the name quasi-vector space or qvs by S.
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Ganguly et al. in [2] ].

A1 : (X,+) is a commutative semigroup with identity θ

A2 : x ≤ y (x, y ∈ X)⇒ x+ z ≤ y + z and α · x ≤ α · y, ∀z ∈ X, ∀α ∈ K
A3 : (i) α · (x+ y) = α · x+ α · y

(ii) α · (β · x) = (αβ) · x
(iii) (α + β) · x ≤ α · x+ β · x
(iv) 1 · x = x, where ‘1’ is the multiplicative identity in K,

∀x, y ∈ X, ∀α, β ∈ K
A4 : α · x = θ iff α = 0 or x = θ

A5 : x+ (−1) · x = θ iff x ∈ X0 :=
{
z ∈ X : y 6≤ z, ∀ y ∈ X r {z}

}
A6 : For each x ∈ X, ∃ p ∈ X0 such that p ≤ x.

In the above definition, X0 is precisely the set of all minimal elements of the
evs X with respect to the partial order of X and forms the maximum vector space
(within X) over the same field as that of X ([2]). We call this vector space X0

as the ‘primitive space’ or ‘zero space’ of X and the elements of X0 as ‘primitive
elements’. Conversely, given any vector space V , an evs X can be constructed
(as shown below in Example 1.2) such that V is isomorphic to X0. In this sense,
“exponential vector space” can be considered as an algebraic ordered extension of
vector space. The axiom A3(iii) expresses very rapid growth of the non-primitive
elements, since x ≤ 1

2
x+ 1

2
x,∀x /∈ X0; whereas axiom A6 demonstrates ‘positivity’

of all elements with respect to primitive elements.

Example 1.2. [8] Let X :=
{

(r, a) ∈ R× V : r ≥ 0, a ∈ V
}

, where V is a vector
space over some field K. Define operations and partial order on X as follows : for
(r, a), (s, b) ∈ X and α ∈ K,
(i) (r, a) + (s, b) := (r + s, a+ b);
(ii) α(r, a) := (r, αa), if α 6= 0 and 0(r, a) := (0, θ), θ being the identity in V ;
(iii) (r, a) ≤ (s, b) iff r ≤ s and a = b.
Then X becomes an exponential vector space over K with the primitive space
{0} × V which is evidently isomorphic to V .

For topologising an exponential vector space, we need the following concepts:

Definition 1.3. [3] Let ‘≤’ be a preorder in a topological space Z; the preorder is
said to be closed if its graph G≤(Z) :=

{
(x, y) ∈ Z ×Z : x ≤ y

}
is closed in Z ×Z

(endowed with the product topology).
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Theorem 1.4. [3] A partial order ‘≤’ in a topological space Z will be a closed order
iff for any x, y ∈ Z with x 6≤ y, ∃ open neighbourhoods U, V of x, y respectively in
Z such that (↑ U) ∩ (↓ V ) = ∅, where ↑ U := {x ∈ Z : x ≥ u for some u ∈ U} and
↓ V := {x ∈ Z : x ≤ v for some v ∈ V }.
Definition 1.5. [8] An exponential vector space X over the field K of real or
complex numbers is said to be a topological exponential vector space if X has a
topological structure with respect to which the addition, scalar multiplication are
continuous and the partial order ‘≤’ is closed (Here K is equipped with the usual
topology).

From the definition it follows that if X is a topological exponential vector
space over the field K, then the primitive space X0 becomes a topological vector
space, since restriction of a continuous function is continuous. Moreover from the
characterisation of closed order (Theorem 1.4) it follows that every topological evs
is Hausdörff and hence the primitive space X0 becomes a Hausdörff topological
vector space over K. We first cite an example which will be useful in the sequel.

Example 1.6. [4] Let X := [0,∞)×V , where V is a vector space over the field K
of real or complex numbers. Define operations and partial order on X as follows :
for (r, a), (s, b) ∈ X and α ∈ K,
(i) (r, a) + (s, b) := (r + s, a+ b)
(ii) α(r, a) := (|α|r, αa)
(iii) (r, a) ≤ (s, b) iff r ≤ s and a = b.
Then [0,∞) × V becomes an exponential vector space with the primitive space
{0} × V which is clearly isomorphic to V .

In this example, if we consider V as a Hausdörff topological vector space then
[0,∞) × V becomes a topological exponential vector space with respect to the
product topology, where [0,∞) is equipped with the subspace topology inherited
from the real line R.

Instead of V if we take the trivial vector space {θ} in the above example, then
the Resulting topological evs is [0,∞) × {θ} which can be clearly identified with
the half ray [0,∞) of the real line. Thus, [0,∞) forms a topological evs over the
field K.

Definition 1.7. [4] A mapping f : X −→ Y (X, Y being two exponential vector
spaces over a common field K) is called an order-morphism if
(i) f(x+ y) = f(x) + f(y), ∀x, y ∈ X
(ii) f(αx) = αf(x), ∀α ∈ K, ∀x ∈ X
(iii) x ≤ y (x, y ∈ X)⇒ f(x) ≤ f(y)
(iv) p ≤ q

(
p, q ∈ f(X)

)
⇒ f−1(p) ⊆↓ f−1(q) and f−1(q) ⊆↑ f−1(p).
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A bijective order-morphism is called an order-isomorphism.

Definition 1.8. [8] A property of an evs is called an evs property if it remains
invariant under order-isomorphism.

In this paper, we have studied ‘absorbing’ and ‘balanced’ sets in an evs over
the field K of real or complex numbers. These sets play pivotal role to describe
several aspects of a topological evs. We have characterised a local base at the
additive identity in terms of balanced and absorbing sets in a topological evs over
the field K. Also, we have found a sufficient condition under which an evs can
be topologised to form a topological evs. Next, we have introduced the concept of
‘bounded sets’ in a topological evs over the field K and characterised them with the
help of balanced sets. Also we have shown that compactness implies boundedness
of a set in a topological evs.

In the last section we have introduced the concept of ‘radial’ evs which charac-
terises an evs over the field K up to order-isomorphism. Also, we have shown that
every topological evs is radial. Further, it has been shown that “the usual subspace
topology is the finest topology with respect to which [0,∞) forms a topological evs
over the field K”.

2. Prerequisites
Definition 2.1. [6] A subset Y of an exponential vector space X is said to be a
sub exponential vector space (subevs in short) if Y itself is an exponential vector
space with all the compositions of X being restricted to Y .

Note 2.2. [6] A subset Y of an exponential vector space X over a field K is a sub
exponential vector space iff Y satisfies the following:
(i) αx+ y ∈ Y, ∀α ∈ K, ∀x, y ∈ Y .
(ii) Y0 ⊆ X0

⋂
Y , where Y0 :=

{
z ∈ Y : y � z,∀ y ∈ Y r {z}

}
(iii) ∀ y ∈ Y , ∃ p ∈ Y0 such that p ≤ y.

If Y is a subevs of X then actually Y0 = X0 ∩ Y , since for any Y ⊆ X we have
X0 ∩ Y ⊆ Y0.

Definition 2.3. Let {Xi : i ∈ Λ} be an arbitrary family of exponential vector

spaces over a common field K and X :=
∏
i∈Λ

Xi be the Cartesian product. Then, X

becomes an exponential vector space over K with respect to the following operations
and partial order (see section 5 of [5]) :

For x = (xi)i, y = (yi)i ∈ X and α ∈ K we define (i) x + y := (xi + yi)i, (ii)
αx := (αxi)i, (iii) x� y iff xi ≤ yi, ∀ i ∈ Λ.
Here the notation x = (xi)i ∈ X means that the point x ∈ X is the map x : i 7→
xi (i ∈ Λ), where xi ∈ Xi, ∀ i ∈ Λ. The additive identity of X is given by θ = (θi)i,



132 South East Asian J. of Mathematics and Mathematical Sciences

θi being the additive identity of Xi, ∀ i ∈ Λ. Also the set of all primitive elements

of X is given by X0 =
∏
i∈Λ

[Xi]0.

Definition 2.4. [6] In an evs X, the primitive of any x ∈ X is defined as the set
Px := {p ∈ X0 : p ≤ x}.

The axiom A6 of the definition 1.1 ensures that the primitive of each element of an
evs is nonempty. Also, Pαx = αPx,∀x ∈ X, ∀α ∈ K.
Example 2.5. [6] Let X be a vector space over the field K of real or complex
numbers. Let L (X ) be the set of all linear subspaces of X . We now define +, ·,≤
on L (X ) as follows : For X1,X2 ∈ L (X ) and α ∈ K,
(i) X1 +X2 := span(X1 ∪X2), (ii) α · X1 := X1, if α 6= 0 and α · X1 := {θ}, if α = 0
(θ being the additive identity of X ), (iii) X1 ≤ X2 iff X1 ⊆ X2.

Then
(
L (X ),+, ·,≤

)
is a non-topological evs over K.

Example 2.6. [7] Let us consider D2([0,∞)) := [0,∞)× [0,∞). We define +, ·,≤
on D2([0,∞)) as follows :
For (x1, y1), (x2, y2) ∈ D2([0,∞)) and α ∈ C we define
(i) (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
(ii) α · (x1, y1) = (|α|x1, |α|y1)
(iii) (x1, y1) ≤ (x2, y2) ⇐⇒ either x1 < x2 or if x1 = x2 then y1 ≤ y2 [dictionary
order]. Then,

(
D2([0,∞)),+, ·,≤

)
forms a non-topological evs over C.

3. Basics of Absorbing and Balanced Sets

In this section we will define absorbing and balanced sets in an evs and discuss
their general properties.

Definition 3.1. Let X be an evs over the field K of real or complex numbers. A
set A ⊆ X is called an absorbing set if for any x ∈ X, ∃ a real number α > 0 such
that µx ∈ A, ∀µ ∈ K with |µ| ≤ α.

Clearly, for any absorbing set A(⊆ X) and x ∈ X, 0.x ∈ A i.e. θ ∈ A [ θ being
the additive identity of X ].

Let Ai be absorbing subsets of X, ∀ i = 1, 2, ...n. Then for any x ∈ X, ∃ αi > 0
such that µx ∈ Ai, ∀µ ∈ K with |µ| ≤ αi, ∀ i = 1, 2, ...n. If we set α := min

1≤i≤n
αi,

then µx ∈
n⋂
i=1

Ai, ∀µ ∈ K with |µ| ≤ α. Since x ∈ X is arbitrary, so
n⋂
i=1

Ai is also

an absorbing subset of X.

Let A be an absorbing subset of X and A ⊆ B ⊆ X. So, for any x ∈ X, ∃ α > 0
such that µx ∈ A ⊆ B, ∀µ ∈ K with |µ| ≤ α. Hence B is also an absorbing subset
of X. Now since A ⊆↑ A and A ⊆↓ A, so both ↑ A and ↓ A are absorbing subsets



Some Special Sets in an Exponential Vector Space 133

of X whenever A is so.

Again, let A be an absorbing subset of X and λ ∈ K∗ ≡ Kr {0}. Then for any
x ∈ X, ∃α > 0 such that µx ∈ A, ∀µ ∈ K with |µ| ≤ α. So, βx ∈ λA, ∀β ∈ K
with |β| ≤ α|λ| where, α|λ| > 0 . Since x ∈ X is arbitrary, λA is an absorbing
subset of X.

From the above discussion we can conclude the following basic facts:

Proposition 3.2. Let X be an evs over the field K of real or complex numbers.
Then,
(i) A ⊆ X is absorbing =⇒ θ ∈ A [ θ being the additive identity of X ].
(ii) Intersection of a finite collection of absorbing sets is an absorbing set.
(iii) Superset of an absorbing set is absorbing and hence union of any collection of
absorbing sets is absorbing.
(iv) A ⊆ X is absorbing =⇒↑ A and ↓ A are absorbing.
(v) A ⊆ X is absorbing and λ ∈ K∗ =⇒ λA is absorbing.

Definition 3.3. Let X be an evs over the field K of real or complex numbers. A
set A ⊆ X is called a balanced set if for any α ∈ K with |α| ≤ 1, αA ⊆ A.

Clearly, for any balanced set A(⊆ X) and x ∈ X, 0.x ∈ A i.e. θ ∈ A.

Let {Aα : α ∈ Λ} be a family of balanced sets in an evs X, where Λ is an index
set and A :=

⋂
α∈Λ

Aα. Let λ ∈ K with |λ| ≤ 1 and x ∈ A. Then x ∈ Aα, ∀α ∈ Λ

where each Aα is balanced. So, λx ∈ Aα, ∀α ∈ Λ =⇒ λx ∈ A. Therefore, λA ⊆ A.
Hence A is a balanced subset of X.

Let B :=
⋃
α∈Λ

Aα and x ∈ B. So, ∃α ∈ Λ such that x ∈ Aα. As Aα is balanced,

so λx ∈ Aα ⊆ B for any λ ∈ K with |λ| ≤ 1. Therefore, λB ⊆ B. Hence B is a
balanced subset of X.

Let α ∈ K with |α| ≤ 1 and A be a balanced subset of X. Let λ ∈ K and
y ∈ λA. Then y = λx for some x ∈ A. Now A is balanced so αx ∈ A. Therefore,
αy = α(λx) = λ(αx) ∈ λA. Thus, α(λA) ⊆ λA which implies that λA is also a
balanced subset of X.

Now, let α ∈ K with |α| ≤ 1 and A be a balanced subset of X. Let y ∈↑ A be
arbitrary. So, ∃x ∈ A such that x ≤ y ⇒ αx ≤ αy ⇒ αy ∈↑ A (∵ αx ∈ αA ⊆ A).
Thus α(↑ A) ⊆↑ A, where |α| ≤ 1. Hence ↑ A is a balanced subset of X. Similarly,
it can be shown that ↓ A is also a balanced subset of X.

From the above discussion we can conclude the following basic facts:

Proposition 3.4. Let X be an evs over the field K of real or complex numbers.
Then,
(i) A ⊆ X is balanced =⇒ θ ∈ A [ θ being the additive identity of X ].
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(ii) Intersection of any collection of balanced sets is a balanced set.
(iii) Union of any collection of balanced sets is a balanced set.
(iv) A ⊆ X is balanced =⇒↑ A and ↓ A are balanced.
(v) A ⊆ X is balanced and λ ∈ K =⇒ λA is balanced.

4. Effect of Local Base at θ on the Topology of a Topological evs

In this section, we have characterised a local base at ‘θ’ [ θ being the additive
identity ] in terms of balanced and absorbing sets in a topological evs X over the
field K of real or complex numbers. Also, we have found a sufficient condition under
which an evs satisfying certain properties can be topologised to form a topological
evs over K.

Result 4.1. In a topological evs X over the field K of real or complex numbers,
any neighbourhood of θ is an absorbing set and contains a balanced neighbourhood
of θ .
Proof. Let U be any neighbourhood of θ in X and x ∈ X be arbitrary. Define
a function ψ : K → X by: ψ(t) = t.x, ∀ t ∈ K. X being a topological evs,
the scalar multiplication ‘·’ : K × X → X is continuous and hence ψ is also
continuous. Now, ψ(0) = θ and U is a neighbourhood of θ =⇒ ∃ a closed disc
B(0, ε) := {α ∈ K : |α| ≤ ε} in K for some ε > 0 such that ψ(B(0, ε)) ⊆ U i.e.
B(0, ε).x ⊆ U i.e. λx ∈ U , ∀λ ∈ K with |λ| ≤ ε. As x ∈ X is arbitrary, U is an
absorbing set.

Again, 0.θ = θ. So ∃ a closed disc B(0, ε) in K for some ε > 0 and an open
neighbourhood W of θ in X such that B(0, ε).W ⊆ U =⇒ V :=

⋃
|λ|≤ε

λW ⊆ U .

Now εW is also a neighbourhood of θ and εW ⊆ V . Hence V is a neighbourhood
of θ. Again, let α ∈ K with |α| ≤ 1 and x ∈ V . Then x = λx1 for some x1 ∈ W
and λ ∈ K with |λ| ≤ ε. So, αx = αλx1 where, |αλ| ≤ |λ| ≤ ε and x1 ∈ W .
Therefore αx ∈

⋃
|λ|≤ε

λW = V. Thus, αV ⊆ V for |α| ≤ 1. Hence V is a balanced

neighbourhood of θ with V ⊆ U.

Result 4.2. In a topological evs X over the field K of real or complex numbers,
for each neighbourhood U of θ, ∃ a neighbourhood W of θ such that W +W ⊆ U.
Proof. In X, θ + θ = θ and + : X ×X −→ X is a continuous map. So, for any
neighbourhood U of θ, ∃ neighbourhoods G and H of θ such that G+H ⊆ U. Put,
W = G ∩H. Then W +W ⊆ U where, W is also a neighbourhood of θ.

Result 4.3. In a topological evs X over the field K of real or complex numbers, any
open set G is of the form: G =

⋃
x∈G

(x+Ux) where, Ux is a balanced neighbourhood

of θ
(
depending on x

)
∀x ∈ G.
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Proof. Let G be an open subset of X and x = x + θ ∈ G. Since + : X ×X −→
X is continuous, ∃ open neighbourhoods Vx and Wx of θ and x respectively such
that Wx +Vx ⊆ G =⇒ x+Vx ⊆ G. Now, Vx contains a balanced neighbourhood of
θ, say Ux [by Result 4.1]. So, x ∈ x + Ux ⊆ G. Thus

⋃
x∈G
{x} ⊆

⋃
x∈G

(x + Ux) ⊆ G.

i.e. G =
⋃
x∈G

(x+ Ux) where, each Ux is a balanced neighbourhood of θ.

Result 4.4. In a topological evs X over the field K of real or complex numbers, if
x � y then ∃ balanced neighbourhoods U, V of θ such that ↑ (x+U) ∩ ↓ (y+V ) = ∅,
∀x, y ∈ X.
Proof. Since X is a topological evs, the partial order ‘≤’ on X is closed. So, for
any x, y ∈ X with x � y, ∃ open neighbourhoods Gx and Gy of x and y respectively
such that ↑ Gx ∩ ↓ Gy = ∅ [ in view of Theorem 1.4]. Now, x ∈ Gx and y ∈ Gy

=⇒ ∃ balanced neighbourhoods U and V of θ such that x+U ⊆ Gx and y+V ⊆ Gy

[by Result 4.3]. Clearly, ↑ (x+U) ⊆ ↑ Gx and ↓ (y + V ) ⊆ ↓ Gy. Hence ↑ (x+U)
∩ ↓ (y + V ) = ∅.
Result 4.5. Let X be a topological evs over the field K of real or complex numbers
and G be an open subset of X. Then for any x ∈ G and α ∈ K r {0}, ∃ a
balanced neighbourhood Ux of θ and ε > 0 such that B(α, ε).(x+ Ux) ⊆ αG where,
B(α, ε) := {λ ∈ K : |α− λ| < ε}.
Proof. Let G be an open subset of the topological evs X and x ∈ G. Now, for any
fixed λ ∈ Kr {0}, the map Mλ : X −→ X defined by : Mλ(y) = λy,∀y ∈ X, is a
homeomorphism. So, for any α ∈ Kr {0}, αG is an open set containing αx. Since
the scalar multiplication · : K×X → X is continuous, ∃ ε > 0 and an open set U
containing x such that B(α, ε).U ⊆ αG where, B(α, ε) := {λ ∈ K : |α − λ| < ε}.
Again, U being an open set containing x, ∃ a balanced neighbourhood Ux of θ such
that x ∈ x+ Ux ⊆ U [by Result 4.3]. Hence, B(α, ε).(x+ Ux) ⊆ αG.

Theorem 4.6. In a topological evs X over the field K of real or complex numbers,
there exists a local base U at θ such that the following conditions hold:
(i) U ∈ U =⇒ U is balanced and absorbing.
(ii) U ∈ U =⇒ ∃V ∈ U such that V + V ⊆ U.
(iii) U1, U2 ∈ U =⇒ ∃W ∈ U such that W ⊆ U1 ∩ U2.
(iv) For any x, y ∈ X with x � y, ∃ U, V ∈ U such that ↑ (x+U)∩ ↓ (y+V ) = ∅.
(v) For any open set G containing x and α ∈ K r {0}, ∃Ux ∈ U and ε > 0 such
that B(α, ε).(x+ Ux) ⊆ αG where, B(α, ε) := {λ ∈ K : |α− λ| < ε}.
Proof. Let U be the set of all balanced neighbourhoods of θ. Then, (i), (ii), (iv)
and (v) follows from Results 4.1, 4.2, 4.4 and 4.5 respectively. Also, (iii) follows as
U1, U2 ∈ U =⇒ U1 ∩ U2 ∈ U [ in view of Proposition 3.4 (ii) ].
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The next Theorem gives a sufficient condition for an evs to be topological.

Theorem 4.7. Let X be an evs over the field K of real or complex numbers such
that ∃ a non-void family U of subsets of X satisfying the following conditions:
(i) U ∈ U =⇒ U is balanced and absorbing.
(ii) U ∈ U =⇒ ∃V ∈ U such that V + V ⊆ U.
(iii) U1, U2 ∈ U =⇒ ∃ W ∈ U such that W ⊆ U1 ∩ U2.
(iv) For any x, y ∈ X with x � y, ∃ U, V ∈ U such that ↑ (x+ U)∩ ↓ (y + V )=∅.
(v) For any W ∈ U , x ∈ X and α ∈ K, ∃ ε > 0 and U ∈ U such that B(α, ε) ·
(x + U) ⊆ αx + W where, B(α, ε) := {λ ∈ K : |α − λ| < ε} is an open disc in K
having center at α and radius ε.
Then, ∃ a unique topology on X depending upon U with respect to which X becomes
a topological evs. Moreover, U forms a local base at θ in that topology.
Proof. Let X be an evs over the field K in which the conditions (i) - (v) stated
above are satisfied by a non-void family U of subsets of X. For each x ∈ X, let us
define Ux := {x+ U : U ∈ U }.

Since U 6= ∅, so Ux 6= ∅ for any x ∈ X.
Since each U ∈ U is absorbing, so θ ∈ U,∀ U ∈ U =⇒ x ∈ x+U , ∀(x+U) ∈ Ux.
Let V1, V2 ∈ Ux. So, V1 = x + U1, V2 = x + U2, where U1, U2 ∈ U . Now, by

(iii), ∃V ∈ U such that V ⊆ U1 ∩ U2. So, x+ V ⊆ x+ (U1 ∩ U2) ⊆ V1 ∩ V2 where,
x+ V ∈ Ux.

Let Vx = x+V ∈ Ux. Since V ∈ U so by (ii), ∃V1 ∈ U such that V1 +V1 ⊆ V.
Clearly, V1 ⊆ V as θ ∈ V1. Therefore x + V1 ⊆ x + V. Put Wx = x + V1. Then
Wx ∈ Ux so that x ∈ Wx ⊆ Vx. Now, for any y ∈ Wx, Vy = y + V1 ∈ Uy such that
for z ∈ Vy, z = y+ t for some t ∈ V1. But, y ∈ Wx =⇒ y = x+ t1 for some t1 ∈ V1.
Thus, z = x+ (t1 + t) ∈ x+ V1 + V1 ⊆ x+ V = Vx. Therefore y ∈ Vy ⊆ Vx where,
y ∈ Wx is arbitrary and Vy ∈ Uy.

From above discussion it follows that ∃ a unique topology τ on X with respect
to which Ux is a local base at x,∀x ∈ X. Taking x = θ we get, U is a local base
at θ.

We now prove that (X, τ) is a topological evs over K.
Let f1 : X ×X → X be defined by: f1(x, y) = x + y, ∀x, y ∈ X. Let x, y ∈ X

and G be any neighbourhood of x+y. Since Ux+y is a local base at x+y,∃ V ∈ U
such that (x + y) + V ⊆ G. By (ii), ∃ V1 ∈ U such that V1 + V1 ⊆ V . Therefore
x+ y+ V1 + V1 ⊆ x+ y+ V ⊆ G =⇒ (x+ V1) + (y+ V1) ⊆ G where, x+ V1 ∈ Ux,
y + V1 ∈ Uy i.e. f1((x + V1) × (y + V1)) ⊆ G. Since x, y ∈ X are arbitrary, f1 is
continuous on X ×X.

Let f2 : K × X → X be defined by: f2(α, x) = α.x, ∀α ∈ K, ∀x ∈ X. Let
λ ∈ K, y ∈ X be arbitrary and G be an open set containing λy. Then, ∃ W ∈ U
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such that λy + W ⊆ G [ ∵ Uλy is a local base at λy ]. Now, W ∈ U , λ ∈ K and
y ∈ X so by (v), ∃ ε > 0 and U ∈ U such that f2(B(λ, ε)×(y+U)) ⊆ λy+W ⊆ G
where, B(λ, ε) is a neighbourhood of λ and y + U is a neighbourhood of y. Hence
f2 is continuous.

Let x, y ∈ X with x � y. Then by (iv), ∃Ux, Uy ∈ U such that ↑ (x + Ux) ∩
↓ (y+Uy) = ∅. Now, x+Ux, y+Uy are neighbourhoods of x and y respectively. So,
∃ open sets Gx and Gy containing x and y respectively such that x ∈ Gx ⊆ x+Ux
and y ∈ Gy ⊆ y + Uy. Clearly, ↑ Gx ∩ ↓ Gy = ∅. So, the partial order ‘≤’ is closed
[By Theorem 1.4].

Hence (X, τ) is a topological evs over the field K.

Lemma 4.8. Let X and Y be order-isomorphic evs over the field K with φ : X → Y
as an order-isomorphism between them. Then, UY = {φ(U) : U ∈ UX} where, UX

and UY denote the collection of all absorbing sets in the evs X and Y respectively.
Proof. Let W ∈ UX and y ∈ Y be arbitrary. Then y = φ(x) for some x ∈ X.
Now, W is absorbing so ∃ ε > 0 such that µx ∈ W , ∀µ ∈ K with |µ| ≤ ε =⇒
φ(µx) ∈ φ(W ), ∀µ ∈ K with |µ| ≤ ε ⇒ µφ(x) ∈ φ(W ), ∀µ ∈ K with |µ| ≤
ε⇒ µy ∈ φ(W ), ∀µ ∈ K with |µ| ≤ ε. ∴ φ(W ) is an absorbing set =⇒ φ(W ) ∈ UY .

Now, let V ∈ UY , x ∈ X be arbitrary and U = φ−1(V ). Since V is absorbing,
so ∃ ε > 0 such that µφ(x) ∈ V , ∀µ ∈ K with |µ| ≤ ε =⇒ φ(µx) ∈ V , ∀µ ∈ K with
|µ| ≤ ε =⇒ µx ∈ φ−1(V ) = U , ∀µ ∈ K with |µ| ≤ ε. Since x ∈ X is arbitrary so
U ∈ UX =⇒ V ∈ {φ(U) : U ∈ UX}. Hence UY = {φ(U) : U ∈ UX}.
Theorem 4.9. Let X and Y be two order-isomorphic evs over the field K. Then, X
has a non-void family UX of subsets of X satisfying conditions (i)-(v) of Theorem
4.7 iff Y has a non-void family UY of subsets of Y satisfying the same. Hence, the
property of an evs to have a non-void family of subsets satisfying above mentioned
conditions, is an evs property.
Proof. Let φ : X → Y be an order-isomorphism and UX be a family of non-void
subsets of X satisfying conditions (i)-(v) of Theorem 4.7. Let, UY := {φ(U) : U ∈
UX}. Since UX 6= ∅, so UY 6= ∅.

Let W ∈ UX . So, W is an absorbing and balanced set. Therefore, by Lemma
4.8, φ(W ) is an absorbing subset of Y . For any λ ∈ K with |λ| ≤ 1, λW ⊆ W [ ∵
W is a balanced set ] =⇒ φ(λW ) ⊆ φ(W ) =⇒ λφ(W ) ⊆ φ(W ). Therefore, φ(W )
is a balanced subset of Y .

So, UY satisfies condition (i).

Again, W ∈ UX =⇒ ∃ V ∈ UX such that V + V ⊆ W . Therefore φ(V + V ) ⊆
φ(W ) ⇒ φ(V ) + φ(V ) ⊆ φ(W )

[
∵ φ(V + V ) = φ(V ) + φ(V )

]
where, φ(V ) ∈ UY .

So, UY satisfies condition (ii).



138 South East Asian J. of Mathematics and Mathematical Sciences

Let φ(U1), φ(U2) ∈ UY for some U1, U2 ∈ UX . Therefore ∃ W ∈ UX such that
W ⊆ (U1 ∩ U2) =⇒ φ(W ) ⊆ φ(U1) ∩ φ(U2). So, UY satisfies condition (iii).

Since, φ is an order-isomorphism, so x ≤ y in X iff φ(x) ≤ φ(y) in Y . For
any x ∈ X, U ∈ UX , we have, z ∈↓ (x + U) iff z ≤ x + u for some u ∈ U iff
φ(z) ≤ φ(x + u) = φ(x) + φ(u) iff φ(z) ∈ ↓ (φ(x) + φ(U)). Thus φ(↓ (x + U)) =
↓ (φ(x)+φ(U)). Similarly, φ(↑ (x+U)) = ↑ (φ(x)+φ(U)). Let φ(x1) = y1 and φ(x2)
= y2 ∈ Y with y1 � y2. Then x1 � x2 =⇒ ∃ U1, U2 ∈ UX such that ↑ (x1 + U1)
∩ ↓ (x2 + U2) = ∅ =⇒ φ(↑ (x1 + U1)∩ ↓ (x2 + U2)) = ∅ =⇒ φ(↑ (x1 + U1)) ∩
φ(↓ (x2 +U2)) = ∅ =⇒ ↑ (φ(x1) +φ(U1))∩ ↓ (φ(x2) +φ(U2)) = ∅ i.e. ↑ (y1 +φ(U1))
∩ ↓ (y2 + φ(U2)) = ∅ where φ(U1) and φ(U2) ∈ UY . Hence, UY satisfies condition
(iv).

Let φ(W ) ∈ UY for some W ∈ UX , y = φ(x) ∈ Y for some x ∈ X and α ∈ K.
Since, UX satisfies condition (v) of Theorem 4.7 so ∃ ε > 0 and Ux ∈ UX such that
B(α, ε) ·(x+Ux) ⊆ αx+W. Now, φ is an order-isomorphism so, φ(B(α, ε) ·(x+Ux))
= B(α, ε) · φ(x + Ux) = B(α, ε) · (φ(x) + φ(Ux)) = B(α, ε) · (y + φ(Ux)). Again,
φ(B(α, ε) · (x+Ux)) ⊆ φ(αx+W ) = φ(αx)+φ(W ) = αφ(x)+φ(W ) = αy+φ(W ).

Thus, for φ(W ) ∈ UY , y ∈ Y and α ∈ K, ∃ ε > 0 and φ(Ux) ∈ UY such that
B(α, ε) · (y + φ(Ux)) ⊆ αy + φ(W ). Hence UY satisfies condition (v).

Similarly, if UY be a family of non-void subsets of Y satisfying conditions (i)-
(v) of Theorem 4.7 then taking UX := {φ−1(U) : U ∈ UY } we can prove that UX

satisfies conditions (i)-(v) of Theorem 4.7 in X.

5. Bounded Sets in a Topological evs

In this section we have introduced the concept of bounded sets in a topological
evs over the field K and characterised them with the help of balanced sets.

Definition 5.1. Let X be a topological evs over the field K of real or complex
numbers. A set A(⊆ X) is said to be bounded if for any neighbourhood V of θ, ∃
a real number α > 0 such that µA ⊆ V , ∀µ ∈ K with |µ| ≤ α.

Result 5.2. A set B in a topological evs X over the field K is bounded iff for any
balanced neighbourhood U of θ, ∃ α > 0 such that B ⊆ αU.
Proof. Let B be a bounded set in X and U be a balanced neighbourhood of θ.
So, ∃ β > 0 such that µB ⊆ U , ∀µ ∈ K with |µ| ≤ β. In particular, βB ⊆ U ⇒
B ⊆ 1

β
U ⇒ B ⊆ αU where, α = 1

β
> 0. Conversely, let the given condition hold

and U be any neighbourhood of θ. Then by Result 4.1, ∃ a balanced neighbourhood
V of θ such that V ⊆ U . Also, ∃ α > 0 such that B ⊆ αV . Let λ = 1

α
> 0. Then

for µ ∈ K with |µ| ≤ λ we have, |µα| ≤ 1 . So µαV ⊆ V (∵ V is a balanced set).
Thus for |µ| ≤ λ we have, µB ⊆ µαV ⊆ V ⊆ U. Hence B is a bounded set.
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Note 5.3. In view of Result 5.2 we can state: ‘In a topological evs X over the field
K, a subset of a bounded set is bounded’.

Result 5.4. A subset A of a topological evs X over the field K is bounded iff for
any sequence {xn} in A and a sequence {λn} in K with λn → 0 we have, λnxn → θ.
Proof. Let A be a bounded subset of X and U be any neighbourhood of θ. Then ∃
α > 0 such that µA ⊆ U , ∀µ ∈ K with |µ| ≤ α · · · · · · (1). Let {xn} be a sequence
in A and {λn} be a sequence in K with λn → 0. Since λn → 0, so for α > 0, ∃
k ∈ N such that |λn| < α, ∀n ≥ k =⇒ λnxn ∈ λnA ⊆ U , ∀n ≥ k [ by (1) ]. As U
is arbitrary neighbourhood of θ, so λnxn → θ.

Conversely, let the given condition hold. If possible, let A be not bounded. Then
∃ a neighbourhood U of θ such that for 1

n
> 0 ( where, n ∈ N ), ∃λn ∈ Kr{0} such

that |λn| ≤ 1
n

and λnA * U ⇒ ∃ xn ∈ A such that λnxn /∈ U,∀n ∈ N. Thus {xn}
is a sequence in A such that λnxn 9 θ where λn → 0, which is a contradiction.
Hence A is a bounded set.

Result 5.5. Every finite subset of a topological evs X over the field K is bounded.
Proof. Let A = {x1, x2, ..., xn} be a finite set in X and V be a neighbourhood
of θ. By Result 4.1, V is absorbing. So, for each xi ∈ A

(
where i ∈ {1, 2, ..., n}

)
,

∃ a real number αi > 0 such that µxi ∈ V , ∀µ ∈ K with |µ| ≤ αi. Let
α = min{αi : i = 1, 2, ..., n}. Then, α > 0 and µA ⊆ V , ∀µ ∈ K with |µ| ≤ α.
Hence A is bounded.

Result 5.6. Every compact subset in a topological evs X over the field K is
bounded.
Proof. Let X be a topological evs over the field K and A be a compact subset
of X. Let V be a balanced open neighbourhood of θ. Then, for each x ∈ A, ∃ a
real number αx > 0 such that µx ∈ V , ∀µ ∈ K with |µ| ≤ αx [ ∵ V is absorbing
]. Let nx ∈ N be such that 0 < 1

nx
< αx, ∀x ∈ A. Then, 1

nx
x ∈ V , ∀x ∈ A =⇒

x ∈ nxV , ∀x ∈ A. Hence {nxV : x ∈ A} is an open cover of the compact set A.
Let {nxV : x ∈ A′} [ where, A′ is a finite subset of A ] be a finite subcover of
A. So, A ⊆

⋃
x∈A′

nxV . Now, let n := max{nx : x ∈ A′}. Then, nx ≤ n, ∀x ∈ A′

=⇒ nx

n
≤ 1, ∀x ∈ A′ =⇒ nx

n
V ⊆ V , ∀x ∈ A′ [ ∵ V is balanced ] =⇒ nxV ⊆ nV ,

∀x ∈ A′ =⇒
⋃
x∈A′

nxV ⊆ nV . Thus, A ⊆ nV where, n > 0. Hence A is a bounded

set [ in view of Result 5.2].

Result 5.7. If A, B are bounded subsets of a topological evs X over the field K
then A+B, λA are also bounded sets for any λ ∈ K.
Proof. Let X be a topological evs over the field K and A, B be two bounded
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subsets of X. Let V be any neighbourhood of θ. Then by Result 4.2, ∃ a neigh-
bourhood W of θ such that W + W ⊆ V . For W , ∃ α, β > 0 such that µA ⊆ W ,
∀µ ∈ K with |µ| ≤ α and µB ⊆ W , ∀µ ∈ K with |µ| ≤ β. Therefore µ(A + B) =
µA+ µB ⊆ W +W ⊆ V , ∀µ ∈ K with |µ| ≤ λ, where λ = min{α, β}. So, A+ B
is a bounded set.

Clearly, if λ = 0 then λA = {θ} which is a bounded set. Let λ ∈ Kr {0} and
U be any neighbourhood of θ. Then ∃ α > 0 such that µA ⊆ U, for |µ| ≤ α. Put,
β = α

|λ| > 0. Then |µ| ≤ β =⇒ |µλ| = |µ|| λ | ≤ β |λ| = α. So µ(λA) = (µλ)A ⊆ U

for |µ| ≤ β. Hence λA is a bounded set.

Note 5.8. Let X be a topological evs over the field K. For any x ∈ X0, the
primitive Px of x is the singleton set {x}. So, Px is a bounded set for any x ∈ X0.

6. Some Applications of Absorbing and Balanced Sets

Consider the evs [0,∞) over the field K (Example 1.6). For any r > 0, [0, r) is
an absorbing set in [0,∞)

[
∵ for any x > 0, ∃ ε > 0 such that εx < r and so for

any α ∈ K with |α| ≤ ε we have |α|x ≤ εx < r i.e. αx ∈ [0, r) ∀α ∈ K with |α| ≤ ε]
. Let x, y ∈ [0,∞) with x 6= y. Without loss of generality, let x < y. So, ∃ r > 0

such that x < r < y . Therefore [0, r) is an absorbing set containing x but not
containing y. Thus, in the evs [0,∞), for any two distinct points, ∃ an absorbing
set containing one point but not the other.

Let X be a vector space over the field K of real or complex numbers. Let
L (X ) be the evs of all linear subspaces of X over K ( Example 2.5). Let U be any
proper subset of L (X ) containing {θ} and Y ∈ L (X )rU . Then for any α > 0,
αY = Y /∈ U ⇒ U cannot be an absorbing set. Hence the only absorbing set in
L (X ) is L (X ) itself. So for two distinct points of L (X ), there does not exist an
absorbing set that contains one of the points but not the other.

Thus, in some evs, the set of all absorbing sets can distinguish points in the
above sense and in some evs it does not do so. Therefore, we can make the following
definition:

Definition 6.1. An evs X over the field K is said to be radial if for any x, y ∈ X
with x 6= y,∃ an absorbing set which contains any one of x and y but not the both.

Theorem 6.2. The property of an evs to be radial is an evs property.
Proof. Let X and Y be order-isomorphic evs over the same field K and φ : X → Y
be an order-isomorphism. Let X be a radial evs and y1 = φ(x1), y2 = φ(x2) ∈ Y
for some x1, x2 ∈ X with y1 6= y2. Then x1 6= x2. Since X is radial, ∃ an absorbing
set A in X such that A contains one of x1 and x2 but not the both. Without loss
of generality, let, x1 ∈ A but x2 /∈ A . Then y1 ∈ φ(A) but y2 /∈ φ(A). Now, by
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Lemma 4.8, φ(A) is an absorbing set. Hence Y is also a radial evs. Thus, the
property of an evs to be radial is an evs property.

Theorem 6.3. The property of an evs to be radial is a productive property.
Proof. Let {Xα : α ∈ Λ} be a collection of radial evs over the same field K where,
Λ is an index set and X = Π

α∈Λ
Xα. Let x = (xα)α∈Λ, y = (yα)α∈Λ ∈ X with x 6= y.

Then ∃λ ∈ Λ such that xλ 6= yλ. Since Xλ is radial, ∃ an absorbing set Aλ in Xλ

such that Aλ contains any one of xλ and yλ but not the both. Let Aλ contains
xλ but not yλ. Then x ∈ Π

α∈Λ
Yα but y /∈ Π

α∈Λ
Yα where, Yα = Xα for α ∈ Λ r {λ}

and Yλ = Aλ. Now, it is enough to prove that Π
α∈Λ

Yα is an absorbing set in X. Let

z = (zα)α∈Λ ∈ X. Now, zλ ∈ Xλ and Aλ is an absorbing set. So, ∃β > 0 such that
µzλ ∈ Aλ,∀µ ∈ K with |µ| ≤ β. Also, for any α ∈ Λr{λ}, µzα ∈ Xα, ∀µ ∈ K with
|µ| ≤ β. Thus, µz = (µzα)α∈Λ ∈ Π

α∈Λ
Yα,∀µ ∈ K with |µ| ≤ β . Therefore Π

α∈Λ
Yα is

an absorbing set. So, X is also a radial evs. Hence the property of an evs to be
radial is a productive property.

Theorem 6.4. The property of an evs to be radial is a hereditary property.
Proof. Let X be a radial evs over the field K and Y be any subevs of X. Let
x, y ∈ Y with x 6= y. Since X is radial, ∃ an absorbing set A ⊂ X such that
A contains any one of x and y but not the both. Let x ∈ A but y /∈ A. Put,
AY = A ∩ Y . Clearly, θ ∈ AY i.e AY 6= ∅. Also, x ∈ AY , y /∈ AY . Let, z ∈ Y be
arbitrary. Since, A is absorbing, ∃β > 0 such that µz ∈ A,∀µ ∈ K with |µ| ≤ β.
Since Y is a subevs so µz ∈ Y for any µ ∈ K . Therefore µz ∈ AY ,∀µ ∈ K with
|µ| ≤ β. Thus, AY is an absorbing set in the evs Y ⇒ Y is also radial. Hence the
property of an evs to be radial is a hereditary property.

Result 6.5. Every topological evs X over the field K is radial.
Proof. Let X be a topological evs over the field K. Then, by Result 4.1, any
neighbourhood of θ is absorbing. Let x, y ∈ X with x 6= y. Without loss of
generality, let y 6= θ. Since X is a topological evs, it is T2. So, ∃ a neighbourhood
U of θ which does not contain y. Now, U is absorbing⇒ U ∪{x} is also absorbing
(By proposition 3.2 (iii)). Thus, U ∪ {x} is an absorbing set containing x but not
containing y where, x, y ∈ X are arbitrary. Therefore, X is a radial evs.

Note 6.6. Converse of the above Result is not true. Consider the non-topological
evs X = D2[0,∞) (Example 2.6). Consider the set [0, r1) × [0, r2) ∈ X where
r1, r2 > 0. Let (x, y) ∈ X be arbitrary. We can choose ε > 0 such that εx < r1

and εy < r2. i.e. ε(x, y) ∈ [0, r1) × [0, r2). Also, for any µ ∈ K with |µ| ≤ ε,
µ(x, y) = (|µ|x, |µ|y) ∈ [0, r1) × [0, r2) . Therefore [0, r1) × [0, r2) is an absorbing
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set. Now, let (x1, y1), (x2, y2) ∈ X with (x1, y1) 6= (x2, y2). As, x1, x2, y1, y2 cannot
be all zero, without loss of generality, let x1 6= x2 and x1 > x2. Let us choose r > 0
such that x2 < r < x1. Then, [0, r) × [0, y2 + 1) is an absorbing set containing
(x2, y2) but not containing (x1, y1). Since (x1, y1), (x2, y2) ∈ X are arbitrary, so X
is a radial evs.

We now find the exact form of an open, balanced and absorbing set in the
topological evs [0,∞).

Lemma 6.7. In the evs [0,∞) over the field K, a set is balanced and absorbing iff
it is an interval containing 0.
Proof. Let U be a non-empty balanced and absorbing set in the evs [0,∞) over
the field K. By Proposition 3.4, 0 ∈ U. Since U is absorbing, ∃ x ∈ U with x > 0
(∵ {0} is not an absorbing set). Let 0 < y < x. Then y = y

x
.x ∈ U (∵ | y

x
| < 1 and

U is balanced). So, [0, x] ⊆ U for any x ∈ U . Hence U is an interval containing 0.

Conversely, let U be an interval containing 0. Let z ∈ [0,∞) and y ∈ U with
y > 0. We can find ε > 0 such that εz < y. So, for any µ ∈ K with |µ| ≤ ε we
have, |µ|z ≤ εz < y i.e. µz ∈ U for |µ| ≤ ε⇒ U is absorbing. Also, for any α ∈ K
with |α| ≤ 1 and any x ∈ U, |α|x ≤ x ⇒ αx ∈ U ⇒ αU ⊆ U ⇒ U is balanced.
Hence in [0,∞), a set is balanced and absorbing iff it is an interval containing 0.

Lemma 6.8. If [0,∞) is a topological evs with a topology (may be other than the
usual subspace topology) defined on it then an open, balanced and absorbing set ‘U ’
is of the form : U = [0, a) where, a may be a finite number or ∞.
Proof. Let U be an open, balanced and absorbing set in the topological evs [0,∞)
with some topology defined on it. By Lemma 6.7, U is an interval containing 0. If
possible, let U = [0, a] for some a ∈ (0,∞). Since, U is open and 1.a = a ∈ U so, ∃
an open disc B(1, ε) in K such that B(1, ε).a ⊆ U

[
since the scalar multiplication

is continuous as, [0,∞) is a topological evs
]
. Choose t ∈ B(1, ε) with |t| > 1. Then

t.a = |t|a > a ∈ U —— which is a contradiction, since U = [0, a]. Hence, U must
be of the form [0, a) where, a may be a finite number or ∞.

Theorem 6.9. The usual subspace topology is the finest topology with respect to
which [0,∞) forms a topological evs over the field K.
Proof. Let τ denote the usual subspace topology on [0,∞) and τ ′ be any other
topology that makes it a topological evs. Let G ∈ τ ′. Since ([0,∞), τ ′) is a
topological evs so by Result 4.3, G can be expressed as G =

⋃
x∈G

(x + Ux) where,

Ux is an open, balanced and absorbing neighbourhood of 0 in τ ′, ∀x ∈ G. Now,
by Lemma 6.8, Ux is an interval of the form [0, ax),∀x ∈ G ⇒ x + Ux is also an
interval of the form [x, x+ax),∀x ∈ G. Now, we can combine intersecting intervals
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to express G as :
G =

⋃
j∈I
Hj where,

(i) {Hj : j ∈ I} is a collection of pairwise disjoint intervals, I being an index set
and
(ii) for Hi 6= Hj, no end point of Hi can be an end point of Hj.

[
Here, (ii) ensures

that the set of the form [a, b)∪ [b, c) is taken as single interval [a,c) instead of taking
union of two disjoint intervals [a, b) and [b, c) while constructing Hi’s.

]
Claim: For any j ∈ I, if 0 ∈ Hj then Hj = [0, a) where, a is a finite number or
infinity; otherwise, Hj is an open interval.

If not, let Hj be a left closed interval having left end point a > 0 for some
j ∈ I. Now, 1.a = a ∈ G and ‘·’ is continuous so, ∃ε > 0 such that B(1, ε).a ⊆ G.
Since Hi ∩Hj = ∅ for i 6= j and a ∈ Hj, we can choose t ∈ B(1, ε) very close to 1
with |t| < 1 such that t.a = |t|a /∈ Hi for any i 6= j. Also, |t|a < a =⇒ t.a /∈ Hj.
Therefore t.a /∈ Hi for any i ∈ I. i.e. t.a /∈ G, which is a contradiction. Similarly,
we can prove that Hj can not be right closed. Hence, Hj must be an open interval
if 0 /∈ Hj, ∀j ∈ I. Thus, G is union of intervals of the form (a, b) or [0, b) where,
a ∈ [0,∞) and b may be a finite number or∞ =⇒ G ∈ τ . Now, G ∈ τ ′ is arbitrary,
so τ ′ ⊆ τ. Since τ ′ is an arbitrary topology with respect to which [0,∞) forms a
topological evs, so the usual topology is the finest topology that can make [0,∞) a
topological evs.
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