ON NORMALISATION OF HALF-INTEGRAL WEIGHT MODULAR FORMS

M. Manickam and M. K. Tamil Selvi*
Kerala School of Mathematics, Kunnamangalam, Kozhikode - 673571, Kerala, INDIA
E-mail : murugumanick@gmail.com
*University of Madras, Alpha College of Engineering, Thirumazhisai, Chennai - 600124, INDIA
E-mail : tamilselviphd.mk@gmail.com

(Received: Jul. 15, 2020 Accepted: Oct. 30, 2020 Published: Dec. 30, 2020)
Abstract: In this paper, we derive the algebraic nature of the Fourier coefficients of the Hecke eigenform f of weight $k+1 / 2$ for $\Gamma_{0}(4 N)$, where $k \geq 2$ and N is an odd and square-free integer.

Keywords and Phrases: Modular forms, Hecke eigenforms, Operators.
2010 Mathematics Subject Classification: Primary 11F11, 11F50; Secondary 11F37.

1. Introduction

Let $k \geq 2$ be an integer. Let N be an odd and square - free integer. Let f be a cusp form in Kohnen plus space of weight $k+1 / 2$ for $\Gamma_{0}(4 N)$ as defined in [3], [4] so that $a_{f}(n)=0$ whenever, $(-1)^{k} n \equiv 2,3(\bmod 4)$. Let F be a cusp form and a normalized newform of weight $2 k$, level N. Then it is known that the Fourier coefficients $a_{f}(n)$ can be taken as real and algebraic numbers whenever f is an Hecke eigenform which corresponds to F via Shimura - Kohnen lifts. In this note, we present a proof of this fact and also derive the same fact for a Hecke eigenform f which is in the old classes under the assumption that f is an eigenform under all
the w - operators w_{p} (see the definition in [4]) for various prime p dividing N and the Hecke operators $T_{n^{2}}, \quad(n, N)=1$.

2. Notations

Throughout this paper, the letters k, m, M, N stand for natural numbers and $2 \mid k .(k>1, m \equiv 1(\bmod 4)$ is a square-free odd integer $)$. Let N be a square- free integer, $(m, N)=1$. Let τ be an element of \mathbb{H}, the complex upper half-plane. Let \mathbb{C} and \mathbb{Z} respectively denote the complex plane and the ring of integers.
For a complex number z, we write \sqrt{z} for the square root with argument in $(-\pi, \pi]$ and we set $z^{a / 2}=(\sqrt{z})^{a}$ for any $a \in \mathbb{Z}$.
For integers a, b, let $\left(\frac{a}{b}\right)$ denote the generalized quadratic residue symbol. Let $d(c)$ denote $d(\bmod c), c, d \in \mathbb{Z}$.

The space of modular forms of weight $2 k$ and level N is denoted as $M_{2 k}(N)$ and its sub space of all the cusp forms by $S_{2 k}(N)$. For cusp forms f, g in the space $S_{2 k}(N)$, we denote their Petersson scalar product by $<f, g>$.
We write the Fourier expansion of a modular form f as

$$
f(\tau)=\sum_{n \geq 0} a_{f}(n) e^{2 \pi i n \tau}
$$

For the details of modular forms of weight $2 k$ level N, we refer to [8].

3. Definitions

Definition 3.1. Modular forms of half-integral weight [2]
Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \gamma z=\frac{a z+b}{c z+d}$. In the transformation rule $f(\gamma z)=(c z+d)^{k} f(z)$ the term $(c z+d)^{k}$ is called the automorphy factor. It depends on γ and on z. It is denoted as $J(\gamma, z)$ for a non-zero function f and has the property that $f(\gamma z)=J(\gamma, z) f(z)$ for $z \in \mathbb{H}$ and γ in some matrix group.
Let G denote the four-sheeted covering of $G L_{2}^{+}(\mathbb{Q})$ defined as the set of all ordered pairs $(\alpha, \phi(\tau))$, where $\alpha\left(=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)\right) \in G L_{2}^{+}(\mathbb{Q})$ and $\phi(z)$ is a holomorphic function on \mathbb{H} such that $\phi^{2}(z)=t \frac{c z+d}{\sqrt{\text { deta }}}$ for some t with $t=1,-1, i,-i$. Then G is a group with the following multiplication rule.

$$
(\alpha, \phi(z))(\beta, \psi(z))=(\alpha \beta, \phi(\beta z) \psi(z))
$$

For a complex valued function f defined on the upper half-plane \mathbb{H} and an element $(\alpha, \phi(z)) \in G$, define the stroke operator by

$$
\left.f\right|_{k+1 / 2}(\alpha, \phi(z))(z)=\phi(z)^{-2 k-1} f(\alpha z)
$$

If $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4)$, we always let $j(\alpha, z)=\left(\frac{c}{d}\right)\left(\frac{-4}{d}\right)^{-1 / 2}(c z+d)^{1 / 2}$ so that $(\alpha, j(\alpha, z)) \in \mathbb{G}$.

Definition 3.2. Hecke operators for half-integral weight
For n a positive integer and $f \in M_{k}(\Gamma)$ (Γ is a congruence subgroup of $\Gamma_{0}(4)$) we can define $f \mid T_{n}$ as follows. Let Δ^{n} be the set of all 2×2 matrices with integer entries and determinant n. For any double coset $\Gamma \alpha \Gamma \subset \Delta^{n}$, where $\alpha \in \Delta^{n}$, we define $f\left|[\Gamma \alpha \Gamma]_{k}=\sum f\right|\left[\alpha \gamma_{j}\right]_{k}$, where the sum is over all right cosets $\Gamma \alpha \gamma_{j} \subset \Gamma \alpha \Gamma$; equivalently, γ_{j} runs through a complete set of right coset representatives of Γ modulo $\alpha^{-1} \Gamma \alpha \cap \Gamma$. Then

$$
f\left|T_{n} \underset{\text { def }}{=} n^{(k / 2)-1} \sum f\right|[\Gamma \alpha \Gamma]_{k},
$$

where the sum is over all double cosets of Γ in Δ^{n}.
A modular form $f(z) \in M_{k}(\Gamma)$ is called a Hecke eigenform if for every positive integer m there exists $\lambda_{m} \in \mathbb{C}$ with $T_{m}(f)=\lambda_{m}(f)$.
Definition 3.3. Let $S_{k+1 / 2}(4 N)$ denote the space of cusp forms of weight $k+1 / 2$ for $\Gamma_{0}(4 N)$. It contains all the holomorphic functions on \mathbb{H} with complex values and the functions are holomorphic at all the rational points and each of them satisfies the transformation law: $f \mid(A, j(A, \tau))=f$ for all $A \in \Gamma_{0}(4 N)$.
Let $S_{k+1 / 2}^{+}(4 N)$ denote the Kohnen plus space in $S_{k+1 / 2}(4 N)$ and let $S_{k+1 / 2}^{+, \text {new }}(4 N)$ the space of newforms in the plus space. For this we refer to [5].

Let T_{n} denote the Hecke operator on the space $S_{2 k}(N)$ and $T_{n^{2}},(n, N)=1$ denote the Hecke operator on the space $S_{k+1 / 2}^{+}(4 N)$. For a prime p, we denote the Hecke operators by $T_{p^{2}}$ when $(p, N)=1$ and by $U_{p^{2}}$ when $p \mid N$ on $S_{k+1 / 2}^{+, \text {new }}(4 N)$. Let $f \in S_{k+1 / 2}^{+}(4 N)$ be a Hecke eigenform equivalent to a normalised newform $F \in S_{2 k}^{n e w}(N)$ with

$$
f \mid T_{p^{2}}=a_{F}(p) f, \quad(p \nmid N)
$$

For $f \in S_{k}(N)$, we define U_{p} as

$$
f\left|U_{p}=p^{k / 2-3 / 4} \sum_{\nu(\bmod p)} f\right|\left(\left(\begin{array}{ll}
1 & \nu \\
0 & p
\end{array}\right), p^{k / 2+1 / 4}\right)
$$

and if $p \mid N$, there exists $\lambda_{p} \in \mathbb{C}$ with $\lambda_{p^{2}}=1$ and we have,

$$
f \mid U_{p^{2}}=-p^{k-1} \lambda_{p} f
$$

In the following Lemma 4.1, we find the value of the constant λ_{p} explicitly.
Definition 3.4. Waldspurger formula (see [5]) If f, F are the Hecke eigenforms as above, $(D, N)=1$ with $(-1)^{k} D>0$ is a fundamental discriminant, then we have

$$
\frac{a_{f}(|D|)^{2}}{\langle f, f\rangle}=\frac{2^{\nu_{N}}(k-1)!}{\pi^{k}}|D|^{k-1 / 2} \frac{L(F, D, k)}{\langle F, F\rangle}
$$

where ν_{N} denotes the number of distinct prime divisors of N.
Definition 3.5. For each prime divisor p of N we put

$$
w_{p}=p^{-k / 2+1 / 4} U_{p} W_{p}
$$

where W_{p} is the W - operator on $S_{k+1 / 2}(4 M) ; M \mid N$ we define

$$
W_{p}=\left(\left(\begin{array}{cc}
p a & b \\
4 M c & p
\end{array}\right), p^{-1 / 4}(4 M c \tau+p)^{1 / 2}\right)
$$

where a, b, c are integers such that $b \equiv 1(\bmod p)$ and $p^{2} a-4 M p c=p$.
The definition given here is same as defined by Kohnen in [4], but slightly differs by a constant α with $\alpha^{2}=1$.

4. Properties of w_{p} operators (refer [6])

- $f\left|T_{p^{2}}=f\right| U_{p^{2}}+p^{k-1} f \mid w_{p}, \quad(p \nmid N)$
- For $p \mid N$, the W - operator w_{p} acts as the identity operator on $S_{k+1 / 2}^{+}(4 N)$.
- The space $S_{k+1 / 2}^{+, n e w}(4 N)$ has a basis of eigenforms with respect to the Hecke operators $T_{p^{2}}, \quad p \nmid N$, or $U_{p^{2}}, \quad p \mid N$. Further, these are eigenforms with respect to the W - operators $w_{p}, \quad p \mid N$.

Lemma 4.1. If f is a newform in $S_{k+1 / 2}^{+}(4 N)$, then for a prime $p, f \mid w_{p}=$ $-\left(\frac{D}{p}\right) p^{k-1} f$, where $(-1)^{k} D>0$ is a fundamental discriminant, $(D, N)=1$ and $a_{f}(|D|) \neq 0$.
Proof. For the proof we use equation (9) of [4].

$$
\begin{aligned}
& f\left|w_{p}=f\right|\left(p^{-\frac{k}{2}+\frac{1}{4}} U_{p} W_{p}\right) \\
& =p^{-1 / 2}\left(\frac{-4}{p}\right)^{k+1 / 2} \sum_{\alpha\left(p^{*}\right)} f\left|\left(\left(\begin{array}{cc}
p & \alpha \\
0 & p
\end{array}\right)\left(\frac{-\alpha}{p}\right)\right)+p^{-1 / 2} f\right|\left(\left(\begin{array}{cc}
1 & v_{0} \\
0 & p
\end{array}\right), p^{1 / 4}\right) W_{p} .
\end{aligned}
$$

Thus,

$$
f\left|w_{p}=\sum_{n \geq 1}\left(\frac{(-1)^{k} n}{p}\right) a_{f}(n) q^{n}+p^{-1 / 2} f\right|\left(\left(\begin{array}{cc}
1 & v_{0} \\
0 & p
\end{array}\right), p^{1 / 4}\right) W_{p}
$$

where v_{0} is an integer with $a+4 \frac{M}{p} v_{0} c \equiv 0(\bmod p)$
Now,

$$
\left(\left(\begin{array}{cc}
1 & v_{0} \\
0 & p
\end{array}\right), p^{1 / 4}\right) W_{p}=\left(\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right),\left(\frac{-4}{p}\right)^{1 / 2}\right) C^{*} W_{p}\left(\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right), p^{-1 / 4}\right)
$$

where, $C \in \Gamma_{0}(4 M)$. [refer pg. 41, [4]]
Hence,

$$
f\left|w_{p}=\sum_{n \geq 1}\left(\frac{(-1)^{k} n}{p}\right) a_{f}(n) e^{2 \pi i n \tau}+\lambda f\right| W_{p}\left(\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right), p^{-1 / 4}\right)
$$

Let $f \mid w_{p}=\lambda_{p} f$.
Substituting this in the above we get,

$$
\left.\lambda_{p} f=\sum_{n \geq 1}\left(\frac{(-1)^{k} n}{p}\right) a_{f}(n) e^{2 \pi i n \tau}+\lambda f \right\rvert\, W_{p}\left(\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right), p^{-1 / 4}\right)
$$

Comparing the $n^{t h}$ Fourier coefficients on both sides where $p \nmid N$, we get

$$
\lambda_{p} a_{f}(n)=\left(\frac{(-1)^{k} n}{p}\right) a_{f}(n), \quad p \nmid N .
$$

Since $p \nmid n$ and $f \mid W_{p}$ is invariant under $\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), 1\right)$ the second term $\lambda f \left\lvert\, W_{p}\left(\left(\begin{array}{cc}p & 0 \\ 0 & 1\end{array}\right), p^{-1 / 4}\right)\right.$ has zero as its $n^{\text {th }}$ Fourier coefficient whenever $(n, p)=$ 1. Hence, if we select n such that $a_{f}(n) \neq 0$ with $(n, p)=1$ we get,

$$
\lambda_{p}=\left(\frac{(-1)^{k} n}{p}\right)
$$

If $(D, p)=1$, set $(-1)^{k} D=n>0$, then the eigenvalue is $\left(\frac{D}{p}\right)$.
If f is a newform as above in $S_{k+1 / 2}^{+}(4 N)$, then, we have the following theorem.
Theorem 4.2. We normalise f by letting $a_{f}(n)$ to be real and algebraic.
Proof. Let us consider for a prime p the k_{p} operator studied by Serre and Stark [10] which maps $\sum_{n \geq 1} a_{f}(n) e^{2 \pi i n \tau}$ into $\sum_{n \geq 1} \overline{a_{f}(n)} e^{2 \pi i n \tau}$. In that, they proved that k_{p} maps
$S_{k+1 / 2}(4 N)$ to $S_{k+1 / 2}(4 N)$. But, using the definition of plus space they concluded that, it also maps

$$
S_{k+1 / 2}^{+}(4 N) \mapsto S_{k+1 / 2}^{+}(4 N)
$$

Moreover, it commutes with $T_{p^{2}}$ and $U_{p^{2}}$. Hence, $f \mid k_{p}$ and f have same eigenvalues under all the Hecke operators. The multiplicity one result (proved in [4]) shows that $f \mid k_{p}=\lambda f$. Since, k_{p}^{2} equals the identity on $S_{k+1 / 2}^{+}(4 N), \quad \lambda= \pm 1$. Therefore, we take either f or $i f$ and we assume that Fourier coefficients are all real.

Thus, we let $f \in S_{k+1 / 2}^{+}(4 N)$ to be a Hecke eigenform whose Fourier coefficients are all real. In order to prove that they are all algebraic we use the following two results.

If D is a fundamental discriminant with $(-1)^{k} D>0$ and $n \geq 1$ we have

$$
a_{f}\left(|D| n^{2}\right)=a_{f}(|D|) \sum_{d \mid n} \mu(d) d^{k-1}\left(\frac{D}{d}\right) a_{F}(n / d) .
$$

If ν_{N} denotes the number of different prime divisors of N, then we have

$$
\frac{a_{f}(|D|)^{2}}{\langle f, f\rangle}=\frac{2^{\nu_{N}}(k-1)!}{\pi^{k}}|D|^{k-1 / 2} \frac{L(F, D, k)}{\langle F, F\rangle}
$$

Due to these two results it is enough to prove the algebraic nature for $a_{f}(|D|)$ whenever D is a fundamental discriminant with $(-1)^{k} D>0$. The above formula due to Waldspurger is the same for both f and $-i f$. Using the result of [5]

$$
|D|^{-1 / 2} \pi^{-k} \frac{L(F, D, k)}{\omega_{(-1)^{k-1}}}
$$

is algebraic and real and using $\langle F, F\rangle=\omega_{(-1)^{k-1}} \omega_{(-1)^{k}}$, which is a product of two positive real constants and selecting f such that $\langle f, f\rangle=\omega_{(-1)^{k}}$, we get $a_{f}(|D|)^{2}$ is real, positive and algebraic. This proves that $a_{f}(|D|)$ is real and algebraic.

Thus, we have the following:
Theorem 4.3. If f is in the old class and f is the Hecke eigenform and eigenform under all W operators then, $a_{f}(n)$ are real and algebraic.
Proof. Let $g \in S_{k+1 / 2}^{n e w}(4 M),(M \mid N)$ be a non-zero Hecke eigenform.
Let f be an eigenform in the space $S_{k+1 / 2}^{+, \text {old }}(4 N)$ and generated by a newform $g \in S_{k+1 / 2}^{+ \text {new }}(4 M), M \mid N$, under all W - operators $w_{p},(p \mid N)$, where M is a proper divisor of N. Thus, using g is an Hecke eigenform under all Hecke operators we
conclude that $a_{g}(n)$ are algebraic and real. Moreover, its eigenvalue under the W operator for a prime $p \mid N$ is $\left(\frac{D}{p}\right)$. We write

$$
f=g \left\lvert\,\left(\sum_{d \mid N / M}\left(\frac{D}{d}\right) w_{d}\right)\right.,
$$

We see that f is an eigenform under all w - operators $w_{p}, \quad p \mid N$ and f is an eigenform under all Hecke operators $T_{p^{2}},(p \nmid M)$. Also, by using

$$
p^{k-1} g\left|w_{p}=g\right| T_{p^{2}}-g \mid U_{p^{2}}
$$

which was derived in [6] such that $p \nmid M$ and $p \left\lvert\, \frac{N}{M}\right.$ and from the fact that the Fourier coefficients of g are real and algebraic, the result is immediate by the Lemma.

References

[1] Eichler, M., Zagier, D, The theory of Jacobi forms, Boston, Birkhauser, 1985
[2] Koblitz, Introduction to elliptic curves and modular forms (Graduate Texts in Mathematics), 1993.
[3] Kohnen, W., Modular forms of half-integral weight on $\Gamma_{0}(4)$, Mathematics Annalen, 248 (1980), 249-266.
[4] Kohnen, W. Newforms of half-integral weight, J. Reine Angew. Math. 333 (1982), 32-72. MR 84b:10038 Zbl 0475.10
[5] Kohnen, W., Fourier coefficients of modular forms of half- integral weight, Math. Ann. 271 (1985), 237-268.
[6] Manickam, M., Ramakrisshnan, B., On Shimura, Shintani and Eichler-Zagier correspondences, Transaction of the American Mathematical Society, 352 (2000), 2601-2617.
[7] Manickam, M., Ramakrisshnan, B., Vasudevan, T. C., Diagonalising modular forms of half-integral weight, J. Number Theory, 40 (1992), 32-37.
[8] Miyake, T., Modular forms, Springer - Verlag, Berlin - Heidelberg, 1989.
[9] Serre, J. P., Stark, H. M., Modular forms of weight $1 / 2$, modular functions of one variable VI, Lecture notes in mathematics, 627 (1977), 27-67.

