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Abstract: In this article, we have derived the hypergeometric forms of some
composite functions containing, arccosine(x) and arccosh(x) like: exp (b cos−1 x),
exp (b cos−1 x)√

(1−x2)
, cos−1 x√

(1−x2)
, sin (b cos−1 x)√

(1−x2)
, exp (a cosh−1 x), exp (a cosh−1 x)√

(x2−1)
, cosh−1 x√

(x2−1)
and

sin (a cosh−1 x)√
(x2−1)

by using the Leibniz theorem for successive differentiation, the Maclau-

rin’s series expansion, the Taylor’s series expansion and the Euler’s linear trans-
formation, as the proof of the hypergeometric forms of the above functions is not
available in the literature. Some applications of the functions are also obtained in
the form of the Chebyshev polynomials and the Chebyshev functions.
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1. Introduction and Preliminaries
In this paper, we shall use the following standard notations:

N := {1, 2, 3, · · · } ;N0 := N
⋃
{0} ;Z−0 := Z−

⋃
{0} = {0,−1,−2,−3, · · · } .

The symbols C, R, N, Z, R+ and R− denote the sets of complex numbers, real
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numbers, natural numbers, integers, positive and negative real numbers respec-
tively.
The classical Pochhammer symbol (α)p (α, p ∈ C) is defined by( [11, p.22, Eq.(1),
p.32, Q.N.(8) and Q.N.(9), see also [14] p.23, Eq.(22) and Eq.(23)]).
A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z] is ac-
complished by introducing any arbitrary number of numerator and denominator
parameters [14, p.42, Eq.(1)].
Relation between inverse hyperbolic and inverse trigonometric functions:

sinh−1(x) = −i sin−1(ix), cosh−1(x) = ±i cos−1(x). (1.1)

The Euler’s linear transformation [11, p.60, Eq.(5), [14], p.33, Eq.(21)]:

2F1

 α, β;
z

γ;

 = (1− z)γ−α−β 2F1

 γ − α, γ − β;
z

γ;

 ; |z| < 1, (1.2)

| arg (1− z)| < π and γ 6= 0,−1,−2,−3, ...
The Taylor’s series of a real or complex-valued function y(x) which is infinitely
differentiable at a real or complex number a, is the power series:

y(x) = (y)x=a + (x− a)(y1)x=a +
(x− a)2

2!
(y2)x=a +

(x− a)3

3!
(y3)x=a+

+
(x− a)4

4!
(y4)x=a + · · · =

∞∑
n=0

(x− a)n

n!
(yn)x=a (1.3)

=
∞∑
n=0

(x− a)2n

(2n)!
(y2n)x=a +

∞∑
n=0

(x− a)2n+1

(2n+ 1)!
(y2n+1)x=a. (1.4)

The Maclaurin’s series is a particular case of the Taylor’s series expansion of a
function, about the origin i.e, when a = 0 in equation (1.3), the Maclaurin’s series
is given as:

y(x) = (y)0 + x(y1)0 +
x2

2!
(y2)0 +

x3

3!
(y3)0 +

x4

4!
(y4)0 +

x5

5!
(y5)0 + · · · (1.5)

=
∞∑
n=0

xn

n!
(yn)0

=
∞∑
n=0

x2n

(2n)!
(y2n)0 +

∞∑
n=0

x2n+1

(2n+ 1)!
(y2n+1)0, (1.6)
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where (ym)0 =
(
dmy
dxm

)
x=0

.
The general Leibniz rule, which states that if U(x) and T (x) are n-times differen-
tiable functions, then the product U(x).T (x) is also n-times differentiable and its
nth derivative is given by:

Dn[U(x) T (x)] = (nC0)(D
n U)(D0 T ) + (nC1)(D

n−1 U)(D1 T )+

+ (nC2)(D
n−2 U)(D2 T ) + · · ·+ (nCn−1)(D

1 U)(Dn−1 T ) + (nCn)(D0 U)(Dn T ),

(1.7)

where D = d
dx

.
The present article is organized as follows. In Section 3, we have given the proof of
the hypergeometric forms of the following functions as their proofs are not available
in the literature [1] - [17] So we are interested to give the proof of the hypergeometric
forms of some composite functions containing arccosine (x), using the Maclaurin’s
expansion. In section 4, we have obtained hypergeometric forms of some more
functions by using the relations between inverse trigonometric and inverse hyper-
bolic functions and section 5 is related to the applications involving the Chebyshev
polynomials and the Chebyshev functions.

2. Main Hypergeometric Forms of Some Composite Functions
When the values of numerator, denominator parameters and arguments leading

to the results which do not make sense are tacitly excluded, then each of the
following hypergeometric form holds true:

exp (b cos−1 x) = 2F1

 −ib, ib; 1−x
2

1
2
;

 ;

∣∣∣∣1− x2

∣∣∣∣ < 1. (2.1)

exp (b cos−1 x) = exp
(
b
π

2

)
2F1

 −ib
2 ,

ib
2 ;

x2
1
2 ;

− bx exp(bπ
2

)
2F1

 1−ib
2 , 1+ib

2 ;
x2

3
2 ;

 ,
(2.2)

where |x| < 1.

exp (b cos−1 x)√
(1− x2)

= exp
(
b
π

2

)
2F1

 1−ib
2
, 1+ib

2
;
x2

1
2
;

−
− b x exp

(
b
π

2

)
2F1

 2−ib
2
, 2+ib

2
;
x2

3
2
;

 ,
(2.3)



86 South East Asian J. of Mathematics and Mathematical Sciences

where |x| < 1.

cos−1 x√
(1− x2)

=
π

2
1F0

 1
2

;
x2

−;

− x 2F1

 1 , 1 ;
x2

3
2
;

 ; |x| < 1. (2.4)

sin (b cos−1 x)√
(1− x2)

= b 2F1

 1− b, 1 + b;
1−x
2

3
2
;

 ;

∣∣∣∣1− x2

∣∣∣∣ < 1, |x| < 1. (2.5)

Note: In the above hypergeometric functions, x and b can be purely real or purely
imaginary or complex numbers.

3. Proof of Hypergeometric Forms
Proof of hypergeometric forms (2.1) and (2.2)
Let

y = eb cos
−1 x. (3.1)

Differentiating equation (3.1) with respect to x, we get

y1 =
−b eb cos−1 x√

(1− x2)
,

(1− x2) y21 − b2y2 = 0. (3.2)

Differentiating equation (3.2) with respect to x, we get

(1− x2) y2 − xy1 − b2y = 0. (3.3)

Differentiating equation (3.3) with respect to x, we get

(1− x2) y3 − 3x y2 − (b2 + 1) y1 = 0. (3.4)

Differentiating equation (3.3) n-times with respect to x, we get

(1− x2) yn+2 − x(2n+ 1) yn+1 − (n2 + b2) yn = 0; n ≥ 2. (3.5)

On substituting n = 2, 3, 4, ... in equation (3.5), we get

(1− x2) y4 − 5x y3 − (22 + b2) y2 = 0, (3.6)

(1− x2) y5 − 7x y4 − (32 + b2) y3 = 0, (3.7)

(1− x2) y6 − 9x y5 − (42 + b2) y4 = 0, (3.8)

(1− x2) y7 − 11x y6 − (52 + b2) y5 = 0, (3.9)

...
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Case-I. On substituting x = 1 in equations (3.1), (3.3), (3.4) and equations (3.6)
to (3.9), we get

(y)1 = 1, (3.10)

(y1)1 = −b2, (3.11)

(y2)1 =
b2 (b2 + 1)

3.1
, (3.12)

(y3)1 =
−b2 (b2 + 1) (b2 + 22)

5.3.1
, (3.13)

(y4)1 =
b2 (b2 + 1) (b2 + 22) (b2 + 32)

7.5.3.1
, (3.14)

(y5)1 =
−b2 (b2 + 1) (b2 + 22) (b2 + 32) (b2 + 42)

9.7.5.3.1
, (3.15)

...

Using the Taylor’s series expansion, we get

y = 1− (x− 1)

1!

b2

1
+

(x− 1)2

2!

b2 (b2 + 1)

3.1
− (x− 1)3

3!

b2 (b2 + 1) (b2 + 22)

5.3.1
+

+
(x− 1)4

4!

b2 (b2 + 1) (b2 + 22) (b2 + 32)

7.5.3.1
+

(x− 1)5 b2 (b2 + 1) (b2 + 22)

5!
×

× (b2 + 32) (b2 + 42)

9.7.5.3.1
+ ...

=
∞∑
n=0

[∏n
j=1 {b2 + (j − 1)2}∏n

j=1(2j − 1)

]
(1− x)n

n!
. (3.16)

On further simplifying, we arrive at the result (2.1).
Case-II. On substituting x = 0 in equations (3.1) to (3.4) and equations (3.6) to
(3.9), we get

(y)0 = e
bπ
2 , (3.17)

(y1)0 = −b e
bπ
2 , (3.18)

(y2)0 = b2 e
bπ
2 , (3.19)

(y3)0 = −b (b2 + 1) e
bπ
2 , (3.20)

(y4)0 = b2 (b2 + 22) e
bπ
2 , (3.21)
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(y5)0 = −b (b2 + 1) (b2 + 32) e
bπ
2 , (3.22)

(y6)0 = b2 (b2 + 22) (b2 + 42) e
bπ
2 , (3.23)

(y7)0 = −b (b2 + 1) (b2 + 32) (b2 + 52) e
bπ
2 , (3.24)

...

Using the Maclaurin’s series expansion, we get

y = e
bπ
2 +

x2

2!
b2 e

bπ
2 +

x4

4!
b2 (b2 + 22) e

bπ
2 +

x6

6!
b2 (b2 + 22) (b2 + 42) e

bπ
2 + ...

−bxe
bπ
2 −x

3

3!
b(b2+1)e

bπ
2 −x

5

5!
b(b2+1)(b2+32)e

bπ
2 −x

7

7!
b(b2+1)(b2+32)(b2+52)e

bπ
2 −...

= e
bπ
2

[
1 +

x2

2!
b2 +

x4

4!
b2 (b2 + 22) +

x6

6!
b2 (b2 + 22) (b2 + 42) + ...

]
− b e

bπ
2 ×

×
[
x+

x3

3!
(b2 + 1) +

x5

5!
(b2 + 1)(b2 + 32) +

x7

7!
(b2 + 1)(b2 + 32) (b2 + 52) + ...

]
= e

bπ
2

[
∞∑
n=0

x2n

(2n)!

n∏
j=1

{
(2j − 2)2 + b2

}]
−b e

bπ
2

[
∞∑
n=0

x2n+1

(2n+ 1)!

n∏
j=1

{
(2j − 1)2 + b2

}]

= e
bπ
2

∞∑
n=0

22n

{
n∏
j=1

(
ib

2
+ j − 1

) n∏
j=1

(
−ib
2

+ j − 1

)}
x2n

(2n)!
−

−b e
bπ
2

∞∑
n=0

22n

{
n∏
j=1

(
ib

2
+ j − 1

2

) n∏
j=1

(
−ib
2

+ j − 1

2

)}
x2n+1

(2n+ 1)!
.

On further simplifying, we arrive at the result (2.2).
Proof of hypergeometric forms (2.3), (2.4) and (2.5)
The proof of hypergeometric forms (2.3) and (2.4) can be given by following the
same procedure as that of the above and making use of the Maclaurin’s series
expansion. Similarly the proof of hypergeometric form (2.5) can be given by pro-
ceeding as above and making use of the Taylor’s series expansion. So we omit the
details here.

4. Some other Trigonometric and Hyperbolic Functions as Special Cases
Put b = ia in equation (2.1), we get

exp (a cosh−1 x) = 2F1

 −a, a;
1−x
2

1
2
;

 . (4.1)
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Put b = ia in equation (2.2), we get

exp (a cosh−1 x) = exp

(
iaπ

2

)2F1

 −a
2 ,

a
2 ;

x2
1
2 ;

− iax 2F1

 1−a
2 , 1+a2 ;

x2
3
2 ;

 .

(4.2)
Put b = ia in equation (2.3), we get

exp (a cosh−1 x)√
(x2 − 1)

= exp

(
iaπ

2

)ax2F1

 2−a
2 , 2+a2 ;

x2
3
2 ;

+ i2F1

 1−a
2 , 1+a2 ;

x2
1
2 ;

 .

(4.3)

On using the relation (1.1) in equation (2.4), we get

cosh−1 x√
(x2 − 1)

= x 2F1

 1 , 1 ;
x2

3
2
;

− π

2
1F0

 1
2

;
x2

−;

 . (4.4)

Put b = ia in equation (2.5), we get

sin (a cosh−1 x)√
(x2 − 1)

=
sinh (a cos−1 x)√

(1− x2)
= a 2F1

 1− ia, 1 + ia;
1−x
2

3
2
;

 . (4.5)

Replacing a by id in equation (4.5), we get

sinh (d cosh−1 x)√
(x2 − 1)

= d 2F1

 1− d, 1 + d;
1−x
2

3
2
;

 . (4.6)

Suppose x ∈ R and b is purely imaginary in equation (2.1), then put b = ia, where
a is purely real, we get

exp (ia cos−1 x) = 2F1

 −a, a;
1−x
2

1
2
;

 . (4.7)

Using the Euler’s formula on the left hand side of equation (4.7) and further on
equating real and imaginary parts, we get

cos (a cos−1 x) = 2F1

 −a, a;
1−x
2

1
2
;

 , (4.8)
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sin (a cos−1 x) = 0. (4.9)

Remark 4.1. We can’t expand sin (a cos−1 x) in positive-integral powers of x− 1,
since the function sin (a cos−1 x) and its higher order derivatives vanish at x = 1.
So, sin (a cos−1 x) can’t be expressed in hypergeometric form.
Put a = id in equation (4.8), where d is purely imaginary, we get

cosh (d cos−1 x) = cos (d cosh−1 x) = 2F1

 −id, id;
1−x
2

1
2
;

 . (4.10)

Replacing d by ig in equation (4.10), where g is purely real, we get

cosh (g cosh−1 x) = 2F1

 −g, g;
1−x
2

1
2
;

 . (4.11)

Suppose x ∈ R and b is purely imaginary in equation (2.2), then put b = ia, where
a is purely real, we get

exp (ia cos−1 x) = exp

(
iaπ

2

) 2F1

 −a
2 ,

a
2 ;

x2
1
2 ;

− iax 2F1

 1−a
2 , 1+a2 ;

x2
3
2 ;

 .

(4.12)
Using the Euler’s formula in equation (4.12) and further on equating real and

imaginary parts, we get

cos(a cos−1 x) = cos
(aπ

2

)
2F1

 −a
2 ,

a
2 ;

x2
1
2 ;

+ ax sin
(aπ

2

)
2F1

 1−a
2 , 1+a2 ;

x2
3
2 ;

 ,
(4.13)

sin(a cos−1 x) = sin
(aπ

2

)
2F1

 −a
2 ,

a
2 ;

x2
1
2 ;

− ax cos(aπ
2

)
2F1

 1−a
2 , 1+a2 ;

x2
3
2 ;

 .
(4.14)

Replacing a by id in equations (4.13) and (4.14), where d is purely imaginary, we
get

cosh (d cos−1 x) = cos (d cosh−1 x) = cosh

(
dπ

2

)
2F1

 −id
2
, id

2
;
x2

1
2
;

−
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− d x sinh

(
dπ

2

)
2F1

 1−id
2
, 1+id

2
;
x2

3
2
;

 , (4.15)

sinh(d cos−1 x) = sinh

(
dπ

2

)
2F1

 −id
2 , id2 ;

x2
1
2 ;

−dx cosh(dπ
2

)
2F1

 1−id
2 , 1+id2 ;

x2
3
2 ;

 .
(4.16)

Replacing d by ig, in equation (4.15), where g is purely real, we get

cosh(g cosh−1 x) = cos
(gπ

2

)
2F1

 −g
2 ,

g
2 ;

x2
1
2 ;

+ gx sin
(gπ

2

)
2F1

 1−g
2 , 1+g2 ;

x2
3
2 ;

 .
(4.17)

Suppose x ∈ R and b is purely imaginary in equation (2.3), then put b = ia, where
a is purely real, we get

exp (ia cos−1 x)√
(1− x2)

= exp

(
iaπ

2

)2F1

 1−a
2 , 1+a2 ;

x2
1
2 ;

− iax2F1

 2−a
2 , 2+a2 ;

x2
3
2 ;

 .

(4.18)
Using the Euler’s formula in equation (4.18) and further on equating real and

imaginary parts, we get

cos(a cos−1 x)√
(1− x2)

= cos
(aπ

2

)
2F1

 1−a
2 , 1+a2 ;

x2
1
2 ;

+ ax sin
(aπ

2

)
2F1

 2−a
2 , 2+a2 ;

x2
3
2 ;

 ,
(4.19)

sin(a cos−1 x)√
(1− x2)

= sin
(aπ

2

)
2F1

 1−a
2 , 1+a2 ;

x2
1
2 ;

− ax cos(aπ
2

)
2F1

 2−a
2 , 2+a2 ;

x2
3
2 ;

 .
(4.20)

Put a = id in equations (4.19) and (4.20), where d is purely imaginary, we get

cosh (d cos−1 x)√
(1− x2)

=
cos (d cosh−1 x)√

(1− x2)
= cosh

(
dπ

2

)
2F1

 1−id
2
, 1+id

2
;
x2

1
2
;

−
− dx sinh

(
dπ

2

)
2F1

 2−id
2
, 2+id

2
;
x2

3
2
;

 , (4.21)
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sin (d cosh−1 x)√
(x2 − 1)

=
sinh (d cos−1 x)√

(1− x2)
= sinh

(
dπ

2

)
2F1

 1−id
2
, 1+id

2
;
x2

1
2
;

−

− dx cosh

(
dπ

2

)
2F1

 2−id
2
, 2+id

2
;
x2

3
2
;

 . (4.22)

Replacing d by ig in equations (4.21) and (4.22), where g is purely real, we get

cosh(g cosh−1 x)√
(1− x2)

= cos
(gπ

2

)
2F1

 1−g
2 , 1+g2 ;

x2
1
2 ;

+gx sin(gπ
2

)
2F1

 2−g
2 , 2+g2 ;

x2
3
2 ;

 ,
(4.23)

sinh(g cosh−1 x)√
(x2 − 1)

= sin
(gπ

2

)
2F1

 1−g
2 , 1+g2 ;

x2
1
2 ;

−gx cos(gπ
2

)
2F1

 2−g
2 , 2+g2 ;

x2
3
2 ;

 .
(4.24)

5. Applications in the Chebyshev Polynomials and the Chebyshev Func-
tions

When a is a positive integer (suppose a = m), then from equation (4.8), we
obtain the hypergeometric form of the Chebyshev polynomials of first kind Tm(x):

Tm(x) = cos (m cos−1 x) = 2F1

 −m, m;
1−x
2

1
2
;

 ; m ∈ N0. (5.1)

If a = 2m, where m is positive integer, then from equations (4.13) and (4.14), we
obtain the hypergeometric forms of the Chebyshev polynomials of first kind T2m(x)
and the Chebyshev functions of second kind U∗m(x):

T2m(x) = cos (2m cos−1 x) = (−1)m 2F1

 −m, m;
x2

1
2
;

 ; m ∈ N0, (5.2)

U∗m(x) = sin(2m cos−1 x) = 2mx(−1)m+1
2F1

 1−2m
2 , 1+2m

2 ;
x2

3
2 ;

 ; m ∈ N0. (5.3)
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Applying the Euler’s linear transformation (1.2), in equation (5.3), we get the
hypergeometric form of the Chebyshev polynomials of second kind U2m(x):

U2m(x) =
sin(2m cos−1 x)√

(1− x2)
= 2mx(−1)m+1

2F1

 −m+ 1,m+ 1;
x2

3
2 ;

 ; m ∈ N0. (5.4)

If a = 2m+ 1, where m is positive integer, then from equations (4.13) and (4.14),
we obtain the hypergeometric forms of the Chebyshev polynomials of first kind
T2m+1(x) and the Chebyshev functions of second kind U∗2m+1(x):

T2m+1(x) = cos
{
(2m+ 1) cos−1 x

}
= (2m+1)x(−1)m 2F1

 −m,m+ 1;
x2

3
2 ;

 ;m ∈ N0,

(5.5)

U∗2m+1(x) = sin
{
(2m+ 1) cos−1 x

}
= (−1)m 2F1

 −2m−1
2 , 2m+1

2 ;
x2

1
2 ;

 ; m ∈ N0.

(5.6)

Put b = m+ 1 in equation (2.5), where m is positive integer, we get the hyperge-
ometric forms of the Chebyshev polynomials of second kind Um(x):

Um(x) =
sin ((m+ 1) cos−1 x)√

(1− x2)
= (m+1)2F1

 −m,m+ 2;
1−x
2

3
2
;

 ;m ∈ N0. (5.7)

6. Conclusion
In this paper, we have derived the hypergeometric forms of some functions

involving arccosine(x) and arccosh(x) by using the Maclaurin’s expansion. We
conclude this presentation with the remark that the hypergeometric forms of some
more functions can be derived in an analogous manner. Moreover the results de-
duced above are quite significant and these are expected to lead some potential
applications in several fields of Applied Mathematics or Mathematical Physics.

7. Acknowledgment: The authors are very thankful to the anonymous referees
for their valuable suggestions to improve the paper in its present form.
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