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Abstract: The mathematical analysis of the system of six coupled non-linear Or-
dinary Differential Equations (ODEs), which arose in the reduction of uniformly
stratified fluid contained in a rotating rectangular box of dimension L × L × H
which is completely integrable if the Rayleigh number Ra = 0, is dealt with this
paper.
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1. Introduction
Since long back as a century, Painlevé test has been popular as the most suc-
cessful technique for detecting the integrability of differential equations. This was
mentioned in the Kowalevskian work. An integrability of differential equation is
analogous to the characteristics of its solutions near movable singularity. The for-
mal algebraic consequence of such a relation is exploited in the Painlevé test. It
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appears that the general property for passing the Painlevé test has been more or
less same for the last hundred years or more.

In connection with the basin scale dynamics Maas [8] has considered the flow of
fluid contained in large rectangular box of dimension L×L×H, which is temper-
ature stratified with fixed zeroth order moment of mass and heat. The container is
assumed to be steady, uniform rotation of an f-plane. With this assumptions Maas
[8] has reduced the rotating stratified Boussinesq equation to a beautiful system of
six coupled ODEs. Desale and Srinivasan [2] extended this work and they gave the
detail mathematical analysis of reduced system of six coupled ODEs. Furthermore,
Desale and Patil [3] tested the system of six coupled ODEs (1) for complete inte-
grability using the Painlevé test. Also, in their paper [4] they investigate the case of
non-integrability for Ra 6= 0 and thereby they have obtained weak solutions (in the
form of logarithmic psi-series) for the two different branches of leading order coef-
ficients. In continuation of this work in [5] authors have successfully implemented
the mirror transformations and constructed the mirror system for the following
differential equations (1) which is regular near movable singularity. Further, with
the help of mirror transformation, authors has been proved that the Laurent series
obtained by using the Painlevé test are convergent. In this paper we have anal-
yse the certain aspects of the Painlevé test which was applied to investigate the
singular structure of the system, that are actually missing while in applying the
test but useful while constructing the mirror system. In this consequence we have
investigate the relation between eigenvalues and eigenvectors of the Kowalevskian
matrix K.

The structure of paper is as: Section 1 is of introduction. In section 2, eigen-
values and eigenvectors of the Kowalevskian matrix K are determined and further
we investigate relations between them. The variation of balance in the direction
of free parameters involved in the Painlevé test is also discussed in this section.
Whereas in section 3, we have shown that the system (1) is divergence free and
trace of K is equals to sum of leading exponents. Besides these, the matrix K is
diagonalized by using the resonance vectors in the same section. In section 4, we
conclude the work under consideration.

ODE reduction of stratified Boussinesq equations is well elaborated by the au-
thors in their paper [4, 5]. We now begin with the same reduced system of coupled
ODEs:

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1,

ḃ1 = w2b3 − k1b2, ḃ2 = k1b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(1)

In the following section first we determined the eigenvalues and eigenvectors (that
we call resonance vectors) of Kowalevskian matrix K.
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2. Eigenvalues and Eigenvectors of matrix K
As according to the ad hoc nature of the Painlevé test applied to the system of
ODEs (1), a rigorous foundation of the Painlevé test is provided in this section.
The variation of solutions due to free parameters involved in the Painlevé test is
also discussed in this section. The solution of a system (1) is obtained in the form
of following power series.

w1(t) = w10τ
m1 +

∞∑
j=1

w1jτ
j+m1 , w2(t) = w20τ

m2 +
∞∑
j=1

w2jτ
j+m2 ,

b1(t) = b10τ
n1 +

∞∑
j=1

b1jτ
j+n1 , b2(t) = b20τ

n2 +
∞∑
j=1

b2jτ
j+n2 ,

b3(t) = b30τ
n3 +

∞∑
j=1

b3jτ
j+n3 .

(2)

A parameter, t0, the arbitrary position of singularity which can be restored by
substituting (t− t0) for τ in equation (2) has been suppressed. We can notice that
the leading order coefficients w10, w20, b10, b20, b30 in equation (2) are important
for their unusual significance from the succeeding coefficients. As according to
the Painlevé algorithm, the dominant balance is the first step of the Painlevé test
which determines the leading exponents (m1, m2, n1, n2, n3) and the leading order
coefficients wi,0, i = 1, 2 and bi,0, i = 1, 2, 3 of potential balances. As discussed in
[3], the system of ODEs (1) admits the singular solution in the following case of
principal dominant balance.

ẇ1 = −b2, ẇ2 = b1, ḃ1 = w2b3, ḃ2 = −w1b3, ḃ3 = w1b2 − w2b1. (3)

From this dominant balance equations exponents are to be determined and these
are listed as follows:

m1 = m2 = −1, n1 = n2 = n3 = −2. (4)

The possible branches of leading order coefficient which involve one resonance pa-
rameter r1 are as given below;

w10 = ±
√
−4− r21, w20 = r1, b10 = −r1, b20 = ±

√
−4− r21, b30 = 2. (5)

In [5], it has been shown that the leading exponents m1, m2, n1, n2 and n3 of
the system of ODEs (1) are Fuchsian and also we notice that a column vector
(w10, w20, b10, b20, b30)

T corresponding to the leading order coefficient is non zero.
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That is why the choice of leading exponents is natural. Some unnatural exponents
can be selected if they fulfil the Fuchsian condition and it is essential to define the
Kowalevskian matrix. The Henon-Heiles system and the Gelfand-Dikii hierachy
are examples of such unnatural leading exponents. For details one may refer [6, 7].

In the following subsection first we define the Kowalevskian matrix and then
we find eigenvalues and eigenvectors of it. Consequently we find the variation of
solution in the direction of these eigenvectors.

2.1. Kowalevskian Matrix
The next step of the Painlevé algorithm is to determine the subsequent coefficients
in the balance (2). The computational method that need to find these coefficients
is provided in the paper [3]. In equation (2), vectors (w1j, w2j, b1j, b2j, b3j)

T for
j = 1, 2, . . . are the j-th coefficient vectors. In the Painlevé test, j-th coefficient
vectors are supposed to be related by specific recursive relations involving a certain
Kowalevskian matrix. To make this into a rigorous case, the definition is introduced
and in concern with our system in the Kowalevskian matrix K is defined as follows:

K =


1 0 0 −1 0
0 1 1 0 0
0 b30 2 0 w20

−b30 0 0 2 −w10

b20 −b10 −w20 w10 2

 . (6)

To find the eigenvalues of K, the characteristic equation det(K−JI) = 0 is solved
and we have the eigenvalues J = 0, −1, 2, 3, 4. From the computations given in
the paper [3], it was observed that the system (1) has infinitely many solutions.
Because of that the solution contains some free parameters including the free choice
of t0. Further, the variation of balance (2) in the direction of free parameters namely
t0, r1, r2, r3 and r4 is described.

There are three types of free parameters. First is an arbitrary location t0 of
the singularity, second is the free parameters that appear in the leading ordered
coefficients and third is the free parameters obtained in the succeeding coefficients
so that the compatibility conditions get satisfied. In the present system these are
involved into solutions at the level of resonances J = 2, 3 and 4. The cases that
depict the variation of balance (2) in the direction of these free parameters for the
system of ODEs (1) are described below.

Case I; Free choice of t0 in the balance: Taking the derivative of equations (2)
with respect to t0, we obtain the variation of solution in the direction of t0 which
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is given below.
∂w1

∂t0
= −w10τ

−2 +
∞∑
j=1

(j − 1)w1jτ
j−2,

∂w2

∂t0
= −w20τ

−2 +
∞∑
j=1

(j − 1)w2jτ
j−2,

∂b1
∂t0

= −2b10τ
−3 +

∞∑
j=1

(j − 2)b1jτ
j−3,

∂b2
∂t0

= −2b20τ
−3 +

∞∑
j=1

(j − 2)b2jτ
j−3,

∂b3
∂t0

= −2b30τ
−3 +

∞∑
j=1

(j − 2)b3jτ
j−3.

(7)

Therefore, the variation of solution (2) due to parameter t0 is characterised by the
basic resonance vector

(−w10, −w20, −2b10, −2b20, −2b30)
T .

Definition 2.1 (Balance). A formal Laurent series solution (2) of (1) is called
a balance.

A balance is said to be principal if total number of free parameter including t0
is to be n (order of the equation). The following theorems show that there is a
relationship between resonance parameters and the eigenvectors of Kowalevskian
matrix K for the given system of ODEs (1).

Theorem 2.2. If the leading exponents of a balance (2) are Fuchsian and

(−m1w10, −m2w20, −n1b10, −n2b20, −n3b30)
T 6= 0. (8)

Then (−m1w10, −m2w20, −n1b10, −n2b20, −n3b30)
T is an eigenvector of K with

eigenvalue -1.
Proof. Consider the system of ODEs (1). We take the derivative of a system (1)
with respect to t, we get

ẅ1 = f ′ẇ2 − ḃ2, ẅ2 = −f ′ẇ1 + ḃ1, b̈1 = ẇ2b3 + w2ḃ3 − k1ḃ2,
b̈2 = k1ḃ1 − ẇ1b3 − w1ḃ3, b̈3 = ẇ1b2 + w1ḃ2 − ẇ2b1 − w2ḃ1.

(9)

Substituting the values of (ẇ1, ẇ2, ḃ1, ḃ2, ḃ3) and (ẅ1, ẅ2, b̈1, b̈2, b̈3) from the equa-
tion (2) into (9). After that equate the coefficients of τ−mi−2, i = 1, 2 and τ−nj−2, j =
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1, 2, 3 to get,

w10 = b20, w20 = −b10, 2b10 = −w20b30,
2b20 = w10b30, 2b30 = −w10b20 + w20b10.

(10)

The above equalities can be rewritten as,


1 0 0 −1 0
0 1 1 0 0
0 b30 2 0 w20

−b30 0 0 2 −w10

b20 −b10 −w20 w10 2

+


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





−m1w10

−m2w20

−n1b10
−n2b20
−n3b30

 =


0
0
0
0
0


(11)

that is (K + I)(−m1w10, −m2w20, −n1b10, −n2b20, −n3b30)
T = 0.

Therefore, (−m1w10, −m2w20, −n1b10, −n2b20, −n3b30)
T is an eigenvector of K

with eigenvalue -1.

Remark 2.3. Due to the above theorem, we remark that t0 is a resonance param-
eter corresponding to eigenvalue J = −1 and E−1 = (−m1w10, −m2w20, −n1b10,
− n2b20, −n3b30)

T is the required resonance vector.

Case II: Free parameter appear in the leading order coefficients for the resonance
value J = 0.

Theorem 2.4. If the exponents of a balance (2) are Fuchsian. Then the tangent
vectors to the subvariety of required leading order coefficient vector (w10, w20, b10,
b20, b30)

T is an eigenvector of Kowalevskian matrix K with eigenvalue J = 0 of the
system of ODEs (1).
Proof. For the given system of ODEs (1), we have obtained leading order coef-
ficients given by (5). We take the derivative of equations (5) with respect to free
parameter r1 and get,

w′10 = ∓ r1√
−4− r21

, w′20 = 1, b′10 = −1, b′20 = ∓ r1√
−4− r21

, b′30 = 0. (12)

where ′ = d
dr1

. With further calculations using (5), we have the following equation.
1 0 0 −1 0
0 1 1 0 0
0 b30 2 0 w20

−b30 0 0 2 −w10

b20 −b10 −w20 w10 2



w′10
w′20
b′10
b′20
b′30

 =


0
0
0
0
0

 , (13)
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that is, K d
dr1

(w10, w20, b10, b20, b30)
T = 0. This shows that the vector

d
dr1

(w10, w20, b10, b20, b30)
T is an eigenvector of K corresponding to the eigenvalue

J = 0. Hence, complete the proof.

Remark 2.5. One free parameter r1 enters in the leading order coefficients as
a resonance parameter corresponding to the resonance J = 0 and the tangent
vector to the solution curve (2) in the direction of resonance parameter r1 is
E0 = d

dr1
(w10, w20, b10, b20, b30)

T and it is the required resonance vector.

Case III: Free parameters in the succeeding coefficients. The compatibility con-
ditions for the remaining resonances that is J = 2, 3, 4 are checked, some free
parameters appear in the subsequent coefficients. For our system of ODEs (1),
j = 1 is not an eigenvalue therefore there is a unique solution for j = 1.

Theorem 2.6. If the leading exponents of a balance (2) are Fuchsian. Then for
j = 1, the affine space is trivial and for the eigenvalues J = 2, 3, 4, the j-th coeffi-
cient vectors form an affine space parallel to the eigen space of K of the ODEs (1).
Proof. To prove this theorem we first find the eigenvectors of Kowalevskian matrix
K for J > 0.
For j = 1: Since j = 1 is not an eigenvalue of K, the j-th coefficient vector is
trivial to determine. Therefore, the affine space for j = 1 is trivial.
For j = 2: Since J = 2 is an eigenvalue for the matrix K and corresponding
eigenvector is

E2 = (e20, e21, e22, e23, e24)
T

=

(
∓
√
−4− r21

2
, −r1

2
, −r1

2
, ±
√
−4− r21

2
, 1

)T

.
(14)

For j = 3: Since J = 3 is an eigenvalue of matrix K, the corresponding eigenvector
is

E3 = (e30, e31, e32, e33, e34)
T

=

(
−1

2
, ±
√
−4− r21
2r1

, ±
√
−4− r21
r1

, 1, 0

)T

.
(15)

For j = 4: Also we have J = 4 is an eigenvalue of the matrix K and corresponding
eigenvector is given below.

E4 = (e40, e41, e42, e43, e44)
T

=

(
−1

3
, ∓ r1

3
√
−4− r21

, ∓ r1√
−4− r21

, 1, ∓ 4

3
√
−4− r21

)T

.
(16)
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Now we look at the j-th coefficient vector for j = 2, 3, 4 from the computations
that we did in deployment of Painlevé test are now import here for ready reference
(c.f. [3]). Firstly for j = 2

w12 =

√
−4− r21

2
[−r2 + f ′k1] = ∓e20[−r2 + f ′k1],

w22 =
−r2r1 + f ′r1k1

2
= e21[r2 − f ′k1],

b12 =
−r2r1 + f ′2r1

2
= ±e22[r2 − f ′2],

b22 =

√
−4− r21

2
[r2 − f ′2] = e23[r2 − f ′2],

b32 = e24r2.

(17)

For j = 3

w13 = e30r3 +
1

4
f ′r1(f

′k1 − r2),

w23 = ±e31r3 +

√
−4− r21

2
(f ′r2 − f ′2r1),

b13 = ±e32r3, b23 = e33r3, b33 = e34.

(18)

and for j = 4,

w14 = e40r4 −
√
−4− r21
12r1

[−f ′2r1r2 − 2f ′r3 + f ′3r1k1],

w24 = ∓e41r4 +
f ′2r1r2 + 2f ′r3 − f ′3r1k1

12
,

b14 = ∓e42r4, b24 = e43r4,

b34 = ∓e44r4 −
f ′2r1r2 − 3r1r

2
2 + 2f ′r3 − f ′3r1k1 + 3f ′r1r2k1 − 6r3k1

6r1
.

(19)

This shows that the j-th coefficient vectors for both the branches of leading order
coefficients form an affine space parallel to the Eigen space of K with eigenvalues
J = 2, 3, 4.

In the next section, it is shown that the matrix K is diagonalizable.
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3. Diagonalization of Kowalevskian matrix K
We may diagonalize the Kowalevskian matrix K with the Eigenvectors(resonance
vectors) which are analytically dependent on t0 and the leading order coefficients.
It is known that the matrix K is called diagonalizable if there exist an invertible ma-
trix R such that R−1KR is a diagonal matrix say D. Our system of ODEs (1) has
the balance (2) which consist of the resonance parameters t0, r1, r2, r3, r4 with cor-
responding resonances J = −1, 0, 2, 3, 4 that are nothing but the distinct eigenval-
ues of matrix K. Further, the spectrum and an indicial locus of the Kowalevskian
matrix K are defined as follows.

Definition 3.1 (Spectrum). The set of eigenvalues of matrix K is called as the
spectrum of matrix K.

We also notice from literature that if a free parameter r enters at the r-th step of
mirror transformations, then r is belongs to the spectrum of Kowalevskian matrix
K.

Definition 3.2 (Indicial Locus). The set of leading order coefficients of (2)
which are determined by using the principal dominant balance is called as indicial
locus.

The Kowalevskian matrix K will only be evaluated at elements of indicial locus
[1]. An important property of the Kowalevskian matrix K that we noticed is
presented in the form of following proposition.

Proposition 3.3. If the exponents of balance (2) are Fuchsian and the vector field
defined by the system (1) is divergence free then the trace of matrix K is given by

Trace (K) = −

(
2∑

i=1

mi +
3∑

j=1

nj

)
.

Proof. In their paper Desale and Patil [5] has shown that the exponents of balance
(2) are Fuchsian. The derivative of vector field

(w1, w2, b1, b2, b3) 7−→ (f ′w2−b2,−f ′w1+b1, w2b3−k1b2, k1b1−w1b3+Ra,w1b2−w2b1)

is given by the following matrix
0 f ′ 0 −1 0
−f ′ 0 1 0 0

0 b3 0 −k1 w2

−b3 0 k1 0 −w1

b2 −b1 −w2 w1 0

 . (20)
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The trace of above matrix is zero and hence the system (1) is divergence free. By
definition of the matrix K,

K =


1 0 0 −1 0
0 1 1 0 0
0 b30 2 0 w20

−b30 0 0 2 −w10

b20 −b10 −w20 w10 2

 (21)

This implies

K =


0 0 0 −1 0
0 0 1 0 0
0 b30 0 0 w20

−b30 0 0 0 −w10

b20 −b10 −w20 w10 0

+


−m1 0 0 0 0

0 −m2 0 0 0
0 0 −n1 0 0
0 0 0 −n2 0
0 0 0 0 −n3

 (22)

Therefore,

Trace (K) = 0− (m1 +m2 + n1 + n2 + n3)

Hence,

Trace (K) = −

(
2∑

i=1

mi +
3∑

j=1

nj

)
.

The diagonalization of matrix K is provided in the following proposition.
Proposition 3.4. If the exponents of balance (2) are Fuchsian, then the resonance
vectors E−1, E0, E2, E3 and E4 form a basis of C5 and the Kowalevskian matrix
K is diagonalizable.
Proof. From section 2, we saw that the resonance vectors that we have determined
are E−1, E0, E2, E3 and E4 are corresponding the distinct eigenvalues of matrix
K. Let us denote R to be a resonance matrix whose columns are the eigenvectors
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of K. That is,

R = (E−1, E0, E2, E3, E4)

=



−
√
−4− r21 − r1√

−4− r21
−1

2

√
−4− r21 −1

2
−1

3

−r1 1 −r1
2

√
−4− r21
2r1

− r1

3
√
−4− r21

2r1 −1 −r1
2

√
−4− r21
r1

− r1√
−4− r21

−2
√
−4− r21 −

r1√
−4− r21

1

2

√
−4− r21 1 1

−4 0 1 0 − 4

3
√
−4− r21


(23)

Further, we see that det (R) =
120

r1(4 + r21)
6= 0, so that the vectors E−1, E0, E2,

E3 and E4 are linearly independent vectors belonging to C5 and dim C5 is five.
Therefore, these vectors forms the basis for C5. Since matrix K has five linearly
independent resonance vectors (Eigenvectors) in C5 so it is diagonalizable and
diagonal form of matrix K is given by:

D = R−1KR =


−1 0 0 0 0
0 0 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

 (24)

Thus it complete the proof.
In following section we conclude the work under consideration.

4. Conclusion
The exponents given by (4) of balance (2) are principal for both branches of leading
order coefficients. Also, we conclude that the Kowalevskian matrix K fulfils the
following conditions:

1. −1 is the eigenvalue of matrix K which is essential for the solution (2) have
movable singularity.

2. The eigen space corresponding to the eigenvalue −1 is of dimension one.
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3. Matrix K is diagonalizable.

4. The number of resonance parameters including t0 an arbitrary position of
singularity are to be equal to the order of system.

Furthermore, the resonance vectors E−1, E0, E2, E3 and E4 form a basis for C5

which is the essential condition for constructing the mirror system for given system
of differential equations.
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