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1. Introduction, Notations and Definitions

The q-rising factorial (a; q)y is defined as,

(@ a) :{ (1—a)(1 —ag)(1 —ag?)...(1—ag™) ifk> 1.

Similarly, the infinite g-rising factorial is defined by

[e.o]

(a:q)e = [[0 = aq’). for g < 1.

r=0

The g-generalization of 1+14+14+14...41=n is
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l—gq

Similarly, Ramanujan generalized the continued fraction
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and showed that for |g| < 1, this continued fraction is a ratio of very similar looking
sums,
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where
> . - (1.2)
—~(1-q)1—¢*)..(1-¢") (66" )(q*0")oc
and . o)
qk k+1 B 1
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are most famous “Series=Product” identities known as Rogers-Ramanujan identi-
ties.
Two identities on Slater’s list [4], number 34 and 36, can be stated as,
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These identities become better known when they were given partition interpre-
tations by Géllnitz [2] and independently by Gordon [3].
Two more identities which are special cases of corollary 2.7 on page 21 of [1]
can be stated as

n=0
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and
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. 1.7
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In next section we shall establish continued fractions for the ratios of (1.4), (1.5)
and (1.6), (1.7).
2. Main Results
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In this section we shall establish continued fraction for the ratio of (1.4) and
(1.5). Our attempt will also be to find a continued fraction for the ratio of (1.6)
and (1.7).
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Again,
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Combining (2.1) and (2.2) we have
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[terating this process finally we have
i (= P)ng" +*
2. 2
(@) 1g(1+9) ¢' PA+¢) ¢

(b) Let us now consider the ratio
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Combining (2.5) and (2.6) we have,
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[terating this process, we finally get,
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