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Abstract: Let Pk be the graded polynomial algebra F2[x1, x2, . . . , xk] with the
degree of each generator xi being 1, where F2 denote the prime field of two elements.
We study the hit problem, set up by Frank Peterson, of finding a minimal set of
generators for the polynomial algebra Pk as a module over the mod-2 Steenrod
algebra, A. In this paper, we explicitly determine all admissible monomials for the
case k = 5 in degree fourteen.
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1. Introduction and Statement of Results
Denote by Pk = H∗((RP∞)k) the modulo-2 cohomology algebra of the direct

product of k copies of infinite dimensional real projective spaces RP∞. Then, Pk

is isomorphic to the graded polynomial algebra F2[x1, x2, . . . , xk] of k variables, in
which each xj is of degree 1. Here the cohomology is taken with coefficients in the
prime field F2 of two elements.

The A-module structure of Pk is explicitly determined by the formula

Sqi(xj) =


xj, i = 0,
x2j , i = 1,
0, i > 1,

1This work was financially supported by HCMC University of Technology and Education under
Grant No. T2020-70TD.
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and the Cartan formula Sqn(xy) =
∑n

i=0 Sq
i(x)Sqn−i(y), where x, y ∈ Pk (see

Steenrod and Epstein [7]).
A polynomial f in Pk is called hit if it can be written as a finite sum f =∑

u>0 Sq
2u(hu) for suitable polynomials hu. That means f belongs to A+Pk, where

A+ denotes the augmentation ideal in A.
The Peterson hit problem is to find a minimal generating set for Pk regarded as

a module over the mod-2 Steenrod algebra. Equivalently, this problem is to find a
basis for the vector space

QPk := F2⊗APk
∼= Pk/A+Pk

in each degree n, where A+ is an ideal of A generated by all Steenrod squares of
positive degrees. Such a basis may be represented by a list of monomials of degree
n.

This problem has first been studied by Peterson [3], Wood [15], Singer [6],
Priddy [4], who pointed out its relationship with some classical problems in homo-
topy theory such as the cobordism theory of manifolds, the modular representation
theory of linear groups, Adams spectral sequences of stable homotopy of spheres,
and stable homotopy type of the classifying space of finite groups. Then, this prob-
lem was investigated by Nam [2], Silverman [5], Wood [15], Sum [8, 9, 10], Tin-Sum
[12], Tin [11, 13] and others.

For a positive integer n, by µ(n) one means the smallest number r for which it
is possible to write n =

∑
16i6r(2

ui − 1), where ui > 0. Wood proved the following
result.
Theorem 1.1 (Wood [15]). If µ(n) > k, then (QPk)n = 0.

From the above result of Wood, the hit problem is reduced to the case of degree
n with µ(n) 6 k.

One of our main tools is Kameko’s homomorphism S̃q
0

∗ : QPk → QPk, which is
induced by an F2-linear map φk : Pk → Pk, given by

φk(x) =

{
y, if x = x1x2 . . . xky

2,

0, otherwise,

for any monomial x ∈ Pk. The map φk is not an A-homomorphism. However,
φkSq

2i = Sqiφk and φkSq
2i+1 = 0 for any non-negative integer i.

Theorem 1.2 (Kameko [1]). Let d be a non-negative integer. If µ(2d+ k) = k,
then

S̃q
0

∗ : (QPk)2d+k −→ (QPk)d

is an isomorphism of F2-vector spaces.
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Thus, the hit problem is reduced to the case of degree n of the form

n = r(2s − 1) + 2sm,

where r, s,m are non-negative intergers such that 0 6 µ(m) < r < k.
So far, the F2-vector space QPk was explicitly calculated by Peterson [3] for

k = 1, 2, by Kameko [1] for k = 3 and by Sum [9] for k = 4. However, for k > 4, it
is still unsolved, even in the case of k = 5 with the help of computers.

In this paper, we study the hit problem for k = 5 and the degree fourteen. The
main result of the paper is the following.
Theorem 1.3. There exist exactly 320 admissible monomials of degree fourteen in
P5. Consequently, dim(QP5)14 = 320.

We prove the above theorem by explicitly determining all admissible monomials
of degree fourteen in P5.

This paper is organized as follows. In Section 2, we recall some needed infor-
mation on the weight vectors of monomials, the admissible monomials in Pk and
Singer’s criterion on the hit monomials. The proof of main theorem is presented in
Section 3. Finally, in the appendix we list all the admissible monomials of degree
fourteen in P+

5 .
2. Preliminaries

In this section, we recall some needed information from Kameko [1], Singer [6]
and Sum [8], which will be used in the next section.
Notation 2.1. We denote Nk = {1, 2, . . . , k} and

XJ = X{j1,j2,...,js} =
∏

j∈Nk\J

xj, J = {j1, j2, . . . , js} ⊂ Nk,

Let αi(a) denote the i-th coefficient in dyadic expansion of a non-negative inte-
ger a. That means a = α0(a)20 + α1(a)21 + α2(a)22 + . . . , for αi(a) = 0 or 1 with
i > 0.

Let x = xa11 x
a2
2 . . . xakk ∈ Pk. Denote νj(x) = aj, 1 6 j 6 k. Set

Jt(x) = {j ∈ Nk : αt(νj(x)) = 0},

for t > 0. Then, we have x =
∏

t>0X
2t

Jt(x).
Definition 2.2. For a monomial x in Pk, define two sequences associated with x
by

ω(x) = (ω1(x), ω2(x), . . . , ωi(x), . . .), σ(x) = (ν1(x), ν2(x), . . . , νk(x)),
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where ωi(x) =
∑

16j6k αi−1(νj(x)) = degXJi−1(x), i > 1. The sequence ω(x) is
called the weight vector of x.

Let ω = (ω1, ω2, . . . , ωi, . . .) be a sequence of non-negative integers. The se-
quence ω is called the weight vector if ωi = 0 for i� 0.

The sets of all the weight vectors and the exponent vectors are given the left
lexicographical order.

For a weight vector ω, we define degω =
∑

i>0 2i−1ωi. Denote by Pk(ω) the
subspace of Pk spanned by all monomials y such that deg y = degω, ω(y) 6 ω,
and by P−k (ω) the subspace of Pk spanned by all monomials y ∈ Pk(ω) such that
ω(y) < ω.
Definition 2.3. Let ω be a weight vector and f, g two polynomials of the same
degree in Pk.

i) f ≡ g if and only if f − g ∈ A+Pk. If f ≡ 0 then f is called hit.
ii) f ≡ω g if and only if f − g ∈ A+Pk + P−k (ω).
Obviously, the relations ≡ and ≡ω are equivalence ones. Denote by QPk(ω) the

quotient of Pk(ω) by the equivalence relation ≡ω and QPk := F2 ⊗A Pk. Then, we
have

QPk(ω) = Pk(ω)/((A+Pk ∩ Pk(ω)) + P−k (ω)).

Definition 2.4. Let x, y be monomials of the same degree in Pk. We say that
x < y if and only if one of the following holds:

i) ω(x) < ω(y);
ii) ω(x) = ω(y) and σ(x) < σ(y).

Definition 2.5. A monomial x is said to be inadmissible if there exist monomials
y1, y2, . . . , ym such that yt < x for t = 1, 2, . . . ,m and x−

∑m
t=1 yt ∈ A+Pk.

A monomial x is said to be admissible if it is not inadmissible.
Obviously, the set of all the admissible monomials of degree n in Pk is a minimal

set of A-generators for Pk in degree n.

Theorem 2.6 (See Kameko [1], Sum [8]). Let x, y, w be monomials in Pk such
that ωi(x) = 0 for i > r > 0, ωs(w) 6= 0 and ωi(w) = 0 for i > s > 0.

i) If w is inadmissible, then xw2r is also inadmissible.
ii) If w is strictly inadmissible, then wy2

s
is also strictly inadmissible.

Now, we recall a result of Singer [6] on the hit monomials in Pk.
Definition 2.7. A monomial z in Pk is called a spike if νj(z) = 2tj − 1 for tj a
non-negative integer and j = 1, 2, . . . , k. If z is a spike with t1 > t2 > . . . > tr−1 >
tr > 0 and tj = 0 for j > r, then it is called the minimal spike.

In [6], Singer showed that if µ(n) 6 k, then there exists uniquely a minimal
spike of degree n in Pk.
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The following is a criterion for the hit monomials in Pk.
Theorem 2.8 (See Singer [6]). Suppose x ∈ Pk is a monomial of degree n, where
µ(n) 6 k. Let z be the minimal spike of degree n. If ω(x) < ω(z), then x is hit.

Now, we recall some notations and definitions in [9], which will be used in the
next sections. We set

P 0
k = 〈{x = xa11 x

a2
2 . . . xakk : a1a2 . . . ak = 0}〉,

P+
k = 〈{x = xa11 x

a2
2 . . . xakk : a1a2 . . . ak > 0}〉.

It is easy to see that P 0
k and P+

k are the A-submodules of Pk. Furthermore, we
have the following.
Proposition 2.9. We have a direct summand decomposition of the F2-vector
spaces QPk = QP 0

k ⊕QP+
k . Here QP 0

k = F2 ⊗A P 0
k and QP+

k = F2 ⊗A P+
k .

Definition 2.10. For any 1 6 i 6 k, define the homomorphism fi : Pk−1 → Pk of
algebras by substituting

fi(xj) =

{
xj, if 1 6 j < i,

xj+1, if i 6 j < k.

Then, fi is a homomorphism of A-modules.
For a subset B ⊂ Pk, we denote [B] = {[f ] : f ∈ B}. If B ⊂ Pk(ω), then we set

[B]ω = {[f ]ω : f ∈ B}. From Theorem 2.8, we see that if ω is the weight vector of
a minimal spike in Pk, then [B]ω = [B]. Obviously, we have
Proposition 2.11. If B is a minimal set of generators for A-module Pk−1 in
degree n, then f(B) =

⋃k
i=1 fi(B) is a minimal set of generators for A-module P 0

k

in degree n.
From now on, we denote by Bk(n) the set of all admissible monomials of degree

n in Pk, B0
k(n) = Bk(n)∩P 0

k , B+
k (n) = Bk(n)∩P+

k . For a weight vector ω of degree
n, we set Bk(ω) = Bk(n) ∩ Pk(ω), B+

k (ω) = B+
k (n) ∩ Pk(ω).

Then, [Bk(ω)]ω and [B+
k (ω)]ω, are respectively the basses of the F2-vector spaces

QPk(ω) and QP+
k (ω) := QPk(ω) ∩QP+

k .
3. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3 by explicitly determining all ad-
missible monomials of degree fourteen in P5. First, we give a direct summand
decomposition of the F2-vector spaces (QP5)14 as follows.
Proposition 3.1. We have a direct summand decomposition of the F2-vector
spaces

(QP5)14 = (QP 0
5 )14 ⊕QP+

5 (4, 3, 1)⊕QP+
5 (4, 5)⊕QP+

5 (2, 4, 1)⊕QP+
5 (2, 2, 2).
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Proof. Since Pk = ⊕d>0(Pk)d is the graded polynomial algebra and using Propo-
sition 2.9, we obtain (QP5)14 = (QP 0

5 )14 ⊕ (QP+
5 )14.

Suppose x is an admissible monomial of degree 14 in P+
5 . Observe that z = x71x

7
2

is the minimal spike of degree 14 in P5 and ω(z) = (2, 2, 2). Since the degree of (x)
is even, using Theorem 2.8, we obtain either ω1(x) = 2 or ω1(x) = 4.

If ω1(x) = 2 then x = xixjv
2 with v an admissible monomial of degree six in P5.

It is easy to check that ω(v) = (4, 1) or ω(v) = (2, 2). Therefore, ω(x) = (2, 4, 1) or
ω(x) = (2, 2, 2).

If ω1(x) = 4 then we have x = xixjx`xtu
2 with u an admissible monomial of

degree five in P5. It is easy to see that ω(u) = (5, 0) or ω(u) = (3, 1). Thus,
ω(x) = (4, 5) or ω(x) = (4, 3, 1).

So, ω(x) is one of the following sequences:

ω(1) = (4, 5), ω(2) = (4, 3, 1), ω(3) = (2, 2, 2), ω(4) = (2, 4, 1).

On the other hand, we have

QPk(ω) ∼= QP ω
k := 〈{[x] ∈ QPk : x is admissible and ω(x) = ω}〉.

Hence, one get

(QPk)n =
⊕

degω=n

QP ω
k
∼=

⊕
degω=n

QPk(ω), (see Walker-Wood [14]).

And therefore, (QP+
5 )14 = QP+

5 (ω(1))⊕QP+
5 (ω(2))⊕QP+

5 (ω(3))⊕QP+
5 (ω(4)). The

proposition is proved.
Recall that (QP4)14 is an F2-vector space of dimension 35 with a basis consisting

of all the classes represented by the monomials wj, 1 6 j 6 35 . Consequently,
|B4(14)| = 35, (see Sum [9]).

Using Proposition 2.11, we obtain

dim(QP 0
5 )14 = |f(B4(14))| = |

5⋃
i=1

fi(B4(14))| = 190.

So, [B0
5(14)] = {[at] : at ∈

⋃5
i=1 fi(B4(14)), 1 6 t 6 190} is a basis of the F2-vector

space (QP 0
5 )14.

Next, we explicitly determine (QP+
5 )14 by proving some propositions as follows.

Proposition 3.2. B+
5 (ω(1)) = ∅. That means QP+

5 (ω(1)) = 0.
Proof. Let x be an monomial in P+

5 such that ω(x) = ω(1). Then x = xixjx`xt.v
2
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with v ∈ B5(5) and 1 6 i < j < ` < t 6 5. By direct computation, using Theorem
2.6 we see that x is a permutation of one of the monomials: x2ix

3
jx

3
`x

3
tx

3
s. Here

(i, j, `, t, s) is a permutation of (1, 2, 3, 4, 5).

A simple computation shows that

x = x2ix
3
jx

3
`x

3
tx

3
s =Sq1(xix

3
jx

3
`x

3
tx

3
s) + xix

4
jx

3
`x

3
tx

3
s+

+ xix
3
jx

4
`x

3
tx

3
s + xix

3
jx

3
`x

4
tx

3
s + xix

3
jx

3
`x

3
tx

4
s,

and ω(xix
4
jx

3
`x

3
tx

3
s) = ω(xix

3
jx

4
`x

3
tx

3
s) = ω(xix

3
jx

3
`x

4
tx

3
s) = ω(xix

3
jx

3
`x

3
tx

4
s) < ω(x)

These relations imply that x is inadmissible. The proposition is proved.
Proposition 3.3. The set {[at] : 191 6 t 6 290} is a basis of the F2-vector space
QP+

5 (ω(2)). Here, the monomials at, 191 6 t 6 290, are determined as in Appendix.

We prove the proposition by showing that B+
5 (ω(2)) = {at : 191 6 t 6 290},

where the monomials at, 191 6 t 6 290, are listed in Appendix. We need some
lemmas for the proof of this proposition.
Lemma 3.4. The monomials x3ix

3
jx

2
`xtx

5
s, x

3
ix

3
jx

6
`xtxs, x

3
ix

7
jx

2
`xtxs are inadmissible.

Here (i, j, `, t, s) is a permutation of (1, 2, 3, 4, 5), with ` < t, s.
Proof. We prove this lemma for the monomial x = x31x

7
2x

2
3x4x5. The others can

be proved by similar computations. It is easy to see that

x = Sq1(x31x
7
2x3x4x5) + x41x

7
2x3x4x5 + x31x

8
2x3x4x5 + x31x

7
2x3x

2
4x5 + x31x

7
2x3x4x

2
5

and

ω(x) > max{ω(x41x
7
2x3x4x5), ω(x31x

8
2x3x4x5), ω(x31x

7
2x3x

2
4x5), ω(x31x

7
2x3x4x

2
5)}

Hence, x is an inadmissible monomial. The lemma is proved.

By direct calculation, one gets the following lemma.
Lemma 3.5. The monomials x21xix

3
jx

3
`x

5
t , x

2
1xixjx

3
`x

7
t , x

4
1xix

3
jx

3
`x

3
t , x

6
1xixjx

3
`x

3
t

are inadmissible. Here (i, j, `, t) is a permutation of (2, 3, 4, 5).
Proof of Proposition 3.3. Let x be an admissible monomial in P+

5 such that
ω(x) = ω(2). Then x = xixjx`xt.w

2 with w ∈ B5(3, 1) and 1 6 i < j < ` < t 6 5.

By direct computation, using Theorem 2.6 we see that if z ∈ P+
5 (ω(2)) and

z /∈ B+
5 (ω(2)) then z is one of the monomials which is given in one of Lemmas

3.4 and 3.5. And therefore, the F2-vector space QP+
5 (ω(4)) is generated by the set

{[at] : 191 6 t 6 290}.
We now prove the set {[at] : 191 6 t 6 290} is linearly independent in QP5.

For any 1 6 i < j 6 5, we define the homomorphism p(i;j) : P5 → P4 of algebras
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by substituting

p(i;j)(xu) =


xu, if 1 6 u < i,

xj−1, if u = i,

xu−1, if i < u 6 5.

Remarkably, these homomorphisms are also A-modules homomorphisms. We use
them to prove that a certain set of monomials is actually the set of admissible
monomials in P5 by showing these monomials are linearly independent in QP5.

Suppose there is a linear relation

S =
290∑

t=191

γtat ≡ 0,

where γt ∈ F2. Using the results in [9], we explicitly compute p(i;j)(S) in terms
of the admissible monomials in P4(mod(A+P4)). By direct computation from the
relations p(i;j)(S) ≡ 0, one gets γt = 0 for all 191 6 t 6 290. The proposition
follows.
Proposition 3.6. The set {[at] : 291 6 t 6 305} is a basis of the F2-vector space
QP+

5 (ω(3)). Here, the monomials at, 291 6 t 6 305, are determined as in Appendix.
We prove the proposition by showing that B+

5 (ω(3)) = {at : 291 6 t 6 305},
where the monomials at, 291 6 t 6 305, are listed in Appendix. We need some
lemmas for the proof of this proposition.
Lemma 3.7. The following monomials are inadmissible: x31x

2
jx

4
`xtx

4
s with j < t, s;

x1x
2
jx

2
`x

4
tx

5
s, x1x

2
jx

6
`x

4
txs with j, ` < s. Here (j, `, t, s) is a permutation of (2, 3, 4, 5).

Proof. It is easy to check that

x = x1x
2
2x

2
3x

4
4x

5
5 = Sq2(x1x2x3x

4
4x

5
5) + Sq1(x21x2x3x

4
4x

5
5) (mod P−5 (ω(3))).

This equality shows that [x1x
2
2x

2
3x

4
4x

5
5]ω(3)

= 0. Hence, x is inadmissible monomial.
The others can be proved by the similar computations. And therefore, the lemma
is proved.

By a simple computation, one gets the following lemma.
Lemma 3.8. The monomials x21xixjx

4
`x

6
t , x

2
1xix

2
jx

4
`x

5
t , x

2
1xix

3
jx

4
`x

4
t , x

6
1xixjx

2
`x

4
t

are inadmissible. Here (i, j, `, t) is a permutation of (2, 3, 4, 5).
Proof of Proposition 3.6. Let x be an admissible monomial in P+

5 such that
ω(x) = ω(3). Then x = xixj.v

2 with v ∈ B5(2, 2) and 1 6 i < j 6 5.
By direct calculation, using Theorem 2.6 we see that if z ∈ P+

5 (2, 2, 2) and
z /∈ B+

5 (ω(3)) then z is a one of the monomials which is given in one of Lemmas 3.7
and 3.8. This implies B+

5 (ω(3)) ⊂ {at : 291 6 t 6 305}.



The Admissible Monomial Basis for the Polynomial Algebra ... 35

We now prove the set {[at] : 291 6 t 6 305} is linearly independent in QP5.
Suppose there is a linear relation

U =
305∑

t=291

γtat ≡ 0,

where γt ∈ F2. Using the results in [9], we explicitly compute p(i;j)(U) in terms
of the admissible monomials in P4(mod(A+P4)). By the direct computation from
the relations p(i;j)(U) ≡ 0, one gets γt = 0 for all 291 6 t 6 305. The proposition
follows.

By a similar computation as in Proposition 3.6, we get the following.
Proposition 3.9. The set {[at] : 306 6 t 6 320} is a basis of the F2-vector space
QP+

5 (ω(4)). Here, the monomials at, 306 6 t 6 320, are determined as in Appendix.
In summary, dim(QP+

5 )14 = 130. And therefore, Theorem 1.3 is completely
proved.
4. Appendix

In this section, we list all admissible monomials, at, 191 6 t 6 320, in (P+
5 )14.

1) B+
5 (4, 3, 1) is the set of 100 monomials as follows:

x11x
1
2x

2
3x

3
4x

7
5 x11x

1
2x

2
3x

7
4x

3
5 x11x

1
2x

3
3x

2
4x

7
5 x11x

1
2x

3
3x

7
4x

2
5 x11x

1
2x

7
3x

2
4x

3
5

x11x
1
2x

7
3x

3
4x

2
5 x11x

2
2x

1
3x

3
4x

7
5 x11x

2
2x

1
3x

7
4x

3
5 x11x

2
2x

3
3x

1
4x

7
5 x11x

2
2x

3
3x

7
4x

1
5

x11x
2
2x

7
3x

1
4x

3
5 x11x

2
2x

7
3x

3
4x

1
5 x11x

3
2x

1
3x

2
4x

7
5 x11x

3
2x

1
3x

7
4x

2
5 x11x

3
2x

2
3x

1
4x

7
5

x11x
3
2x

2
3x

7
4x

1
5 x11x

3
2x

7
3x

1
4x

2
5 x11x

3
2x

7
3x

2
4x

1
5 x11x

7
2x

1
3x

2
4x

3
5 x11x

7
2x

1
3x

3
4x

2
5

x11x
7
2x

2
3x

1
4x

3
5 x11x

7
2x

2
3x

3
4x

1
5 x11x

7
2x

3
3x

1
4x

2
5 x11x

7
2x

3
3x

2
4x

1
5 x31x

1
2x

1
3x

2
4x

7
5

x31x
1
2x

1
3x

7
4x

2
5 x31x

1
2x

2
3x

1
4x

7
5 x31x

1
2x

2
3x

7
4x

1
5 x31x

1
2x

7
3x

1
4x

2
5 x31x

1
2x

7
3x

2
4x

1
5

x31x
7
2x

1
3x

1
4x

2
5 x31x

7
2x

1
3x

2
4x

1
5 x71x

1
2x

1
3x

2
4x

3
5 x71x

1
2x

1
3x

3
4x

2
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2) B+
5 (2, 2, 2) is the set of 15 monomials as follows:
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3) B+
5 (2, 4, 1) is the set of 15 monomials as follows:
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