# THE ADMISSIBLE MONOMIAL BASIS FOR THE POLYNOMIAL ALGEBRA OF FIVE VARIABLES IN DEGREE FOURTEEN 

H. N. Ly and N. K. Tin<br>Faculty of Applied Sciences, HCMC University of Technology and Education, VIETNAM

E-mail : lyhn@hcmute.edu.vn, tinnk@hcmute.edu.vn
(Received: Apr. 27, 2020 Accepted: Sep. 13, 2020 Published: Dec. 30, 2020)
Abstract: Let $P_{k}$ be the graded polynomial algebra $\mathbb{F}_{2}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ with the degree of each generator $x_{i}$ being 1 , where $\mathbb{F}_{2}$ denote the prime field of two elements. We study the hit problem, set up by Frank Peterson, of finding a minimal set of generators for the polynomial algebra $P_{k}$ as a module over the mod-2 Steenrod algebra, $\mathcal{A}$. In this paper, we explicitly determine all admissible monomials for the case $k=5$ in degree fourteen.

Keywords and Phrases: Steenrod squares, hit problem, algebraic transfer.
2010 Mathematics Subject Classification: Primary 55S10, 55S05, 55T15.

## 1. Introduction and Statement of Results

Denote by $P_{k}=H^{*}\left(\left(\mathbb{R} P^{\infty}\right)^{k}\right)$ the modulo- 2 cohomology algebra of the direct product of $k$ copies of infinite dimensional real projective spaces $\mathbb{R} P^{\infty}$. Then, $P_{k}$ is isomorphic to the graded polynomial algebra $\mathbb{F}_{2}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ of $k$ variables, in which each $x_{j}$ is of degree 1 . Here the cohomology is taken with coefficients in the prime field $\mathbb{F}_{2}$ of two elements.

The $\mathcal{A}$-module structure of $P_{k}$ is explicitly determined by the formula

$$
S q^{i}\left(x_{j}\right)= \begin{cases}x_{j}, & i=0, \\ x_{j}^{2}, & i=1, \\ 0, & i>1,\end{cases}
$$

[^0]and the Cartan formula $S q^{n}(x y)=\sum_{i=0}^{n} S q^{i}(x) S q^{n-i}(y)$, where $x, y \in P_{k}$ (see Steenrod and Epstein [7]).

A polynomial $f$ in $P_{k}$ is called hit if it can be written as a finite sum $f=$ $\sum_{u \geqslant 0} S q^{2^{u}}\left(h_{u}\right)$ for suitable polynomials $h_{u}$. That means $f$ belongs to $\mathcal{A}^{+} P_{k}$, where $\mathcal{A}^{+}$denotes the augmentation ideal in $\mathcal{A}$.

The Peterson hit problem is to find a minimal generating set for $P_{k}$ regarded as a module over the mod-2 Steenrod algebra. Equivalently, this problem is to find a basis for the vector space

$$
Q P_{k}:=\mathbb{F}_{2} \otimes_{\mathcal{A}} P_{k} \cong P_{k} / \mathcal{A}^{+} P_{k}
$$

in each degree $n$, where $\mathcal{A}^{+}$is an ideal of $\mathcal{A}$ generated by all Steenrod squares of positive degrees. Such a basis may be represented by a list of monomials of degree $n$.

This problem has first been studied by Peterson [3], Wood [15], Singer [6], Priddy [4], who pointed out its relationship with some classical problems in homotopy theory such as the cobordism theory of manifolds, the modular representation theory of linear groups, Adams spectral sequences of stable homotopy of spheres, and stable homotopy type of the classifying space of finite groups. Then, this problem was investigated by Nam [2], Silverman [5], Wood [15], Sum [8, 9, 10], Tin-Sum [12], Tin $[11,13]$ and others.

For a positive integer $n$, by $\mu(n)$ one means the smallest number $r$ for which it is possible to write $n=\sum_{1 \leqslant i \leqslant r}\left(2^{u_{i}}-1\right)$, where $u_{i}>0$. Wood proved the following result.
Theorem 1.1 (Wood [15]). If $\mu(n)>k$, then $\left(Q P_{k}\right)_{n}=0$.
From the above result of Wood, the hit problem is reduced to the case of degree $n$ with $\mu(n) \leqslant k$.

One of our main tools is Kameko's homomorphism $\widetilde{S q}_{*}^{0}: Q P_{k} \rightarrow Q P_{k}$, which is induced by an $\mathbb{F}_{2}$-linear map $\phi_{k}: P_{k} \rightarrow P_{k}$, given by

$$
\phi_{k}(x)= \begin{cases}y, & \text { if } x=x_{1} x_{2} \ldots x_{k} y^{2} \\ 0, & \text { otherwise }\end{cases}
$$

for any monomial $x \in P_{k}$. The map $\phi_{k}$ is not an $\mathcal{A}$-homomorphism. However, $\phi_{k} S q^{2 i}=S q^{i} \phi_{k}$ and $\phi_{k} S q^{2 i+1}=0$ for any non-negative integer $i$.
Theorem 1.2 (Kameko [1]). Let d be a non-negative integer. If $\mu(2 d+k)=k$, then

$$
\widetilde{S q}_{*}^{0}:\left(Q P_{k}\right)_{2 d+k} \longrightarrow\left(Q P_{k}\right)_{d}
$$

is an isomorphism of $\mathbb{F}_{2}$-vector spaces.

Thus, the hit problem is reduced to the case of degree $n$ of the form

$$
n=r\left(2^{s}-1\right)+2^{s} m,
$$

where $r, s, m$ are non-negative intergers such that $0 \leqslant \mu(m)<r<k$.
So far, the $\mathbb{F}_{2}$-vector space $Q P_{k}$ was explicitly calculated by Peterson [3] for $k=1,2$, by Kameko [1] for $k=3$ and by Sum [9] for $k=4$. However, for $k>4$, it is still unsolved, even in the case of $k=5$ with the help of computers.

In this paper, we study the hit problem for $k=5$ and the degree fourteen. The main result of the paper is the following.
Theorem 1.3. There exist exactly 320 admissible monomials of degree fourteen in $P_{5}$. Consequently, $\operatorname{dim}\left(Q P_{5}\right)_{14}=320$.

We prove the above theorem by explicitly determining all admissible monomials of degree fourteen in $P_{5}$.

This paper is organized as follows. In Section 2, we recall some needed information on the weight vectors of monomials, the admissible monomials in $P_{k}$ and Singer's criterion on the hit monomials. The proof of main theorem is presented in Section 3. Finally, in the appendix we list all the admissible monomials of degree fourteen in $P_{5}^{+}$.

## 2. Preliminaries

In this section, we recall some needed information from Kameko [1], Singer [6] and Sum [8], which will be used in the next section.
Notation 2.1. We denote $\mathbb{N}_{k}=\{1,2, \ldots, k\}$ and

$$
X_{\mathbb{J}}=X_{\left\{j_{1}, j_{2}, \ldots, j_{s}\right\}}=\prod_{j \in \mathbb{N}_{k} \backslash \mathbb{J}} x_{j}, \quad \mathbb{J}=\left\{j_{1}, j_{2}, \ldots, j_{s}\right\} \subset \mathbb{N}_{k},
$$

Let $\alpha_{i}(a)$ denote the $i$-th coefficient in dyadic expansion of a non-negative integer $a$. That means $a=\alpha_{0}(a) 2^{0}+\alpha_{1}(a) 2^{1}+\alpha_{2}(a) 2^{2}+\ldots$, for $\alpha_{i}(a)=0$ or 1 with $i \geqslant 0$.

Let $x=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}} \in P_{k}$. Denote $\nu_{j}(x)=a_{j}, 1 \leqslant j \leqslant k$. Set

$$
\mathbb{J}_{t}(x)=\left\{j \in \mathbb{N}_{k}: \alpha_{t}\left(\nu_{j}(x)\right)=0\right\},
$$

for $t \geqslant 0$. Then, we have $x=\prod_{t \geqslant 0} X_{ل_{t}(x)}^{2^{t}}$.
Definition 2.2. For a monomial $x$ in $P_{k}$, define two sequences associated with $x$ by

$$
\omega(x)=\left(\omega_{1}(x), \omega_{2}(x), \ldots, \omega_{i}(x), \ldots\right), \quad \sigma(x)=\left(\nu_{1}(x), \nu_{2}(x), \ldots, \nu_{k}(x)\right),
$$

where $\omega_{i}(x)=\sum_{1 \leqslant j \leqslant k} \alpha_{i-1}\left(\nu_{j}(x)\right)=\operatorname{deg} X_{\mathbb{J}_{i-1}(x)}, i \geqslant 1$. The sequence $\omega(x)$ is called the weight vector of $x$.

Let $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{i}, \ldots\right)$ be a sequence of non-negative integers. The sequence $\omega$ is called the weight vector if $\omega_{i}=0$ for $i \gg 0$.

The sets of all the weight vectors and the exponent vectors are given the left lexicographical order.

For a weight vector $\omega$, we define $\operatorname{deg} \omega=\sum_{i>0} 2^{i-1} \omega_{i}$. Denote by $P_{k}(\omega)$ the subspace of $P_{k}$ spanned by all monomials $y$ such that $\operatorname{deg} y=\operatorname{deg} \omega, \omega(y) \leqslant \omega$, and by $P_{k}^{-}(\omega)$ the subspace of $P_{k}$ spanned by all monomials $y \in P_{k}(\omega)$ such that $\omega(y)<\omega$.
Definition 2.3. Let $\omega$ be a weight vector and $f, g$ two polynomials of the same degree in $P_{k}$.
i) $f \equiv g$ if and only if $f-g \in \mathcal{A}^{+} P_{k}$. If $f \equiv 0$ then $f$ is called hit.
ii) $f \equiv_{\omega} g$ if and only if $f-g \in \mathcal{A}^{+} P_{k}+P_{k}^{-}(\omega)$.

Obviously, the relations $\equiv$ and $\equiv_{\omega}$ are equivalence ones. Denote by $Q P_{k}(\omega)$ the quotient of $P_{k}(\omega)$ by the equivalence relation $\equiv_{\omega}$ and $Q P_{k}:=\mathbb{F}_{2} \otimes_{\mathcal{A}} P_{k}$. Then, we have

$$
Q P_{k}(\omega)=P_{k}(\omega) /\left(\left(\mathcal{A}^{+} P_{k} \cap P_{k}(\omega)\right)+P_{k}^{-}(\omega)\right)
$$

Definition 2.4. Let $x, y$ be monomials of the same degree in $P_{k}$. We say that $x<y$ if and only if one of the following holds:
i) $\omega(x)<\omega(y)$;
ii) $\omega(x)=\omega(y)$ and $\sigma(x)<\sigma(y)$.

Definition 2.5. A monomial $x$ is said to be inadmissible if there exist monomials $y_{1}, y_{2}, \ldots, y_{m}$ such that $y_{t}<x$ for $t=1,2, \ldots, m$ and $x-\sum_{t=1}^{m} y_{t} \in \mathcal{A}^{+} P_{k}$.

A monomial $x$ is said to be admissible if it is not inadmissible.
Obviously, the set of all the admissible monomials of degree $n$ in $P_{k}$ is a minimal set of $\mathcal{A}$-generators for $P_{k}$ in degree $n$.

Theorem 2.6 (See Kameko [1], Sum [8]). Let $x, y$, $w$ be monomials in $P_{k}$ such that $\omega_{i}(x)=0$ for $i>r>0, \omega_{s}(w) \neq 0$ and $\omega_{i}(w)=0$ for $i>s>0$.
i) If $w$ is inadmissible, then $x w^{2^{r}}$ is also inadmissible.
ii) If $w$ is strictly inadmissible, then $w y^{2^{s}}$ is also strictly inadmissible.

Now, we recall a result of Singer [6] on the hit monomials in $P_{k}$.
Definition 2.7. A monomial $z$ in $P_{k}$ is called a spike if $\nu_{j}(z)=2^{t_{j}}-1$ for $t_{j}$ a non-negative integer and $j=1,2, \ldots, k$. If $z$ is a spike with $t_{1}>t_{2}>\ldots>t_{r-1} \geqslant$ $t_{r}>0$ and $t_{j}=0$ for $j>r$, then it is called the minimal spike.

In [6], Singer showed that if $\mu(n) \leqslant k$, then there exists uniquely a minimal spike of degree $n$ in $P_{k}$.

The following is a criterion for the hit monomials in $P_{k}$.
Theorem 2.8 (See Singer [6]). Suppose $x \in P_{k}$ is a monomial of degree $n$, where $\mu(n) \leqslant k$. Let $z$ be the minimal spike of degree $n$. If $\omega(x)<\omega(z)$, then $x$ is hit.

Now, we recall some notations and definitions in [9], which will be used in the next sections. We set

$$
\begin{aligned}
P_{k}^{0} & =\left\langle\left\{x=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}: a_{1} a_{2} \ldots a_{k}=0\right\}\right\rangle, \\
P_{k}^{+} & =\left\langle\left\{x=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}: a_{1} a_{2} \ldots a_{k}>0\right\}\right\rangle .
\end{aligned}
$$

It is easy to see that $P_{k}^{0}$ and $P_{k}^{+}$are the $\mathcal{A}$-submodules of $P_{k}$. Furthermore, we have the following.
Proposition 2.9. We have a direct summand decomposition of the $\mathbb{F}_{2}$-vector spaces $Q P_{k}=Q P_{k}^{0} \oplus Q P_{k}^{+}$. Here $Q P_{k}^{0}=\mathbb{F}_{2} \otimes_{\mathcal{A}} P_{k}^{0}$ and $Q P_{k}^{+}=\mathbb{F}_{2} \otimes_{\mathcal{A}} P_{k}^{+}$.
Definition 2.10. For any $1 \leqslant i \leqslant k$, define the homomorphism $f_{i}: P_{k-1} \rightarrow P_{k}$ of algebras by substituting

$$
f_{i}\left(x_{j}\right)= \begin{cases}x_{j}, & \text { if } 1 \leqslant j<i, \\ x_{j+1}, & \text { if } i \leqslant j<k .\end{cases}
$$

Then, $f_{i}$ is a homomorphism of $\mathcal{A}$-modules.
For a subset $B \subset P_{k}$, we denote $[B]=\{[f]: f \in B\}$. If $B \subset P_{k}(\omega)$, then we set $[B]_{\omega}=\left\{[f]_{\omega}: f \in B\right\}$. From Theorem 2.8, we see that if $\omega$ is the weight vector of a minimal spike in $P_{k}$, then $[B]_{\omega}=[B]$. Obviously, we have
Proposition 2.11. If $B$ is a minimal set of generators for $\mathcal{A}$-module $P_{k-1}$ in degree $n$, then $f(B)=\bigcup_{i=1}^{k} f_{i}(B)$ is a minimal set of generators for $\mathcal{A}$-module $P_{k}^{0}$ in degree $n$.

From now on, we denote by $B_{k}(n)$ the set of all admissible monomials of degree $n$ in $P_{k}, B_{k}^{0}(n)=B_{k}(n) \cap P_{k}^{0}, B_{k}^{+}(n)=B_{k}(n) \cap P_{k}^{+}$. For a weight vector $\omega$ of degree $n$, we set $B_{k}(\omega)=B_{k}(n) \cap P_{k}(\omega), B_{k}^{+}(\omega)=B_{k}^{+}(n) \cap P_{k}(\omega)$.

Then, $\left[B_{k}(\omega)\right]_{\omega}$ and $\left[B_{k}^{+}(\omega)\right]_{\omega}$, are respectively the basses of the $\mathbb{F}_{2}$-vector spaces $Q P_{k}(\omega)$ and $Q P_{k}^{+}(\omega):=Q P_{k}(\omega) \cap Q P_{k}^{+}$.

## 3. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3 by explicitly determining all admissible monomials of degree fourteen in $P_{5}$. First, we give a direct summand decomposition of the $\mathbb{F}_{2}$-vector spaces $\left(Q P_{5}\right)_{14}$ as follows.
Proposition 3.1. We have a direct summand decomposition of the $\mathbb{F}_{2}$-vector spaces

$$
\left(Q P_{5}\right)_{14}=\left(Q P_{5}^{0}\right)_{14} \oplus Q P_{5}^{+}(4,3,1) \oplus Q P_{5}^{+}(4,5) \oplus Q P_{5}^{+}(2,4,1) \oplus Q P_{5}^{+}(2,2,2) .
$$

Proof. Since $P_{k}=\oplus_{d \geqslant 0}\left(P_{k}\right)_{d}$ is the graded polynomial algebra and using Proposition 2.9, we obtain $\left(Q P_{5}\right)_{14}=\left(Q P_{5}^{0}\right)_{14} \oplus\left(Q P_{5}^{+}\right)_{14}$.

Suppose $x$ is an admissible monomial of degree 14 in $P_{5}^{+}$. Observe that $z=x_{1}^{7} x_{2}^{7}$ is the minimal spike of degree 14 in $P_{5}$ and $\omega(z)=(2,2,2)$. Since the degree of $(x)$ is even, using Theorem 2.8, we obtain either $\omega_{1}(x)=2$ or $\omega_{1}(x)=4$.

If $\omega_{1}(x)=2$ then $x=x_{i} x_{j} v^{2}$ with $v$ an admissible monomial of degree six in $P_{5}$. It is easy to check that $\omega(v)=(4,1)$ or $\omega(v)=(2,2)$. Therefore, $\omega(x)=(2,4,1)$ or $\omega(x)=(2,2,2)$.

If $\omega_{1}(x)=4$ then we have $x=x_{i} x_{j} x_{\ell} x_{t} u^{2}$ with $u$ an admissible monomial of degree five in $P_{5}$. It is easy to see that $\omega(u)=(5,0)$ or $\omega(u)=(3,1)$. Thus, $\omega(x)=(4,5)$ or $\omega(x)=(4,3,1)$.

So, $\omega(x)$ is one of the following sequences:

$$
\omega_{(1)}=(4,5), \omega_{(2)}=(4,3,1), \omega_{(3)}=(2,2,2), \omega_{(4)}=(2,4,1) .
$$

On the other hand, we have

$$
Q P_{k}(\omega) \cong Q P_{k}^{\omega}:=\left\langle\left\{[x] \in Q P_{k}: x \text { is admissible and } \omega(x)=\omega\right\}\right\rangle .
$$

Hence, one get

$$
\left(Q P_{k}\right)_{n}=\bigoplus_{\operatorname{deg} \omega=n} Q P_{k}^{\omega} \cong \bigoplus_{\operatorname{deg} \omega=n} Q P_{k}(\omega), \quad(\text { see Walker-Wood }[14]) .
$$

And therefore, $\left(Q P_{5}^{+}\right)_{14}=Q P_{5}^{+}\left(\omega_{(1)}\right) \oplus Q P_{5}^{+}\left(\omega_{(2)}\right) \oplus Q P_{5}^{+}\left(\omega_{(3)}\right) \oplus Q P_{5}^{+}\left(\omega_{(4)}\right)$. The proposition is proved.

Recall that $\left(Q P_{4}\right)_{14}$ is an $\mathbb{F}_{2}$-vector space of dimension 35 with a basis consisting of all the classes represented by the monomials $w_{j}, 1 \leqslant j \leqslant 35$. Consequently, $\left|B_{4}(14)\right|=35$, (see Sum [9]).

Using Proposition 2.11, we obtain

$$
\operatorname{dim}\left(Q P_{5}^{0}\right)_{14}=\left|f\left(B_{4}(14)\right)\right|=\left|\bigcup_{i=1}^{5} f_{i}\left(B_{4}(14)\right)\right|=190 .
$$

So, $\left[B_{5}^{0}(14)\right]=\left\{\left[a_{t}\right]: a_{t} \in \bigcup_{i=1}^{5} f_{i}\left(B_{4}(14)\right), 1 \leqslant t \leqslant 190\right\}$ is a basis of the $\mathbb{F}_{2}$-vector space $\left(Q P_{5}^{0}\right)_{14}$.

Next, we explicitly determine $\left(Q P_{5}^{+}\right)_{14}$ by proving some propositions as follows. Proposition 3.2. $B_{5}^{+}\left(\omega_{(1)}\right)=\emptyset$. That means $Q P_{5}^{+}\left(\omega_{(1)}\right)=0$. Proof. Let $x$ be an monomial in $P_{5}^{+}$such that $\omega(x)=\omega_{(1)}$. Then $x=x_{i} x_{j} x_{\ell} x_{t} \cdot v^{2}$
with $v \in B_{5}(5)$ and $1 \leqslant i<j<\ell<t \leqslant 5$. By direct computation, using Theorem 2.6 we see that $x$ is a permutation of one of the monomials: $x_{i}^{2} x_{j}^{3} x_{\ell}^{3} x_{t}^{3} x_{s}^{3}$. Here $(i, j, \ell, t, s)$ is a permutation of $(1,2,3,4,5)$.

A simple computation shows that

$$
\begin{aligned}
x=x_{i}^{2} x_{j}^{3} x_{\ell}^{3} x_{t}^{3} x_{s}^{3}= & S q^{1}\left(x_{i} x_{j}^{3} x_{\ell}^{3} x_{t}^{3} x_{s}^{3}\right)+x_{i} x_{j}^{4} x_{\ell}^{3} x_{t}^{3} x_{s}^{3}+ \\
& +x_{i} x_{j}^{3} x_{\ell}^{4} x_{t}^{3} x_{s}^{3}+x_{i} x_{j}^{3} x_{\ell}^{3} x_{t}^{4} x_{s}^{3}+x_{i} x_{j}^{3} x_{\ell}^{3} x_{t}^{3} x_{s}^{4}
\end{aligned}
$$

and $\omega\left(x_{i} x_{j}^{4} x_{\ell}^{3} x_{t}^{3} x_{s}^{3}\right)=\omega\left(x_{i} x_{j}^{3} x_{\ell}^{4} x_{t}^{3} x_{s}^{3}\right)=\omega\left(x_{i} x_{j}^{3} x_{\ell}^{3} x_{t}^{4} x_{s}^{3}\right)=\omega\left(x_{i} x_{j}^{3} x_{\ell}^{3} x_{t}^{3} x_{s}^{4}\right)<\omega(x)$ These relations imply that $x$ is inadmissible. The proposition is proved.
Proposition 3.3. The set $\left\{\left[a_{t}\right]: 191 \leqslant t \leqslant 290\right\}$ is a basis of the $\mathbb{F}_{2}$-vector space $Q P_{5}^{+}\left(\omega_{(2)}\right)$. Here, the monomials $a_{t}, 191 \leqslant t \leqslant 290$, are determined as in Appendix.

We prove the proposition by showing that $B_{5}^{+}\left(\omega_{(2)}\right)=\left\{a_{t}: 191 \leqslant t \leqslant 290\right\}$, where the monomials $a_{t}, 191 \leqslant t \leqslant 290$, are listed in Appendix. We need some lemmas for the proof of this proposition.
Lemma 3.4. The monomials $x_{i}^{3} x_{j}^{3} x_{\ell}^{2} x_{t} x_{s}^{5}, x_{i}^{3} x_{j}^{3} x_{\ell}^{6} x_{t} x_{s}, x_{i}^{3} x_{j}^{7} x_{\ell}^{2} x_{t} x_{s}$ are inadmissible. Here $(i, j, \ell, t, s)$ is a permutation of $(1,2,3,4,5)$, with $\ell<t, s$.
Proof. We prove this lemma for the monomial $x=x_{1}^{3} x_{2}^{7} x_{3}^{2} x_{4} x_{5}$. The others can be proved by similar computations. It is easy to see that

$$
x=S q^{1}\left(x_{1}^{3} x_{2}^{7} x_{3} x_{4} x_{5}\right)+x_{1}^{4} x_{2}^{7} x_{3} x_{4} x_{5}+x_{1}^{3} x_{2}^{8} x_{3} x_{4} x_{5}+x_{1}^{3} x_{2}^{7} x_{3} x_{4}^{2} x_{5}+x_{1}^{3} x_{2}^{7} x_{3} x_{4} x_{5}^{2}
$$

and

$$
\omega(x) \geqslant \max \left\{\omega\left(x_{1}^{4} x_{2}^{7} x_{3} x_{4} x_{5}\right), \omega\left(x_{1}^{3} x_{2}^{8} x_{3} x_{4} x_{5}\right), \omega\left(x_{1}^{3} x_{2}^{7} x_{3} x_{4}^{2} x_{5}\right), \omega\left(x_{1}^{3} x_{2}^{7} x_{3} x_{4} x_{5}^{2}\right)\right\}
$$

Hence, $x$ is an inadmissible monomial. The lemma is proved.
By direct calculation, one gets the following lemma.
Lemma 3.5. The monomials $x_{1}^{2} x_{i} x_{j}^{3} x_{\ell}^{3} x_{t}^{5}, x_{1}^{2} x_{i} x_{j} x_{\ell}^{3} x_{t}^{7}, x_{1}^{4} x_{i} x_{j}^{3} x_{\ell}^{3} x_{t}^{3}, x_{1}^{6} x_{i} x_{j} x_{\ell}^{3} x_{t}^{3}$ are inadmissible. Here $(i, j, \ell, t)$ is a permutation of $(2,3,4,5)$.
Proof of Proposition 3.3. Let $x$ be an admissible monomial in $P_{5}^{+}$such that $\omega(x)=\omega_{(2)}$. Then $x=x_{i} x_{j} x_{\ell} x_{t} . w^{2}$ with $w \in B_{5}(3,1)$ and $1 \leqslant i<j<\ell<t \leqslant 5$.

By direct computation, using Theorem 2.6 we see that if $z \in P_{5}^{+}\left(\omega_{(2)}\right)$ and $z \notin B_{5}^{+}\left(\omega_{(2)}\right)$ then $z$ is one of the monomials which is given in one of Lemmas 3.4 and 3.5. And therefore, the $\mathbb{F}_{2}$-vector space $Q P_{5}^{+}\left(\omega_{(4)}\right)$ is generated by the set $\left\{\left[a_{t}\right]: 191 \leqslant t \leqslant 290\right\}$.

We now prove the set $\left\{\left[a_{t}\right]: 191 \leqslant t \leqslant 290\right\}$ is linearly independent in $Q P_{5}$. For any $1 \leqslant i<j \leqslant 5$, we define the homomorphism $p_{(i ; j)}: P_{5} \rightarrow P_{4}$ of algebras
by substituting

$$
p_{(i ; j)}\left(x_{u}\right)= \begin{cases}x_{u}, & \text { if } 1 \leqslant u<i \\ x_{j-1}, & \text { if } u=i \\ x_{u-1}, & \text { if } i<u \leqslant 5\end{cases}
$$

Remarkably, these homomorphisms are also $\mathcal{A}$-modules homomorphisms. We use them to prove that a certain set of monomials is actually the set of admissible monomials in $P_{5}$ by showing these monomials are linearly independent in $Q P_{5}$.

Suppose there is a linear relation

$$
\mathcal{S}=\sum_{t=191}^{290} \gamma_{t} a_{t} \equiv 0,
$$

where $\gamma_{t} \in \mathbb{F}_{2}$. Using the results in [9], we explicitly compute $p_{(i ; j)}(\mathcal{S})$ in terms of the admissible monomials in $P_{4}\left(\bmod \left(\mathcal{A}^{+} P_{4}\right)\right)$. By direct computation from the relations $p_{(i ; j)}(\mathcal{S}) \equiv 0$, one gets $\gamma_{t}=0$ for all $191 \leqslant t \leqslant 290$. The proposition follows.
Proposition 3.6. The set $\left\{\left[a_{t}\right]: 291 \leqslant t \leqslant 305\right\}$ is a basis of the $\mathbb{F}_{2}$-vector space $Q P_{5}^{+}\left(\omega_{(3)}\right)$. Here, the monomials $a_{t}, 291 \leqslant t \leqslant 305$, are determined as in Appendix.

We prove the proposition by showing that $B_{5}^{+}\left(\omega_{(3)}\right)=\left\{a_{t}: 291 \leqslant t \leqslant 305\right\}$, where the monomials $a_{t}, 291 \leqslant t \leqslant 305$, are listed in Appendix. We need some lemmas for the proof of this proposition.
Lemma 3.7. The following monomials are inadmissible: $x_{1}^{3} x_{j}^{2} x_{\ell}^{4} x_{t} x_{s}^{4}$ with $j<t, s$; $x_{1} x_{j}^{2} x_{\ell}^{2} x_{t}^{4} x_{s}^{5}, x_{1} x_{j}^{2} x_{\ell}^{6} x_{t}^{4} x_{s}$ with $j, \ell<s$. Here $(j, \ell, t, s)$ is a permutation of $(2,3,4,5)$. Proof. It is easy to check that

$$
x=x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{4} x_{5}^{5}=S q^{2}\left(x_{1} x_{2} x_{3} x_{4}^{4} x_{5}^{5}\right)+S q^{1}\left(x_{1}^{2} x_{2} x_{3} x_{4}^{4} x_{5}^{5}\right)\left(\bmod P_{5}^{-}\left(\omega_{(3)}\right)\right)
$$

This equality shows that $\left[x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{4} x_{5}^{5}\right]_{\omega_{(3)}}=0$. Hence, $x$ is inadmissible monomial. The others can be proved by the similar computations. And therefore, the lemma is proved.

By a simple computation, one gets the following lemma.
Lemma 3.8. The monomials $x_{1}^{2} x_{i} x_{j} x_{\ell}^{4} x_{t}^{6}, x_{1}^{2} x_{i} x_{j}^{2} x_{\ell}^{4} x_{t}^{5}, x_{1}^{2} x_{i} x_{j}^{3} x_{\ell}^{4} x_{t}^{4}, x_{1}^{6} x_{i} x_{j} x_{\ell}^{2} x_{t}^{4}$ are inadmissible. Here $(i, j, \ell, t)$ is a permutation of $(2,3,4,5)$.
Proof of Proposition 3.6. Let $x$ be an admissible monomial in $P_{5}^{+}$such that $\omega(x)=\omega_{(3)}$. Then $x=x_{i} x_{j} . v^{2}$ with $v \in B_{5}(2,2)$ and $1 \leqslant i<j \leqslant 5$.

By direct calculation, using Theorem 2.6 we see that if $z \in P_{5}^{+}(2,2,2)$ and $z \notin B_{5}^{+}\left(\omega_{(3)}\right)$ then $z$ is a one of the monomials which is given in one of Lemmas 3.7 and 3.8. This implies $B_{5}^{+}\left(\omega_{(3)}\right) \subset\left\{a_{t}: 291 \leqslant t \leqslant 305\right\}$.

We now prove the set $\left\{\left[a_{t}\right]: 291 \leqslant t \leqslant 305\right\}$ is linearly independent in $Q P_{5}$. Suppose there is a linear relation

$$
\mathcal{U}=\sum_{t=291}^{305} \gamma_{t} a_{t} \equiv 0
$$

where $\gamma_{t} \in \mathbb{F}_{2}$. Using the results in [9], we explicitly compute $p_{(i ; j)}(\mathcal{U})$ in terms of the admissible monomials in $P_{4}\left(\bmod \left(\mathcal{A}^{+} P_{4}\right)\right)$. By the direct computation from the relations $p_{(i ; j)}(\mathcal{U}) \equiv 0$, one gets $\gamma_{t}=0$ for all $291 \leqslant t \leqslant 305$. The proposition follows.

By a similar computation as in Proposition 3.6, we get the following.
Proposition 3.9. The set $\left\{\left[a_{t}\right]: 306 \leqslant t \leqslant 320\right\}$ is a basis of the $\mathbb{F}_{2}$-vector space $Q P_{5}^{+}\left(\omega_{(4)}\right)$. Here, the monomials $a_{t}, 306 \leqslant t \leqslant 320$, are determined as in Appendix.

In summary, $\operatorname{dim}\left(Q P_{5}^{+}\right)_{14}=130$. And therefore, Theorem 1.3 is completely proved.

## 4. Appendix

In this section, we list all admissible monomials, $a_{t}, 191 \leqslant t \leqslant 320$, in $\left(P_{5}^{+}\right)_{14}$.

1) $B_{5}^{+}(4,3,1)$ is the set of 100 monomials as follows:
2) $B_{5}^{+}(2,2,2)$ is the set of 15 monomials as follows:

$$
\begin{array}{rllll}
x_{1}^{1} x_{2}^{1} x_{3}^{2} x_{4}^{4} x_{5}^{6} & x_{1}^{1} x_{2}^{1} x_{3}^{2} x_{4}^{6} x_{5}^{4} & x_{1}^{1} x_{2}^{1} x_{3}^{6} x_{4}^{2} x_{5}^{4} & x_{1}^{1} x_{2}^{2} x_{3}^{1} x_{4}^{4} x_{5}^{6} & x_{1}^{1} x_{2}^{2} x_{3}^{1} x_{4}^{6} x_{5}^{4} \\
x_{1}^{1} x_{2}^{2} x_{3}^{4} x_{4}^{1} x_{5}^{6} & x_{1}^{1} x_{2}^{6} x_{3}^{1} x_{4}^{2} x_{5}^{4} & x_{1}^{1} x_{2}^{2} x_{3}^{5} x_{4}^{2} x_{5}^{4} & x_{1}^{1} x_{2}^{2} x_{3}^{3} x_{4}^{4} x_{5}^{4} & x_{1}^{1} x_{2}^{2} x_{3}^{4} x_{4}^{3} x_{5}^{4} \\
x_{1}^{1} x_{2}^{3} x_{3}^{2} x_{4}^{4} x_{5}^{4} & x_{1}^{1} x_{2}^{3} x_{3}^{4} x_{4}^{2} x_{5}^{4} & x_{1}^{3} x_{2}^{1} x_{3}^{2} x_{4}^{4} x_{5}^{4} & x_{1}^{3} x_{2}^{1} x_{3}^{4} x_{4}^{2} x_{5}^{4} & x_{1}^{3} x_{2}^{4} x_{3}^{1} x_{4}^{2} x_{5}^{4}
\end{array}
$$

3) $B_{5}^{+}(2,4,1)$ is the set of 15 monomials as follows:

$$
\begin{array}{rllll}
x_{1}^{1} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{5}^{7} & x_{1}^{1} x_{2}^{2} x_{3}^{2} x_{4}^{7} x_{5}^{2} & x_{1}^{1} x_{2}^{2} x_{3}^{7} x_{4}^{2} x_{5}^{2} & x_{1}^{1} x_{2}^{7} x_{3}^{2} x_{4}^{2} x_{5}^{2} & x_{1}^{7} x_{2}^{1} x_{3}^{2} x_{4}^{2} x_{5}^{2} \\
x_{1}^{1} x_{2}^{2} x_{3}^{2} x_{4}^{3} x_{5}^{6} & x_{1}^{1} x_{2}^{2} x_{3}^{3} x_{4}^{2} x_{5}^{6} & x_{1}^{1} x_{2}^{2} x_{3}^{3} x_{4}^{6} x_{5}^{2} & x_{1}^{1} x_{2}^{3} x_{3}^{2} x_{4}^{2} x_{5}^{6} & x_{1}^{1} x_{2}^{3} x_{3}^{2} x_{4}^{6} x_{5}^{2} \\
x_{1}^{1} x_{2}^{3} x_{3}^{6} x_{4}^{2} x_{5}^{2} & x_{1}^{3} x_{2}^{1} x_{3}^{2} x_{4}^{2} x_{5}^{6} & x_{1}^{3} x_{2}^{1} x_{3}^{2} x_{4}^{6} x_{5}^{2} & x_{1}^{3} x_{2}^{1} x_{3}^{6} x_{4}^{2} x_{5}^{2} & x_{1}^{3} x_{2}^{5} x_{3}^{2} x_{4}^{2} x_{5}^{2}
\end{array}
$$

## 5. Acknowledgement

The authors would like to thank the referee for careful reading of the paper and for useful suggestions. We also would like to thank HCMC University of Technology and Education for supporting this work.

## References

[1] M. Kameko, Products of projective spaces as Steenrod modules, PhD Thesis, The Johns Hopkins University, ProQuest LLC, Ann Arbor, MI, 1990, pp. 29
[2] T. N. Nam, $\mathcal{A}$-générateurs génériques pour l'algébre polynomiale, Adv. Math., 186, (2004), pp. 334-362.
[3] F. P. Peterson, Generators of $H^{*}\left(\mathbb{R} P^{\infty} \times \mathbb{R} P^{\infty}\right)$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc. No., 833, (1987), pp. 55-89.
[4] S. Priddy, On characterizing summands in the classifying space of a group, I, Amer. Jour. Math., 112, (1990), 737-748.
[5] J. H. Silverman, Hit polynomials and the canonical antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc., 123, (1995), pp. 627-637.
[6] W. M. Singer, The transfer in homological algebra, Math. Zeit., 202, (1989), 493-523.
[7] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Annals of Mathematics Studies 50, Princeton University Press, Princeton, N.J, (1962).
[8] N. Sum, The negative answer to Kameko's conjecture on the hit problem, Adv. Math., 225, (2010), 2365-2390.
[9] N. Sum, On the Peterson hit problem, Adv. Math., 274, (2015) 432-489.
[10] N. Sum, The hit problem and the algebraic transfer in some degrees, EastWest J. Math., 20 (2), (2018), 158-179.
[11] N. K. Tin, The admissible monomial basis for the polynomial algebra of five variables in degree $2^{s+1}+2^{s}-5$, East-West J. Math. 16 (1), (2014), 34-46.
[12] N. K. Tin and N. Sum, Kameko's homomorphism and the algebraic transfer, C. R. Acad. Sci. Paris, Ser. I, 354, (2016) 940-943.
[13] N. K. Tin, On Singer's conjecture for the fifth algebraic transfer, Preprint, available online at http://arxiv.org/abs/1609.02250.
[14] G. Walker and R. M. W. Wood, Polynomials and the mod 2 Steenrod algebra. Vol. 1. The Peterson hit problem, London Mathematical Society Lecture Note Series, 442. Cambridge University Press, 2018.
[15] R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Phil. Soc., 105, (1989) 307-309.


[^0]:    ${ }^{1}$ This work was financially supported by HCMC University of Technology and Education under Grant No. T2020-70TD.

