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Abstract: Let P, be the graded polynomial algebra Fy[xq, 2o, ..., zx] with the
degree of each generator x; being 1, where F5 denote the prime field of two elements.
We study the hit problem, set up by Frank Peterson, of finding a minimal set of
generators for the polynomial algebra P, as a module over the mod-2 Steenrod
algebra, A. In this paper, we explicitly determine all admissible monomials for the
case k = 5 in degree fourteen.
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1. Introduction and Statement of Results

Denote by P, = H*((RP>)*) the modulo-2 cohomology algebra of the direct
product of k copies of infinite dimensional real projective spaces RP*. Then, Py
is isomorphic to the graded polynomial algebra Fo[zy, 2o, . .., 2] of k variables, in
which each z; is of degree 1. Here the cohomology is taken with coefficients in the
prime field Fy of two elements.

The A-module structure of Py is explicitly determined by the formula

‘ x;, 1=0,
Sq'(x;) =< 3, i=1,
0, 2>1,
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and the Cartan formula S¢"(xzy) = > 1, Sq¢'(2)S¢" *(y), where z,y € Py (see
Steenrod and Epstein [7]).

A polynomial f in Py is called hit if it can be written as a finite sum f =
D ous0S q*" (hy) for suitable polynomials h,. That means f belongs to A" Py, where
AT denotes the augmentation ideal in A.

The Peterson hit problem is to find a minimal generating set for P, regarded as
a module over the mod-2 Steenrod algebra. Equivalently, this problem is to find a
basis for the vector space

QP :=Fy@4P, = Py /AT P,

in each degree n, where A" is an ideal of A generated by all Steenrod squares of
positive degrees. Such a basis may be represented by a list of monomials of degree
n.

This problem has first been studied by Peterson [3], Wood [15], Singer [6],
Priddy [4], who pointed out its relationship with some classical problems in homo-
topy theory such as the cobordism theory of manifolds, the modular representation
theory of linear groups, Adams spectral sequences of stable homotopy of spheres,
and stable homotopy type of the classifying space of finite groups. Then, this prob-
lem was investigated by Nam [2], Silverman [5], Wood [15], Sum [8, 9, 10], Tin-Sum
[12], Tin [11, 13] and others.

For a positive integer n, by p(n) one means the smallest number r for which it
is possible to write n =, _, (2" — 1), where u; > 0. Wood proved the following
result.

Theorem 1.1 (Wood [15]). If u(n) > k, then (QPx), = 0.

From the above result of Wood, the hit problem is reduced to the case of degree

n with p(n) < k.

—~0
One of our main tools is Kameko’s homomorphism Sq, : Q P, — Q) Py, which is
induced by an Fa-linear map ¢ : P, — Py, given by

y, ifx=mxm0... 2112,
€T) =
é(2) {0, otherwise,

for any monomial x € P,. The map ¢ is not an A-homomorphism. However,
0uSq* = Sq'dy, and ¢, S¢* ! = 0 for any non-negative integer 7.

Theorem 1.2 (Kameko [1]). Let d be a non-negative integer. If p(2d + k) = k,
then

Sa, : (QP)sase — QP4

1s an isomorphism of Fa-vector spaces.
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Thus, the hit problem is reduced to the case of degree n of the form
n=r(2°—1)+ 2°m,

where 7, s, m are non-negative intergers such that 0 < u(m) <r < k.

So far, the Fy-vector space QP was explicitly calculated by Peterson [3] for
k = 1,2, by Kameko [1] for k£ = 3 and by Sum [9] for k£ = 4. However, for k > 4, it
is still unsolved, even in the case of kK = 5 with the help of computers.

In this paper, we study the hit problem for £ = 5 and the degree fourteen. The
main result of the paper is the following.

Theorem 1.3. There exist exactly 320 admissible monomials of degree fourteen in
Ps. Consequently, dim(QPs)14 = 320.

We prove the above theorem by explicitly determining all admissible monomials
of degree fourteen in Ps.

This paper is organized as follows. In Section 2, we recall some needed infor-
mation on the weight vectors of monomials, the admissible monomials in P, and
Singer’s criterion on the hit monomials. The proof of main theorem is presented in
Section 3. Finally, in the appendix we list all the admissible monomials of degree
fourteen in P5".

2. Preliminaries

In this section, we recall some needed information from Kameko [1], Singer [6]
and Sum [8], which will be used in the next section.
Notation 2.1. We denote N, = {1,2,...,k} and

XJ = X{j1,j2,...,j5} - H Xy, J - {jl?j?a cee 7j8} C Nk)
JENL\T

Let a;(a) denote the i-th coefficient in dyadic expansion of a non-negative inte-
ger a. That means a = ap(a)2° + a;(a)2' + az(a)2? + ..., for a;(a) = 0 or 1 with
12 0.

Let v = a{'25* ... x3* € P;. Denote vj(x) = aj,1 < j < k. Set

Ji(x) = {j € Ni : au(v(x)) = 0},

for ¢ > 0. Then, we have = =[], Xftt(m).
Definition 2.2. For a monomial x in P, define two sequences associated with x
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where wi(r) = > i qi-1(vj(z)) = deg Xy, yw), © = 1. The sequence w(x) is
called the weight vector of x.

Let w = (wy,we, ... ,w;,...) be a sequence of non-negative integers. The se-
quence w s called the weight vector if w; = 0 for i > 0.

The sets of all the weight vectors and the exponent vectors are given the left
lexicographical order.

For a weight vector w, we define degw = >, ;2" 'w;. Denote by Py(w) the
subspace of Py spanned by all monomials y such that degy = degw, w(y) < w,
and by P, (w) the subspace of Py spanned by all monomials y € P;(w) such that
w(y) < w.

Definition 2.3. Let w be a weight vector and f,g two polynomials of the same
degree in Py.

i) f=gifand onlyif f—g€ AT P.. If f =0 then f is called hit.

i) f=w g if and only if f —g € AP, + Py (w).

Obviously, the relations = and =, are equivalence ones. Denote by Q Py, (w) the
quotient of Py(w) by the equivalence relation =, and QP := Fy ® 4 P;. Then, we
have

QPi(w) = Pi(w)/((ATP: N Pi(w)) + Py (w)).

Definition 2.4. Let x,y be monomials of the same degree in P,. We say that
x <y if and only if one of the following holds:

i) w(z) <w(y);

i) w(z) =w(y) and o(x) < a(y).
Definition 2.5. A monomial x is said to be inadmissible if there exist monomials
Y1, Y2, - Ym Such that yy < x fort =1,2,... . m and x — > ", y: € AT Py,

A monomial x is said to be admissible if it is not inadmissible.

Obviously, the set of all the admissible monomials of degree n in P, is a minimal
set of A-generators for Py in degree n.

Theorem 2.6 (See Kameko [1], Sum [8]). Let z,y, w be monomials in Py, such
that w;(x) =0 fori>r >0, ws(w) # 0 and w;(w) =0 fori>s>0.

i) If w is inadmissible, then xw?

ii) If w is strictly inadmissible, then wy? is also strictly inadmissible.

Now, we recall a result of Singer [6] on the hit monomials in P.
Definition 2.7. A monomial z in Py is called a spike if v;(z) = 2% — 1 fort; a
non-negative integer and j = 1,2,... k. If z is a spike with t; >ty > ... > 1,1 >
tr >0 and t; =0 for j > r, then it is called the minimal spike.

In [6], Singer showed that if p(n) < k, then there exists uniquely a minimal
spike of degree n in Py.

1s also inadmissible.
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The following is a criterion for the hit monomials in F.
Theorem 2.8 (See Singer [6]). Suppose x € Py is a monomial of degree n, where
wu(n) < k. Let z be the minimal spike of degree n. If w(x) < w(z), then x is hit.
Now, we recall some notations and definitions in [9], which will be used in the
next sections. We set

P) = ({z=a0'23? ... 2% : ajay...ap = 0}),

P =({x=a2®. .. 20" . aias...a; > 0}).

It is easy to see that P and P, are the A-submodules of P;. Furthermore, we
have the following.
Proposition 2.9. We have a direct summand decomposition of the Fy-vector
spaces QP, = QPY & QP Here QP =Fy @4 P and QP =Fy 4 P

Definition 2.10. For any 1 < i < k, define the homomorphism f; - Py_1 — Py of
algebras by substituting
x;, if 1
filz;) = { ’ iy

<
Tjp1, 1<

Then, f; is a homomorphism of A-modules.

For a subset B C Py, we denote [B] = {[f]: f € B}. If B C Py(w), then we set
[Blo =A{[f]w: f € B}. From Theorem 2.8, we see that if w is the weight vector of
a minimal spike in P, then [B], = [B]. Obviously, we have
Proposition 2.11. If B is a minimal set of generators for A-module P,_1 in
degree n, then f(B) = Ule f:(B) is a minimal set of generators for A-module P
in degree n.

From now on, we denote by By(n) the set of all admissible monomials of degree
nin P, BY(n) = Br(n)N PP, B (n) = Bx(n)NP;. For a weight vector w of degree
n, we set B(w) = Bg(n) N Py(w), By (w) = B (n) N Py(w).

Then, [By(w)]., and [B; (w)]., are respectively the basses of the Fo-vector spaces
QP(w) and QP (w) := QP.(w) N QP .

3. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3 by explicitly determining all ad-
missible monomials of degree fourteen in Ps. First, we give a direct summand
decomposition of the Fy-vector spaces (QPs)q4 as follows.

Proposition 3.1. We have a direct summand decomposition of the Fy-vector
spaces

(QP5)14 = (QP5O)14 @ QP5+(4737 1) D QP5+(475) D QP5+<2’47 1) D QP5+(2’ 272)‘
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Proof. Since P, = ®450(P)q is the graded polynomial algebra and using Propo-
sition 2.9, we obtain (QPs)14 = (QP2)14 & (QP:M)14.

Suppose z is an admissible monomial of degree 14 in P". Observe that 2z = z{x]
is the minimal spike of degree 14 in P; and w(z) = (2, 2,2). Since the degree of ()
is even, using Theorem 2.8, we obtain either w;(z) = 2 or w;(x) = 4.

If wy (x) = 2 then & = x;2;0* with v an admissible monomial of degree six in Ps.
It is easy to check that w(v) = (4,1) or w(v) = (2,2). Therefore, w(x) = (2,4,1) or
w(z) =(2,2,2).

If wi(z) = 4 then we have z = $i$j$f$tu2 with v an admissible monomial of
degree five in P5. It is easy to see that w(u) = (5,0) or w(u) = (3,1). Thus,
w(z) = (4,5) or w(z) = (4,3,1).

So, w(x) is one of the following sequences:

wy = (4,5), wey =(4,3,1), we) =(2,2,2), wuy = (2,4,1).
On the other hand, we have
QPr(w) = QP = ({[z] € QP : x is admissible and w(z) = w}).
Hence, one get

(QPx)n @ QP; = @ QP (w), (see Walker-Wood [14]).

degw=n degw=n

And therefore, (QP5 )14 = QP; (w)) ® QP5 (we)) ® QP5 (wis)) ® QP5 (ws)). The
proposition is proved.

Recall that (QPy)14 is an Fo-vector space of dimension 35 with a basis consisting
of all the classes represented by the monomials w;, 1 < j < 35 . Consequently,
|B4(14)| = 35, (see Sum [9]).

Using Proposition 2.11, we obtain

dim(QP7)1s = | f(Ba(14)] = [ fi(Bs(14))] = 190.

So, [BY(14)] = {[a] = a; € U_, fi(Ba4(14)),1 < t < 190} is a basis of the Fy-vector
space (QP)14.

Next, we explicitly determine (QP; )14 by proving some propositions as follows.
Proposition 3.2. B (w)) = 0. That means QP; (w(1)) = 0.
Proof. Let z be an monomlal in P5+ such that w(z) = w(). Then z = {L'iZL‘jZL'g{L‘t.’Uz



The Admissible Monomial Basis for the Polynomial Algebra ... 33

with v € Bs(5) and 1 < i < j < £ <t < 5. By direct computation, using Theorem

2.6 we see that z is a permutation of one of the monomials: zZz3zjziz?. Here

J
(1,7,¢,t,s) is a permutation of (1,2,3,4,5).
A simple computation shows that

_ 23333 gl 3333 4,33 3
v = ririryayr; =S¢ (vxw,r;ry) + vair,riet

J
3,.4,3..3 3,.3,.4,..3 3,.3,.3,.4

+ 2,350, XX+ XX, T+ T T

and w(zjrir}ed) = wlvadrjaiel) = wralsirial) = w(zgdrizie]) < w(z)

These relations imply that x is inadmissible. The proposition is proved.

Proposition 3.3. The set {[a;] : 191 < ¢ < 290} is a basis of the Fy-vector space

QP;(w(g)). Here, the monomials a;, 191 < t < 290, are determined as in Appendiz.
We prove the proposition by showing that Bi (we)) = {a; : 191 < ¢ < 290},

where the monomials a;, 191 < ¢t < 290, are listed in Appendix. We need some

lemmas for the proof of this proposition.

Lemma 3.4. The monomials x3x3x2x,x°, x3x328 Sa7a2

JTL T, T, BT T g, T T X, X are inadmissible.

Here (i,7,¢,t,s) is a permutation of (1,2,3,4,5), with { < t,s.

Proof. We prove this lemma for the monomial x = z3x232,2,. The others can

be proved by similar computations. It is easy to see that

3.,4..3,.3 330043

1/.3.7 4.7 3.8 3.7 2 3.7 2
T = Sq (T)TyT37,4T5) + TITyT3Ty X5 + TYTHT3T,T5 + TITYT3T4 T + T ToT3T 75

and
w(z) > max{w(zrirsr,as), w(rirhryr,s,), wlaiejrsaie,), w(aiejryr,x?)}

Hence, x is an inadmissible monomial. The lemma is proved.

By direct calculation, one gets the following lemma.
Lemma 3.5. The monomials J:%xlx;’x?xf, x%xixjxg’xz, x‘llxlx?x?xf’, x?xixszx?
are inadmissible. Here (i, j,¢,t) is a permutation of (2,3,4,5).
Proof of Proposition 3.3. Let  be an admissible monomial in P;" such that
w(z) = w(e). Then © = z;z;0m.w* with w € B5(3,1) and 1 <i < j <l <t<5.

By direct computation, using Theorem 2.6 we see that if z € P (w)) and
z ¢ Bi (w@) then z is one of the monomials which is given in one of Lemmas
3.4 and 3.5. And therefore, the Fo-vector space QP5 (w)) is generated by the set
{la] : 191 <t < 290}.

We now prove the set {[a;] : 191 < ¢ < 290} is linearly independent in @ Ps.
For any 1 <@ < j < 5, we define the homomorphism p;;) : P5 — P, of algebras
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by substituting
Tu, if 1 <u<r,

Py () = Q 2j1,  ifu=1,

Remarkably, these homomorphisms are also A-modules homomorphisms. We use

them to prove that a certain set of monomials is actually the set of admissible

monomials in P; by showing these monomials are linearly independent in Q) Ps.
Suppose there is a linear relation

290

S = Z%atEO,

t=191

where 7, € Fy. Using the results in [9], we explicitly compute p(;;)(S) in terms
of the admissible monomials in Py(mod(A*Py)). By direct computation from the
relations p(;;;)(S) = 0, one gets ¢ = 0 for all 191 < ¢ < 290. The proposition
follows.
Proposition 3.6. The set {[a:] : 291 < t < 305} is a basis of the Fo-vector space
QP+ (wesy). Here, the monomials a;, 291 < t < 305, are determined as in Appendiz.
We prove the proposition by showing that B+( g)) = {a; : 291 <t < 305},
where the monomials a;, 291 < t < 305, are listed in Appendix. We need some
lemmas for the proof of this proposition.
Lemma 3.7. The following monomials are inadmissible: xixixjx,xy with j <t,s;
oy iapete), xaiafale, with §,0 < s. Here (j,(,t,s) is a permutation of (2,3,4,5).
Proof. It is easy to check that

T=2x x%x%xix? Sq (x1x2x3x4a:5) + Sq (xf x2x3xix5) (mod Py (w 3)))

This equality shows that [z,23232428],, = 0. Hence, x is inadmissible monomial.
The others can be proved by the similar computations. And therefore, the lemma
is proved.

By a simple computation, one gets the following lemma.
Lemma 3.8. The monomials x%xixjxﬁxf, iz, x%?x?, x%mixix;}xf, x?xixszxf
are inadmissible. Here (i, j,¢,t) is a permutation of( 3,4,5).
Proof of Proposition 3.6. Let z be an admissible monomial in P;" such that
w(z) = w(g). Then x = z;z;.0* with v € B5(2,2) and 1 <i < j < 5.

By direct calculation, using Theorem 2.6 we see that if z € P(2,2,2) and
z ¢ Bi (w(s)) then z is a one of the monomials which is given in one of Lemmas 3.7

and 3. 8 ThIS implies Bf (we)) C {a;: 291 < ¢ < 305}.



The Admissible Monomial Basis for the Polynomial Algebra ... 35
We now prove the set {[a;] : 291 < ¢ < 305} is linearly independent in Q) Ps.
Suppose there is a linear relation

305

U= Z’ytatE(L

t=291

where v, € Fo. Using the results in [9], we explicitly compute p;.;)(Uf) in terms
of the admissible monomials in Py(mod(A*P;)). By the direct computation from
the relations p(;.;)(U) = 0, one gets v, = 0 for all 291 < ¢ < 305. The proposition
follows.

By a similar computation as in Proposition 3.6, we get the following.
Proposition 3.9. The set {[a;] : 306 < t < 320} is a basis of the Fy-vector space
QP;(w(4)). Here, the monomials a;, 306 < t < 320, are determined as in Appendiz.

In summary, dim(QP; )14 = 130. And therefore, Theorem 1.3 is completely
proved.

4. Appendix
In this section, we list all admissible monomials, a;, 191 < ¢ < 320, in (P)14.
1) B (4,3,1) is the set of 100 monomials as follows:

rizdriedzal  arledalaled  rixledaixl aleladale? xixlelrixd
viwdaleda?  xleieladel  wladzlelad xleiedzlel  aladadelixl
vizdalzlad  xlaielrixl  riadzleiel  aledrixle?  xiadaizlael
piedadalal  aladalele?  aladalalzl alaleliadad alaloleda?
vielaleiad  awleleledal  alaladzla?  alaladadal  adalelalal
wizdriria?  delalxlel wdxlaiiial  adelalale? adalalidxl
wixlriria?  dalalaiel  alxleladxd alelalade? alxleloiad
pirdededel  alaledeix?  alxiadxial  aladelrix? aladxlaial
viedadadad  aleledaled  alalaladad wladaladal  wladela$ad
virdedeiad  wledadalel  aladalalad aladaSadal  alaSaladad
miaSedziad  wiaSadadel  wdxlelrixl adelalaled  adxledriad
wirdedalal  adelalaled  wdxlaladxl  dedxlaled  adadaliSal
vivsriedad  xlededaded wladadedad  aladalada?  wladalaiaxld
viadadaled  aladaiala?  aladadala?d wladadeda? adalalaedad
pdrdadatad  adeladaiad  adxladada? adwladadad adaladadal
wizsrivia?  dedxlaia? pixdedrixi adedxdaiyl wdxdrlriad
wixdririz?  adeSalxled  wdxdairixl  xiedadzle? adadadaixl
viodeiedad  xlededxled wladziedad adaledadal  odxladaixd
piririaied  wdadaladat  adadalaiald adadadrixd adadadaial
pdrdririad  adedaiadal  adadaladad adadadaixd adadadadal
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2) B (2,2,2) is the set of 15 monomials as follows:

1,.1,.2,.4,.6 1,.1,.2,.6,.4 1,.1,.6,.2,.4 1,.2,.1,.4,.6 1,.2,.1,.6,.4

1,.2,.4,.1,.6 1,.6,.1,.2,.4 1,.2,.5,.2, .4 1,.2,.3,.4,.4 1,.2,.4,.3,.4
LIXX3L 4Ty L1Lolg Tyl  T1XoT3Tyls TTol3Tyly T LoL3L Ty

rivsriviaed  xlrdrizizl oSxlaiedxl adaleiadal  odxlxleiod

3) B (2,4,1) is the set of 15 monomials as follows:

1,.2,2.2.7 1.2.2.7..2 1,.2,7,.2,.2 1,.7,2,2.2 7.1,2.2.2
x%x%xgxgxg x%x%xgx%xg x%x%xgxgxg x%mgxgx%xg x%mgxgxéxg
T1TT3L Ty T XoL3Tyly  T1ToX3Ty Ty T1LoT3T L5  T1LoX3T 4Ty

1..3,.6,.2,.2 3,.1,.2,.2,.6 3,.1,.2,.6,..2 3,.1,.6,.2,.2 3,.5..2,.2..2
LTl 3 Ly Ly L1LgXlgTyls T1XoX3TyLy  T1Tol3Tyly T Lol3Lyly
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