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1. Statement of the Problem
Let X be a real Banach space with a convenient norm ‖ · ‖X and let x, y ∈ X be
any two elements. Then the line segment xy in X is defined by

xy = {z ∈ X | z = x+ r(y − x), 0 ≤ r ≤ 1}. (1.1)

Let x0 ∈ X be a fixed point and z ∈ X. Then for any x ∈ x0z, we define the
sets Sx and Sx in X by

Sx = {rx | −∞ < r < 1}, (1.2)
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and

Sx = {rx | −∞ < r ≤ 1}. (1.3)

Let x1, x2 ∈ xy be arbitrary. We say x1 < x2 if Sx1 ⊂ Sx2 , or equivalently,
x0x1 ⊂ x0x2. In this case we also write x2 > x1.

Let M denote the σ-algebra of all subsets of X such that (X,M) is a measurable
space. Let ca(X,M) be the space of all vector measures (real signed measures) and
define a norm || · || on ca(X,M) by

‖p‖ = |p|(X), (1.4)

where |p| is a total variation measure of p and is given by

|p|(X) = sup
σ

∞∑
i=1

| p(Ei)|, Ei ⊂ X, (1.5)

where the supremum is taken over all possible partitions σ = {Ei : i ∈ N} of
measurable subsets of X. It is known that ca(X,M) is a Banach space with
respect to the norm ‖ · ‖ given by (1.4). Let µ be a σ-finite positive measure on
X, and let p ∈ ca(X,M). We say p is absolutely continuous with respect to the
measure µ if µ(E) = 0 implies p(E) = 0 for some E ∈ M . In this case we also
write p << µ. Let x0 ∈ X be fixed and let M0 denote the σ- algebra on Sx0 . Let
z ∈ X be such that z > x0 and let Mz denote the σ-algebra of all sets containing
M0 and the sets of the form Sx, x ∈ x0z. Obviously, M0 ⊂Mz.

The abstract measure differential and abstract measure integrodifferential equa-
tions are the generalizations of the ordinary differential and ordinary integrodif-
ferential equations. It is a very common fact that the generalization of any idea
always leads to better results with a wide range of applications. Similarly, the
study of abstract measure differential equations is initiated with the prediction
that they may have some nice applications to the area of control theory and op-
timization. Motivated by the generalizations and applications, in this paper we
discuss a nonlinear abstract measure integrodifferential equation for local existence
and extremality of solutions.

Given a vector measure p ∈ ca(X,M) with p << µ, consider the nonlinear
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abstract measure integrodifferential equation (in short AMIGDE) of the form

dp

dµ
= f

(
x, p(Sx),

∫
Sx−Sx0

h
(
τ, p(Sτ )

)
dµ

)

+ g

(
x, p(Sx),

∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)
a.e. [µ] on x0z,

(1.6)

and

p(E) = q(E), E ∈M0, (1.7)

where q is a given known vector measure,
dp

dµ
is a Radon-Nikodym derivative

of p with respect to µ, the maps x 7→ h
(
x, p(Sx)

)
, x 7→ k

(
x, p(Sx)

)
, x 7→

f

(
x, p(Sx),

∫
Sx−Sx0

h
(
τ, p(Sτ )

)
dµ

)
and x 7→ g

(
x, p(Sx),

∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)
are

µ-integrable for each p ∈ ca(Sz,Mz).

Definition 1.1. Given an initial real measure q on M0, a vector p ∈ ca(Sz,Mz)
(z > x0) is said to be a solution of the perturbed AMIGDE (1.6)-(1.7) if

(i) p(E) = q(E), E ∈M0,

(ii) p << µ on x0z, and

(iii) p satisfies (1.6)-(1.7) a.e. [µ] on x0z.

The following result from measure theory is often times used for transforming
the abstract measure differential equation into an equivalent abstract measure in-
tegral equation.

Theorem 1.1 (Radon-Nikkodym theorem). Let λ and µ be two σ-finite measures
defined on a measurable space (X,M) such that λ << µ. Then there exists a
M-measurable function f : X → [0,∞) such that

λ(E) =

∫
E

f dµ (1.8)

for any E ∈M . The function f is unique upto the set of measure zero.
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Note that the function f in the expression (1.8) is called the Radon-Nikodym
derivative of the measure λ with respect to the measure µ and in this case we write

dλ

dµ
= f a. e. [µ] on X. (1.9)

A few details of Radon-Nikodym derivative and its integral representation also
appear in Ruddin [18], Sharma [19, 20], Dhage [1] and the references therein.

Remark 1.1. By an application of Radon-Nikodym theorem given in Theorem 1.1,
the AMIGDE (1.6)-(1.7) is equivalent to the generalized abstract measure integral
equation (in short AMIGDE)

p(E) =

∫
E

f

(
x, p(Sx),

∫
Sx−Sx0

h
(
τ, p(Sτ )

)
dµ

)
dµ

+

∫
E

g

(
x, p(Sx),

∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)
dµ,

(1.10)

if E ∈Mz, E ⊂ x0z. and

p(E) = q(E) if E ∈M0. (1.11)

A solution p of the AMIGDE (1.6)-(1.7) on x0z will be denoted by p(Sx0 , q).
The existence theorem for the AMIGDE (1.6)-(1.7) is an open problem raised in

Dhage [8] and in this paper we prove a local existence result under some generalized
natural Lipschitz and compactness type conditions. The study of abstract mea-
sure differential equations (in short AMDEs) is initiated by Sharma [19, 20] as the
generalizations of the ordinary differential equations in which ordinary derivative
is replaced with the Radon-Nykodym derivative of vector measures in an abstract
space, whereas the study of nonlinear AMIGDEs as the generalization of the or-
dinary integrodifferential equations is initiated by Dhage [1, 2, 3]. The existence
results of Sharma [19, 20] and Dhage [1, 2, 3] are not of local nature whereas the
results of the present paper are local and obtained in a closed ball in the Banach
space ca(X,M) centered at the given initial vector measure q. In the present pa-
per we discuss the relevance and existence theorems to the AMIGDE (1.6)-(1.7)
under suitable natural conditions via a Dhage’s hybrid fixed point technique from
nonlinear functional analysis. In the following section 2 we prove the relevance the-
orem for the AMIGDE (1.6)-(1.7) by relating it to an ordinary integrodifferential
equations. Section 3 deals with the fixed point results needed in the subsequent
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sections of the paper. The existence result is proved in section 4 and the existence
result for extremal solutions is proved in section 5.

2. Relevance Results
In this section we prove the relevance theorem for the AMIGDE (1.6)-(1.7) and it
is shown that the AMIGDE (1.6)-(1.7) reduces to an ordinary integrodifferential
equation, viz.,

y′(x) = f

(
x, y(x),

∫ x

x0

h(τ, y(τ)) dτ

)
+g

(
x, y(x),

∫ x

x0

k(τ, y(τ)) dτ

)
, x ≥ x0,

y(x0) = y0,


(2.1)

under certain suitable natural conditions, where f and g are Carathéodory real-
valued functions on [x0, x0 + T ]× R× R into R.

Let X = R, µ = m, the Lebesgue measure on R, Sx = (−∞, x], x ∈ R, and q a
given real Borel measure on M0. Then equations (1.6)-(1.7) take the form

d

dm
p((−∞, x]) = f

(
x, p(−∞, x],

∫
[x0,x]

h
(
τ, p(−∞, τ ]

)
dm

)
+g

(
x, p(−∞, x],

∫
[x0,x]

k
(
τ, p(−∞, τ ]

)
dm

)
,

p(E) = q(E), E ∈M0.


(2.2)

It will now be shown that the equations (2.1) and (2.2) are equivalent in the
sense of the following theorem.

Theorem 2.1. Let q : M0 → R be a given initial measure such that q(E) = 0
for all E ∈M0 and q({x0}) = 0. Then,

(a) for every solution p = p(Sx0 , q) of (2.2) existing on [x0, x1), there corresponds
a solution y of (2.1) satisfying y(x0) = y0.

(b) Conversely, for every solution y(x) of (2.1), there corresponds a solution
p(Sx0 , q), of (2.2) existing on [x0, x1) with a suitable initial measure q provided
f satisfies the relation f(x0, 0) = 0.
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Proof. (a) Let p = p(Sx0 , q) be a solution of (2.2), existing on [x0, x1). Define a
real Borel measure p1 on R as follows.

p1((−∞, x)) =


0, if x ≤ x0,

p((−∞, x])− p((−∞, x0]), if x0 < x < x1

p((−∞, x1)), if x ≥ x1,

(2.3)

and
p1(−∞, x0]) = p(−∞, x0]).

Define the functions y1(x) and y(x) by

y1(x) = p1((−∞, x)), x ∈ R

y(x) = y1(x) + p((−∞, x0]), x ∈ [x0, x1).
(2.4)

The condition q({x0}) = 0, the definition of the solution p, and the definition
of y(x) together imply that

p1({x0}) = p({x0}) = 0.

Now for each x ∈ [x0, x1) we obtain from (2.2) and the definition of y(x)

y(x) = y1(x) + p((−∞, x0])

= p1((−∞, x)) + p((−∞, x0])

= p(Sx).

(2.5)

Since p is a solution of (2.2) we have p << m on [x0, x1). Hence y(x) is absolutely
continuous on [x0, x1). The details concerning these arguments appear in Rudin
[18, pages 163-165]. This shows that y′(x) exists a. e. on [x0, x1). Now for each
x ∈ [x0, x1), we have, by virtue of (2.3) and (2.4)

p([x0, x]) =

∫
[x0,x]

d

dm
p((−∞, t]) dm.

Therefore,

p((−∞, x])− p((−∞, x0]) =

∫
[x0,x]

d

dm
p((−∞, t]) dm.
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This further implies that

p(Sx) = p(Sx0) +

∫ x

x0

f

(
t, p(St),

∫ t

x0

h
(
τ, p(Sτ )

)
dm

)
dm

+

∫ x

x0

g

(
t, p(St

∫ t

x0

g
(
τ, p(Sτ )

)
dm

)
dm.

That is,

y(x) = y(x0) +

∫ x

x0

f

(
t, y(t),

∫ t

x0

f
(
τ, y(τ)

)
dτ

)
dt

+

∫ x

x0

g

(
t, y(t),

∫ t

x0

k
(
τ, y(τ)

)
dτ

)
dt.

Hence,

y′(x) = f

(
x, y(x),

∫ x

x0

h
(
τ, y(τ)

)
dτ

)
+ g

(
x, y(x),

∫ x

x0

k
(
τ, y(τ)

)
dτ

)
a.e on [x0, x1).

This proves that y(x) is a solution of (2.1) on [x0, x1) satisfying

y(x0) = y0.

(b) Conversely, suppose that y(x) is a solution of (2.1) existing on [x0, x1). Then, y is
absolutely continuous on [x0, x1]. Now, corresponding to the absolutely continuous
function y(x) which is a solution of (2.1) on [x0, x1), we can construct a absolutely
continuous real Borel measure p on Mx1 such that,

p(E) = 0 for all E ∈M0,

p(Sx) = y(x), if x ∈ [x0, x1).
(2.6)

The details concerning these arguments appear in Rudin [18, pages 163-165].
Since y(x) is a solution of (2.1) we have for x ∈ [x0, x1),

y(x) = y(x0) +

∫ x

x0

f

(
t, y(t),

∫ t

x0

h
(
τ, y(τ)

)
dτ

)
dt

+

∫ x

x0

g

(
t, y(t),

∫ t

x0

g
(
τ, y(τ)

)
dτ

)
dt.
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Now, y(x0) = p
(
Sx0
)

= 0 and so, by (2.6) we obtain that

[
p(Sx)− p(Sx0)

]
=

∫
[x0,x]

f

(
t, p(St),

∫
[x0,t]

h
(
τ, p(Sτ )

)
dm

)
dm

+

∫
[x0,x]

g

(
t, p(St),

∫
[x0,t]

k
(
τ, p(Sτ )

)
dm

)
dm.

That is,

p([x0, x]) =

∫
[x0,x]

f

(
t, p(St),

∫
[x0,t]

h
(
τ, p(Sτ )

)
dm

)
dm

+

∫
[x0,x]

g

(
t, p(St),

∫
[x0,t]

k
(
τ, p(Sτ )

)
dm

)
dm.

In general, if E ∈Mx1 , E ⊂ x0x1, then

p(E) =

∫
[x0,x]

f

(
t, p((−∞, t]),

∫
[x0,t]

h
(
τ, p((−∞, τ ])

)
dm

)
dm

+

∫
[x0,x]

g

(
t, p((−∞, t]),

∫
[x0,t]

k
(
τ, p((−∞, τ ])

)
dm

)
dm.

By definition of Radon-Nykodym derivative, we obtain

d

dm

[
p((−∞, x])

]
= f

(
xt, p((−∞, x]),

∫
[x0,x]

h
(
τ, p((−∞, τ ])

)
dm

)

+ g

(
x, p((−∞, x]),

∫
[x0,x]

k
(
τ, p((−∞, τ ])

)
dm

)
a.e. [µ] on x0z,

p(E) = 0 for E ∈M0.

This shows that p is a solution of (2.2) on [x0, x1) and the proof of (b) is complete.

3. Fixed Point Results
To state the required fixed point techniques that will be used in the proofs of main
results, we need the following definitions in what follows.
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Definition 3.1 (Dhage [5, 7]). An upper semi-continuous and nondecreasing
function ψ : R+ → R+ is called a D-function if ψ(0) = 0. The class of all D-
functions on R+ is denoted by D.

Definition 3.2 (Dhage [5, 7]). Let X be a Banach space with a norm ‖ · ‖. An
operator T : X → X is called D-Lipschitz if there exists a D-function ψT ∈ D
such that

‖T x− T y‖ ≤ ψT
(
‖x− y‖

)
(3.1)

for all elements x, y ∈ X.
If ψT (r) = k r, k > 0, T is called a Lipschitz operator on X with the Lipschitz

constant k. Again, if 0 ≤ k < 1, then T is called a contraction on X with
contraction constant k. Furthermore, if ψT (r) < r for r > 0, then T is called
a nonlinear D-contraction on X. The class of all D-functions satisfying the
condition of nonlinear D-contraction is denoted by DN.

An operator T : X → X is called compact if T (X) is a compact subset of X.
T is called totally bounded if for any bounded subset S of X, T (S) is a totally
bounded subset of X. T is called completely continuous if T is continuous and
totally bounded on X. Every compact operator is totally bounded, but the converse
may not be true, however, two notions are equivalent on bounded subsets of X.
The details of different types of nonlinear contraction, compact and completely
continuous operators appear in Granas and Dugundji [16].

To prove the main existence results of next section, we need the following hybrid
fixed point principle of Dhage [8] involving the sum of two operators in a Banach
space X.

Theorem 3.1 (Dhage [7]). Let S be a closed convex and bounded subset of a
Banach space X and let A : X→ X and B : S → X be two operators satisfying the
following conditions.

(a) A is nonlinear D-contraction,

(b) B is completely continuous, and

(c) Ax+ By = x =⇒ x ∈ S for all y ∈ S.

Then the operator equation Ax+ Bx = x has a solution in S.

4. Existence Theorem
We need the following definition in the sequel.
Definition 4.1. A function β : Sz × R× R→ R is called Carathéodory if

(i) x 7→ β(x, u, v) is µ-measurable for each u ∈ R, and
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(ii) (u, v) 7→ β(x, u, v) is jointly continuous almost everywhere [µ] on x0z.

Further a Carathéodory function β(x, u, v) is called LµR-Carathéodory if
(iii) there exists a µ-integrable function γ : Sz → R such that

|β(x, u, v)| ≤ γ(x) a.e. [µ] for x ∈ x0z,

for all u, v ∈ R.
We consider the following set of assumptions.

(H0) For any z > x0, the σ-algebra Mz is compact with respect to the topology
generated by the Pseudo-metric d defined on Mz by

d(E1, E2) = µ(E1∆E2)

for all E1, E2 ∈Mz.

(H1) µ({x0}) = 0.

(H2) There exists a D-function ψf ∈ D such that

|f(x, u1, u2)−f(x, v1, v2)| ≤ ψf
(

max{|u1−v1| , |u2−v2|}
)

a.e. [µ] for x ∈ x0z,

for all u1, u2, v1, v2 ∈ R. Moreover, ψf (r) < r for each r > 0.

(H3) q is continuous on M0 with respect to the Pseudo-metric d defined in (H0).

(H4) The function g is LµR-Carathéodory on Sz × R× R.

Theorem 4.1. Suppose that the hypotheses (H0)-(H4) hold. Then the AMIGDE
(1.6)-(1.7) has a solution.
Proof. By expressions (1.2) and (1.3), we have a real number r(> 1) such that
r → 1 and Srx0 ⊃ Sx0 . Then, from hypothesis (H1), it follows that⋂

r→1

(
Srx0 − Sx0

)
= {x0}

and

µ
(
Srx0 − Sx0

)
= µ({x0}) = 0

whenever r → 1.
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Therefore, we can choose a real number r∗ such that Sr∗x0 ⊃ Sx0 and satisfying

µ
(
Sr∗x0 − Sx0

)
< 1 and

∫
Sr∗x0−Sx0

h(x) dµ < 1. (∗)

Let z∗ = r∗x0. Consider the vector measure p0 on Mz∗ which is a continuous
extension of the measure q on M0 defined by

p0(E) =

q(E) if E ∈M0,

0 if E 6∈M0.

Now, we define a subset S(ρ) of ca(Sz∗ ,Mz∗) by

S(ρ) =
{
p ∈ ca(Sz∗ ,Mz∗) | ‖p− p0‖ ≤ ρ

}
(4.1)

where ρ = Mf + 1. Clearly, S(ρ) is a closed convex ball in ca(Sz∗ ,Mz∗) centered at
p0 of radius ρ and q ∈ S(ρ).

Define the two operators A : ca(Sz∗ ,Mz∗) → ca(Sz∗ ,Mz∗) and B : S(ρ) →
ca(Sz∗ ,Mz∗) by

Ap(E) =


∫
E

f

(
x, p(Sx),

∫
Sx−Sx0

h
(
τ, p(Sτ )

)
dµ

)
dµ if E ∈Mz∗ , E ⊂ x0z∗,

0 if E ∈M0.

(4.2)
and

Bp(E) =


∫
E

g

(
x, p(Sx),

∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)
dµ if E ∈Mz∗ , E ⊂ x0z∗,

q(E) if E ∈M0.

(4.3)
Then the AMIGDE (1.6)-(1.7) is equivalent to the operator equation

Ap(E) + Bp(E) = p(E), E ∈Mz. (4.4)

We shall show that the operators A and B satisfy all the conditions of the hybrid
fixed point theorem, Theorem 2.1 on S(ρ). This will be done in a series of following
steps.
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Step I: Firstly, we show that A is bounded on X = ca(Sz∗ ,Mz∗). Let p ∈
ca(Sz∗ ,Mz∗) be arbitrary element. Then for any E ∈ Mz∗ , there exist subsets
F ∈ M0 and G ∈ Mz∗ , G ⊂ x0z∗ such that E = F ∪ G and F ∩ G 6= ∅. Now, by
definition of the operator A, we obtain Ap(F ) = 0. Therefore, we have

|Ap(E)| ≤
∫
G

∣∣∣∣f(x, p(Sx, ∫
Sx−Sx0

h(x, p(Sτ )) dµ

)∣∣∣∣ dµ ≤Mf

for all E ∈Mz∗ . Therefore, by definition of the norm,

‖Ap‖ = |Ap|(E) = sup
σ

∞∑
i=1

|Ap(Ei)| ≤Mf

for all p ∈ X. As a result, A is a bounded operator on ca(Sz∗ ,Mz∗) into itself.
Step II: First we show that A is a nonlinear D- contraction on ca(Sz∗ ,Mz∗). Let
p1, p2 ∈ ca(Sz∗ ,Mz∗) be any two elements. Then, by definition of the operator T ,
we obtain

Ap1(E)−Ap2(E) = 0 if E ∈M0,

and

Ap1(E)−Ap2(E) =

∫
E

[
f

(
x, p1(Sx),

∫
Sx−Sx0

k
(
τ, p1(Sτ )

)
dµ

)

− f
(
x, p2(Sx),

∫
Sx−Sx0

k
(
τ, p2(Sτ )

)
dµ

)]
dµ

for all E ∈Mz∗ , E ⊂ x0z∗.

Therefore, by hypotheses (H4), we obtain

|Ap1(E)−Ap2(E)|

≤
∫
E

∣∣∣∣f(x, p1(Sx),

∫
Sx−Sx0

k
(
τ, p1(Sτ )

)
dµ

)

− f
(
x, p2(Sx),

∫
Sx−Sx0

k
(
τ, p2(Sτ )

)
dµ

)∣∣∣∣ dµ
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≤
∫
E

ψf

(
max

{∣∣p1(Sx)− p2(Sx)
∣∣ , ∫
x0x

ψk
(∣∣p1(Sτ )− p2(Sτ )

∣∣) dµ}) dµ
≤
∫
E

ψf

(
max

{∣∣p1 − p2

∣∣(Sx) , ∫
x0x

ψk
(∣∣p1 − p2

∣∣(Sτ )) dµ}) dµ
≤
∫
E

ψf

(
max

{∥∥p1 − p2

∥∥ , ∫
x0z∗

ψk
(∥∥p1 − p2

∥∥) dµ}) dµ
≤
∫
E

ψf

(∥∥p1 − p2

∥∥) dµ
≤
∫
x0z∗

ψf

(∥∥p1 − p2

∥∥) dµ
≤ ψf

(∥∥p1 − p2

∥∥)
for all E ∈ Mz∗ , E ⊂ x0z∗. This further in view of definition of the norm in
ca(Sz∗ ,Mz∗) implies that

‖Ap1 −Ap2‖ ≤ ψf

(∥∥p1 − p2

∥∥)
for all E ∈Mz∗ , E ⊂ x0z∗. Hence, A is a nonlinear D-contraction on ca(Sz∗ ,Mz∗).
Step III : Thirdly, we show that B is continuous on S(ρ). Let {pn} be a sequence
of vector measures in S(ρ) converging to a vector measure p. Then by dominated
convergence theorem,

lim
n→∞

Bpn(E) = lim
n→∞

∫
E

g

(
x, pn(Sx),

∫
Sx−Sx0

k
(
τ, pn(Sτ )

)
dµ

)
dµ

=

∫
E

g

(
x, p(Sx),

∫
Sx−Sx0

[
lim
n→∞

k
(
τ, pn(Sτ )

)]
dµ

)
dµ

=

∫
E

g

(
x, p(Sx),

∫
Sx−Sx0

k
(
τ, pn(Sτ )

)
dµ

)
dµ

= Bp(E)

for all E ∈Mz∗ , E ⊂ x0z∗. Similarly, if E ∈M0, then

lim
n→∞

Bpn(E) = q(E) = Bp(E),
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and so B is a pointwise continuous operator on S(ρ).
Next we show that {Bpn : n ∈ N} is a equi-continuous sequence in ca(Sz∗ ,Mz∗).

Let E1, E2 ∈ Mz∗ . Then there exist subsets F1, F2 ∈ M0 and G1, G2 ∈ Mz∗ ,
G1 ⊂ x0z∗, G2 ⊂ x0z∗ such that

E1 = F1 ∪G1 with F1 ∩G1 = ∅

and
E2 = F2 ∪G2 with F2 ∩G2 = ∅.

We know the identities

G1 = (G1 −G2) ∪ (G2 ∩G1), (4.5)

and
G2 = (G2 −G1) ∪ (G1 ∩G2). (4.6)

Therefore, we have

Bpn(E1) − Bpn(E2)

≤ q(F1)− q(F2) +

∫
G1−G2

g

(
x, pn(Sx),

∫
Sx−Sx0

k
(
τ, pn(Sτ )

)
dµ

)
dµ

+

∫
G2−G1

g

(
x, pn(Sx),

∫
Sx−Sx0

k
(
τ, pn(Sτ )

)
dµ

)
dµ.

Since f(x, y) is LµR- Carathéodory, we have that

|Bpn(E1) − Bpn(E2)|

≤ |q(F1)− q(F2)|+
∫

G1∆G2

∣∣∣∣g(x, pn(Sx),

∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)∣∣∣∣ dµ
≤ |q(F1)− q(F2)|+

∫
G1∆G2

γ(x) dµ.

Assume that
d(E1, E2) = µ(E1∆E2)→ 0.

Then we have that E1 → E2. As a result F1 → F2 and µ(G1∆G2) → 0. As q
is continuous on compact Mz∗ , it is uniformly continuous and so

|Bpn(E1)− Bpn(E2)| ≤ |q(F1)− q(F2)|+
∫

G1∆G2

γ(x) dµ
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→ 0 as E1 → E2

uniformly for all n ∈ N. This shows that {Bpn : n ∈ N} is a equi-continuous set in
ca(Sz∗ ,Mz∗). As a result, {Bpn} converges to Bp uniformly on Mz∗ and a fortiori
B is a continuous operator on S(ρ) into ca(Sz∗ ,Mz∗).
Step IV: Next we show that T (S(ρ)) is a totally bounded set in ca(Sz∗ ,Mz∗). We
shall show that the set is uniformly bounded and equi-continuous set in ca(Sz∗ ,Mz∗).
Firstly, we show that T (S(ρ)) is a uniformly bounded set in ca(Sz∗ ,Mz∗).

Let λ ∈ T (S) be an arbitrary element. Then, there is a member p ∈ S such
that λ(E) = Bp(E) for all E ∈ Mz∗ . Let E ∈ Mz∗ . Then there exists two subsets
F ∈M0 and G ∈Mz∗ , G ⊂ x0z∗ such that

E = F ∪G and F ∩G = φ.

Hence by definition of B ,

|λ(E)| = |Bp(E)|

≤ |q(F )|+
∫
G

∣∣∣∣g(x, p(Sx), ∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)∣∣∣∣ dµ
≤ ‖q‖+

∫
G

γ(x) dµ

≤ ‖q‖+

∫
E

γ(x) dµ

< ‖q‖+ 1

for all E ∈Mz∗ . From the above inequality it follows that

‖λ‖ = ‖Bp‖ = |Bp|(E) = sup
σ

∞∑
i=1

|Tp(Ei)| ≤ ‖q‖+ 1

for all λ ∈ B(S(ρ)). As a result B defines a mapping B : S(ρ)→ S(ρ). Moreover,
B(S(ρ)) is a uniformly bounded set in ca(Sz∗ ,Mz∗).

Next we show that B(S(ρ)) is a equi-continuous set of measures in ca(Sz∗ ,Mz∗).
Let E1, E2 ∈ Mz∗ . Then there exist subsets F1, F2 ∈ M0 and G1, G2 ∈ Mz∗ ,
G1 ⊂ x0z∗, G2 ⊂ x0z∗ such that

E1 = F1 ∪G1 with F1 ∩G1 = ∅
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and
E2 = F2 ∪G2 with F2 ∩G2 = ∅.

We know the identities

G1 = (G1 −G2) ∪ (G2 ∩G1), (4.7)

and
G2 = (G2 −G1) ∪ (G1 ∩G2). (4.8)

Therefore, we have

|λ(E1) − λ(E2)|
= |Bp(E1)− Bp(E2)|

≤ |q(F1)− q(F2)|+
∫

G1−G2

∣∣∣∣g(x, p(Sx), ∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)∣∣∣∣ dµ
+

∫
G2−G1

∣∣∣∣g(x, p(Sx), ∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)∣∣∣∣ dµ.
Since g(x, y) is LµR- Carathéodory, we have that

|λ(E1)− λ(E2)| ≤ |q(F1)− q(F2)|+
∫

G1∆G2

∣∣∣∣g(x, p(Sx), ∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)∣∣∣∣ dµ
≤ |q(F1)− q(F2)|+

∫
G1∆G2

γ(x) dµ.

Assume that
d(E1, E2) = µ(E1∆E2)→ 0.

Then we have that E1 → E2. As a result F1 → F2 and µ(G1∆G2) → 0. As q
is continuous on compact M0, it is uniformly continuous and so

|λ(E1)− λ(E2)| ≤ |q(F1)− q(F2)|+
∫

G1∆G2

h(x) dµ

→ 0 as E1 → E2

uniformly for all λ ∈ B(S). This shows that T (S(ρ)) is a equi-continuous set in
ca(Sz∗ ,Mz∗). Now an application of the Arzelà-Ascoli theorem yields that B is a
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totally bounded operator on S(ρ). Now, B is continuous and totally bounded, it is
completely continuous operator on S(ρ) into itself.
Step V: Finally, we show that the hypothesis (c) of Theorem 3.1 is satisfied.
Let p ∈ S(ρ) be arbitrary and let there is an element u ∈ ca(Sz∗ ,Mz∗) such that
Au+Bp = u. We show that u ∈ S. Now, by definitions of the operators A and B,

u(E) =



∫
E

f

(
x, pn(Sx),

∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)
dµ

+

∫
E

g

(
x, pn(Sx),

∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)
dµ, if E ∈Mz, E ⊂ x0z∗,

q(E), if E ∈M0.

for all E ∈Mz.
If E ∈ Mz∗ , then there exist sets F ∈ M0 and G ∈ Mz∗ , G ⊂ x0z∗ such that

E = F ∪G and F ∩G = ∅. Then we have

u(E) = q(F ) +

∫
E

f

(
x, p(Sx),

∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)
dµ

+

∫
E

g

(
x, p(Sx),

∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)
dµ.

which further yields

u(E)− p0(E) =

∫
E

f

(
x, p(Sx),

∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)
dµ

+

∫
E

g

(
x, p(Sx),

∫
Sx−Sx0

k
(
τ, p(Sτ )

)
dµ

)
dµ.

Hence,

|u(E)− p0(E)| ≤
∫
E

∣∣∣∣f(x, p(Sx), ∫
Sx−Sx0

∣∣k(τ, p(Sτ ))∣∣ dµ)∣∣∣∣ dµ
+

∫
E

∣∣∣∣g(x, p(Sx), ∫
Sx−Sx0

∣∣k(τ, p(Sτ ))∣∣ dµ)∣∣∣∣ dµ
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≤ Mf +

∫
x0z∗

γ(x) dµ

< Mf + 1

which further implies that

‖u− p0‖ ≤Mf + 1 = ρ.

As a result, we have u ∈ S and so hypothesis (c) of Theorem 3.1 is satisfied. In
consequence, the operator equation Ap(E)+Bp(E) = p(E) has a solution p(Sx0 , q)
in ca(Sz∗ ,Mz∗). This further implies that the AMIGDE (1.6)-(1.7) has a solution
on x0z∗. This completes the proof.

Remark 4.1. We note that Theorem 4.1 is a local existence theorem for the
AMIGDE (1.6)-(1.7) and is obtained in a closed ball centered at the given initial
vector q on M0. Therefore, Theorem 4.1 includes the local existence results for
the abstract measure differential and abstract measure integrodifferential equations
considered in Dhage [1], Dhage and Bellale [11] and Sharma [19, 20] which are
also new to the literature.

In the following we give a numerical example to illustrate the hypotheses and
abstract existence result proved above for the AMIGDE (1.6)-(1.7).

Example 4.1. Given a vector measure p ∈ ca(X,M) with p << µ, consider the
AMIGDE with a linear perturbation of second type of the form

dp

dµ
=
|p(Sτ )|

1 + |p(Sτ )|
+

∫
Sx−Sx0

1 + |p(Sτ )|
2 + p2(Sτ )

dµ a.e. [µ] on x0z. (4.9)

and
p(E)) = 0, (4.10)

where
dp

dµ
is a Radon-Nikodym derivative of p with respect to µ.

Choose a point z∗ ∈ x0z such that µ(x0z∗) < 1. Here, f(x, u, v) =
|u|)

1 + |u|

and g(x, u, v) = v, where k(x, u) =
1 + |u|
2 + u2

for all x ∈ x0z and u, v ∈ R. Clearly,

f is a continuous and bounded function on Sz × R × R with bound Mf = 1.
Again, the function f satisfies the hypothesis (H3) on Sz × R × R with the D-

function ψf (r) =
r

1 + r
. Furthermore, g is a continuous and bounded function
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on Sz × R × R with the growth or comparison function γ(x) = 1 for all x ∈ Sz
and so, the hypotheses (H3) and (H4) are satisfied. Therefore, if the assumptions
(H0)-(H1) hold, then the AMIGDE (4.9) - (4.10) has a solution p(Sx0 , q) defined
on x0z∗ provided µ(x0z∗) < 1.

5. Existence of Extremal Solutions
In this section we prove the existence of the extremal solutions for the AMIGDE
(1.6)-(1.7) on x0z under certain monotonicity conditions. We define an order rela-
tion � in ca(Sz,Mz) with the help of the cone K in ca(Sz,Mz) given by

K = {p ∈ ca(Sz,Mz) | p(E) ≥ 0 for all E ∈Mz}. (5.1)

Thus for any p1, p2 ∈ ca(Sz,Mz), one has

p1 � p2 ⇐⇒ p2 − p1 ∈ K (5.2)

or, equivalently,
p1 � p2 ⇐⇒ p1(E) ≤ p2(E)

for all E ∈ Mz. A cone K in ca(Sz,Mz) is called normal if the norm is semi-
monotone on K. The details of different properties of cones in Banach spaces
appear in Heikkilä and Lakshmikantham [17].

The following lemma follows immediately from the definition of the order cone
K in in the Banach space ca(Sz,Mz).

Lemma 5.1. The cone K is normal in the Banach space ca(Sz,Mz).
Proof. To finish, it is enough to prove that the norm ‖ · ‖ is semi-monotone on
K. Let p1, p2 ∈ K be such that p1 � p2 on Mz . Then, we have

0 ≤ p1(E) ≤ p2(E)

for all E ∈ Mz. Now, for a countable partition σ = {En : n ∈ N} of measurable
subsets of Sz, by definition of the norm in ca(Sz,Mz), one has

‖p1‖ = |p1|(Sz) = sup
σ

∞∑
i=1

|p1(Ei)| = sup
σ

∞∑
i=1

p1(Ei)

≤ sup
σ

∞∑
i=1

p2(Ei) = sup
σ

∞∑
i=1

|p2(Ei)| = |p2|(Sz) = ‖p2‖.

This shows that ‖ · ‖ is semi-monotone on K and consequently the order cone K
is normal in ca(Sz,Mz). The proof of the lemma is complete.
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We need the following fixed point theorem for monotonic operators in an ordered
Banach space (see Dhage [3, 5, 7] and references therein).

Theorem 5.1 (Dhage [3, 5, 7]). Let K be an order cone in an ordered real
Banach space X and let A,B : X→ X be a nondecreasing operators such that

(a) A is nonlinear D-contraction,

(b) B is completely continuous, and

(c) there exist elements u, v ∈ X such that u � v satisfying u � Au + Bu and
Av + Bv � v.

Furthermore, if the order cone K is normal, then the operator equation Ap+Bp = p
has a minimal and a maximal solution in [u, v].

We need the following definitions in the sequel.

Definition 5.1. A vector measure u ∈ ca(Sz,Mz) is called a lower solution of
AMIGDE (1.6)-(1.7) if

du

dµ
≤ f

(
x, u(Sx),

∫
Sx−Sx0

h
(
τ, u(Sτ )

)
dµ

)

+ g

(
x, u(Sx),

∫
Sx−Sx0

k
(
τ, u(Sτ )

)
dµ

)
a.e. [µ] on x0z,

and

u(E) ≤ q(E), E ∈M0.

Similarly, a vector measure v ∈ ca(Sz,Mz) is called an upper solution to AMIGDE
(1.6)-(1.7) if

dv

dµ
≥ f

(
x, v(Sx),

∫
Sx−Sx0

h
(
τ, v(Sτ )

)
dµ

)

+ g

(
x, v(Sx),

∫
Sx−Sx0

k
(
τ, v(Sτ )

)
dµ

)
a.e. [µ] on x0z,

and

v(E) ≥ q(E), E ∈M0.
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A vector measure p ∈ ca(Sz,Mz) is a solution to AMIGDE (1.6)-(1.7) if it is upper
as well as lower solution to the AMIGDE (1.6)-(1.7) on x0z.

Definition 5.2. A solution pM is called a maximal solution for the AMIGDE
(1.6)-(1.7) if for any other solution p(Sx0 , q) of the AMIGDE (1.6)-(1.7) we have
that

p(E) ≤ pM(E) ∀E ∈Mz.

Similarly, a minimal solution pm(Sx0 , q) for the AMIGDE (1.6)-(1.7) is defined on
x0z.

Definition 5.3. A function β : Sz × R× R→ R is called Chandrabhan if

(i) x→ β(x, u, v) is µ-measurable for each u, v ∈ R,

(ii) (u, v)→ β(x, u, v) is jointly continuous almost everywhere [µ] on x0z, and

(iii) The function β(x, u, v) is nondecreasing in u and v for each x ∈ Sz.

Further a Chandrabhan function β(x, u, v) is called LµR-Chandrabhan if

(iii) there exists a µ-integrable function γ : Sz → R such that

|β(x, u, v)| ≤ γ(x) a.e. [µ] for x ∈ x0z,

for all u, v ∈ R.

We consider the following assumptions:

(H6) The function f(x, u, v) is nondecreasing in u and v for each x ∈ Sz.

(H7) The function h(x, u) is nondecreasing in u for each x ∈ Sz.

(H8) The function g is LµR-Chandrabhan on Sz × R× R.

(H9) The function k(x, u) is nondecreasing in u for each x ∈ Sz.

(H10) The AMIGDE (1.6)-(1.7) has a lower solution u and an upper solution v
satisfying u � v on Mz.

Theorem 5.2. Suppose that the assumptions (H0) - (H3) and (H6)-(H10) hold.
Then the AMIGDE (1.6)-(1.7) has a minimal and a maximal solution in the vector
segment [u, v] defined on x0z.
Proof. Now, AMIGDE (1.6)-(1.7) is equivalent to the abstract measure integral
equation (in short AMIE) (1.8)-(1.9). Given the lower solution u and upper solution
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v in hypothesis (H7), we consider the order interval [u, v] in the ordered Banach
space ca(Sz,Mz) defined by

[u, v] =
{
p ∈ ca(Sz,Mz) | u � p � v

}
.

Define two operators A,B : [u, v]→ ca(Sz,Mz) by the expressions (4.2) and (4.3)
respectively. Then the AMIE (1.8)-(1.9) is equivalent to the operator equation

Ap(E) + Bp(E) = p(E), E ∈Mz. (5.3)

We shall show that the operators A and B satisfy all the conditions of Theorem
5.1 on ca(Sz,Mz). Let p1, p2 ∈ ca(Sz,Mz) be such that p1 � p2 on Mz. Since µ is
a positive measure, by hypotheses (H5) and (H5), we obtain

Ap1(E) =


∫
E

f

(
x, p1(Sx),

∫
Sx−Sx0

h
(
τ, p1(Sτ )

)
dµ

)
dµ if E ∈Mz∗ , E ⊂ x0z∗,

0 if E ∈M0.

≤


∫
E

f

(
x, p2(Sx),

∫
Sx−Sx0

h
(
τ, p2(Sτ )

)
dµ

)
dµ if E ∈Mz∗ , E ⊂ x0z∗,

0 if E ∈M0.

= Ap2(E)

for all E ∈Mz, E ⊂ x0z and

Ap1(E) = q(E) = Ap2(E)

for E ∈ M0. Hence A is nondecreasing on ca(Sz,Mz). Similarly, it is shown that
the operator B is also nondecreasing on ca(Sz,Mz).

Since the measures u and v are respectively lower and upper solutions of the
AMIGDE (1.6) and (1.7), one has u � Au+Bu and Av+Bu � v and consequently
from nondecresing nature of A and B it follows that u � Au+Bu � Av+Bv � v.
As a result, A + B defines a mapping A + B : [u, v] → [u, v]. Next, as the cone
K in the Banach space ca(Sz,Mz) is normal [u, v] is a norm-bounded subset of
ca(Sz,Mz). Therefore, proceeding with the argument in the proof of Theorem 4.1
it can be shown that the operator A is a nonlinear D-contraction and the operator
B is a completely continuous operator on ca(Sz,Mz) into itself.

Thus, the operators A and B satisfy all the conditions of Theorem 5.1 and so
the operator equation Ap + Bp = p has a maximal and a minimal solution in the
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vector segment [u, v] of ca(Sz,Mz). This further implies that AMIGDE (1.6)-(1.7)
has a maximal and a minimal solution in the vector segment [u, v] defined on x0z.
This completes the proof.

Example 5.1. Given a vector measure p ∈ ca(X,M) with p << µ, consider the
AMIGDE with a linear perturbation of second type of the form

dp

dµ
= tan−1 p(Sx) +

∫
Sx−Sx0

coth p(Sτ ) dµ a.e. [µ] on x0z. (5.4)

and
p(E)) = 0, (5.5)

where
dp

dµ
is a Radon-Nikodym derivative of p with respect to µ.

Choose a point z∗ ∈ x0z such that µ(x0z∗) < 1. Here, f(x, u, v) = tan−1 u and
g(x, u, v) = v, where k(x, u) = cothu for all x ∈ x0z and u, v ∈ R. Clearly, f is

a continuous and bounded function on Sz × R × R with bound Mf =
π

2
. Again,

the function f satisfies the hypothesis (H3) on Sz × R × R with the D-function

ψf (r) =
r

1 + r
. Furthermore, g is a continuous and bounded function on Sz×R×R

with the growth or comparison function γ(x) = 1 for all x ∈ Sz which µ-integrable
on x0z. Also the functions f(x, u, v), g(x, u, v) and k(x, u) are nondecreasing in
u and v for each x ∈ Sz. Hence, the hypotheses (H6) through (H9) are satisfied.
Furthermore, the AMIGDE (5.4) - (5.5) has a lower solution u(Sx) = −1 and an
upper solution v(Sx) = −2 with u � v on Mz, and so the hypotheses (H10) is
satisfied. Therefore, if the assumptions (H0)-(H1) hold, then the AMIGDE (5.4) -
(5.5) has a solution p(Sx0 , q) defined on x0z∗ provided µ(x0z∗) < 1.
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