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1. Introduction

The subject of fractional calculus and fractional differential equations is a
rapidly growing area of mathematics. There are many applications of this sub-
ject in many field such as engineering, viscoelasticity, economics and biological
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sciences. There are many remarkable research articles in which theory regarding
the existence and uniqueness of solutions established. One can see the research
articles [3, 5, 11, 13, 15] for more details. The basic theory of fractional calculus
and fractional differential can be found in many books like [4, 6, 9, 16, 19, 30, 32].
In the literature, it has been seen that functional integral and fractional differential
equations are closely related. For detailed work one can see the references [8, 16,
26, 27]. Fixed point theory is a great tool to study the existence and uniqueness
of solutions of fractional differential equations. Theory and applications of fixed
point theory can be found in [1, 7, 14, 29] and the references therein. For some
interesting recent work one can see the research articles [18, 20, 21, 22, 23, 26, 27,
28].

Very recently Al-Syed and Ahmad [2] discussed the existence of solutions for the
following initial value problems of the functional integro-differential equation

%= heato), [ as.uts)ds),

with nonlocal condition
u(0) + Z%‘U(Uz‘) = uy, Z% >0, o;€(0,7].
i=1 i=1

Motivated by this work we study fractional case of the above work and consider
the following functional fractional integro-differential equations

“D"u(t) = h(t,u(t),/0 g(s,u(s))ds) (1.1)

with nonlocal condition
u(0) + Y (o) =uo, Y g >0, i€ (0,T). (1.2)
i=1 i=1

Where ©D” denotes the Caputo fractional derivative of order p € (0,1], t € J =

0,T],u:J— X, C[J, X] denote the Banach space of all continuous functions from

J to X with the norm |ju|| = sup|u(t)|,h: I x X x X — X;g:J x X — X are
ted

given functions. We will prove the existence and uniqueness of solution v € C[.J, X|,
under certain conditions. Where X is the Banach space with the norm || - ||. Also
we will study the continuous dependence of the solution on ug, on the nonlocal-data
¢; and on the functional g.
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For application point of view, we also study the initial value problem (1.1)-(1.2) if
Z?Zl g; is convergent.

2. Preliminaries

Definition 2.1. The fractional integral operator (in Riemann-Liouville sense) of
order p > 0 of the function u is defined as

Pu(t) = ﬁ /0 (t — 5)" " u(s)ds,

where I'(.) denotes the Euler gamma function.

Definition 2.2. We define the fractional derivative of u of order p > 0 in Caputo

SeENSeE as

CDPu(t) = ﬁ/@ (t — s)7Pu/(s)ds, (2.1)

where 0 < p <1 and u/(s) = di‘i—(j).

Consider the initial value problem (1.1)-(1.2) with the following assumptions

Hy. Let h : J x X x X — X satisfies the Carathedory condition. There exist a
function ¢ € L'[0,T] and a positive constant k; > 0, such that

[ft, 2, y)| < o(t) + Kalz] + Kafyl.

H,. Let g: Jx X — X satisfies the Carathedory condition. There exist a function
Y € LY0,T] and a positive constant ky > 0, such that

lg(t, y)| < U(t) + kalyl.

Hs. sup [J(0;—s)Pto(s)ds < My, sup [ [ (05— s)P"p(0)dOds < M.

0i€[0,1] 0i€[0,1]

L (1 +EY qz-) (k;lTp + %) <1, where E=(1+Y1" q)"

Definition 2.3. A function u € C[J, X] is said to be the solution of the initial
value problem (1.1)-(1.2) if it satisfies the equations (1.1)-(1.2).

Lemma 2.4. The solution of initial value problem (1.1)-(1.2) can be represented
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by the following integral equation

u(t) = Elug— Zqiﬁ /0 Ui(ai — 5)P " (s, uls), /0 Sg(e,u(e))de)ds}
1= 1 .
where E = (1+ >0 q;)7 "

Proof. Let u be a solution of the fractional initial value problem (1.1)-(1.2).
Applying Riemann-Liouville operator on both sides of (1.1). We get

u(t) :u(O)—Fﬁ /O (t — 5)" (s, u(s). /0 g0, u(O)d0)ds.  (2.3)

Using the nonlocal condition (1.2), we get

n n n . o . )
;m(m):u@;qﬂr;%m/o (0; — 5) h(s,u(s),/o g(6, u(0))do)ds,

since, > - qu(o;) = ug — u(0), we get

ug — u(0) = ug ; % + ; qiﬁ /Oai(oi — )P h(s, u(s), /0 g(0,u(0))do)ds,

which gives

u0) = 5o O—Zqz = sy s ), [ a0, ue)ans),

(2.4)
Using (2.3) and (2.4), we obtain

u(t) = @[uo_;qiﬁ/oai(m—s)p—lh(s,u(3)7/Osg(g,u(e))de)ds]

+ﬁ/o (t = 51 h(s, u(s), /0 9(60, u(0))d0)ds.

3. Existence of Solution

Theorem 3.1. Let the assumptions Hy — Hy are satisfied. Then initial value
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problem (1.1)-(1.2) has at least one solution u € C[J, X].
Proof. Define the operator associated with the integral equation (2.2)

Fu(t) = E{uo—Zqiﬁ /0 " (05— 57 h(s, u(s), /0 S g(e,u(e))de)ds]

1
I'(p

EWOH‘% (1+E > Qi) (M1+k1M2)
1=t (1B iy ) (ke 28272 ) |
it is clear that (), is nonempty, closed, bounded and convex subset of C[0, T']. Then

we have, for u € Q,

Let @, ={u e R: [jul| <r}, where r =

FuO] < B|lul + i [ (o= 0 ntsats). [ a6 u@)anias
=1

L[ sy ngs, u(s), /0 " g(6,u(6))d0) ds

Tp Jo
< E [|u0! + iqzr(lp) /Oai (05 — s)P~ ! <¢(s) + ka|u(s)| + k1 /OS !g(@,u(&))|d9> ds}
i=1

_l’_

1 t . s
+F(p)/0 (t—s)P (¢(S)+k1U(s)|+/0 ‘Q(Q,U(G))cw)ds

< E[luol

3 (g s+ 2 [ ([0 + kapu@an)as )]

i=1

M, ki TPr 1 t . . s . )
To+n T+ 1)+F(p)/(;(t ) (/0 ((0) + kol (9))d0)d

k)lkng_HT’
+1

IN

E n
FElug| + — Q'<M1 + k1TPr + k1Mo +
[uol L(p+ 1); !

1
+= (Ml + k1TPr + k1 Mo +

T(p+1) +1

kleTp+1T>
kleTerlT)
- | =T.

n
E — |1+ F ; M TP M.
|U0’+F < + ;%)( 1+ k1TPr + kMo + P

1
(p+1)

Then F': Q, — @, and the class of functions { Fu} is uniformly bounded in @,.
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Now, let t1,t5 € (0, 1] such that [to — t;| < 0, then

| [ o (ks [ ot0.utopan )as

_/Otl(tl—s)p1h(s,u(s),/Osg(e,u(G))dG)ds

|Fu(ty) — Fu(ty)| =

< o [ [t = 9 == (s, [ oto.uona) as
+ﬁ/: (tg—s)plh(s u(s),/osg(e,u(ﬁ))de) ds
< s = (=9
X (gb(s) + krfu(s)| + kl/o |g(9,u(9))|d9> ds
s R [CORTC Ry RO
< 51— (1 — 5 b(s)ds
*15(1;) /0 "ty — 51— (4 — sy ds
b [l =9 = (=57 [ (00 + hafuto) s
+ﬁ /t f [(t2 = 5)" ] o(s)ds
+% /: [(t2 — s)"']ds
b / (t2 = 9™ [ (010) + halut®)]) s
We see that (t — s)P~! € Lﬁ[(),t] for ¢ € [0,7] and p; € [0,p). Let d = £=-,
Ny = 16, and No = L[5 (0060) + balu@) bl

Now we apply the Holder inequality [32]

1 ty . - ﬁ 1-p1
|[Fu(tz) — Fu(t1)] < 1“(19)(/0 ((ta = s)P~F = (t1 — s)P) 1d3> [o(s)l

1
L1=P1]0]
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far P __ 4P 4P
T (2~ 0 = B+ )
kl t1 1 ) 1 1-p1
+ / ty — s)P7" — (t; — s)P~ 1”1d3>
i) (o ==
<A [0 + k@], o
1 t2 b=l =p le'
— ty — s)irid - ty —t1)P
rei (] = 9as) 16O, o~ )
kl to p—1 1-p1 s
+ ty —s)i-rids 0) + ko|u(0)])do|| 1
wi ([ = atas) T [ o) + s,

IN

IN

IN

F]é) (/0“ ((t2 = 5)* = (t — S)d)ds> 11

k’lT’
+F(p +1) ((t2 —t1)? —th + 1)
B . 1-py
Fl(p)2 (/0 ((tz—s)" = (1 — s)d)d3>
a al (1+d)(1—p1) kqr e
O T - )
_ k]_N2 ( —t )(1+d)(1—p1)
T(p)(1+d)'—»
Nl 14+d 1+d 14d 1-p1
P e ()~ @ )
k
+T(pl+r 1) (b =t1)" =t +11)
k N 1-p1
+F(p)(11+ il)l_pl ((t1>1+b - (tz)Hb + (to — tl)ﬁb)
Nl - k’l’f’
N b — ) (H)A=p1) _ o
IR ARSI
k1 N )
Rt = )
Ny

225
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kyr
k1 Ny )
+F(p)<1 +d)i-n (t2 — t1)(1+d)(1 p1)
N, (14+d)(1—p1) ke )
TG fprnte i)
k1 N,

_ to — 1t (1+d)(1—P1).
TR

Which shows that the class of functions {F'u} is equi-continuous in @),.
Let u, € @, such that u,, — u as n — co. Then by the assumption H; — Ho, it is
clear that h(t,u,(t),v,(t)) — h(t,u(t),v(t)) and g(t,u,(t)) — g(t,u(t)). Also

i o) = i [ - qu(lp) [ o=y s, [ 90,001

b [ =9 gts.n), [ 0.0 @)a0)is]

L(p
(3.1)

By using assumption H; — Hy and Lebesgue Dominated convergence Theorem [12],
from (3.1) we obtain

i Pnt) =i [0 =Yg [0 0 o, [ o0 s

Lt_sp—lsuss u o] — Fu
+p(p)/0(t )P h(s, un( ),/0 9(0, n(&))d@)d} Fu(t).

Which shows that Fu,, — Fu as n — oo. Therefore F' is continuous.

t—0

lim u(t) = E[uo—iz: qiﬁ /0 " (=) h(s, uls), /0 Sg(@,u(@))d@)ds} c [0, T].

Then by Schauder fixed point Theorem [1] there exist at least one solution u €
C1J, X] of the integral equation (2.2).

4. Infinite-Point Boundary Condition
Theorem 4.1. Let assumption Hy — Hy are satisfied and

Ky ko ||ul|
p(p+1)

k
2= ap s Rl

+ ko My +
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Then the initial value problem (1.1)-(1.2) has at least one solution u € C[J, X].
Proof. Let the assumptions of Theorem 3.1 be satisfied. Let t,,t, = Y ., ¢; be
convergent sequence, then

i) = Ty | }:% [ttt [ atou@ioias

I - ’
s /0 (t— 5P h(s, un(s), /0 g(@,un(ﬁ))dﬁ()ds).
41

Taking the limit to (4.1), as n — oo, we have

T (0) = Jim | j{j<h [ s o)

/08 Q(G,u(H))dG)ds] + F(lp) /Ot(t - s)P—lh(s,un(s),/Os g(G,un(G))dﬁ)ds]

-1
nILH;oHZH%[ Z% / oi — s)"" "h(s, u(s),

s ) 1 t . s
/0 g(9,u(9))d9)ds] + lim F(p)/o (t—s) 1h(s,un(s),/0 9(0,un,(0))db)ds.

Now |g;u(0;)| < |g;|||u||, therefore by the comparison test Y .-, q;u(o;) is conver-
gent. Also

/Oai("" — 5" hls, uls), /0 (0, u(0))d0)ds

< Aﬂm—@%%w@+hm@n
+ky /Sg(Q,u(Q)dQ))ds
A?@—@p%w@+mm@ﬂ

s /0 (0(s) + kalu(s)])d8) ds

+hMH Ky ko]
p p(p+1)

IN

IN

+ ko My +

VAN

M,
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then ‘qi J (o3 = s)P7h(s,u(s), [, g dG)ds' < |g;|.M and by the comparison

test Y1 ¢ fy (05 — $)P h(s, u( fo 0))df)ds is convergent.
Now, using assumptlon H, — Hy and Lebesgue Dominated convergence Theorem
[12], from (4.2) we obtain

u(t) = Hz—q{ Zqz o [ o= sy ntsats), [, u)anyis|

I o1 ’
_1_@/0 (t —s) h(s,u(s),/o g(@,u(@))d@()ds.)
4.3

Hence, the theorem is proved.

5. Uniqueness of Solution

Consider the following assumptions
Hs. Let h: J x X x X — X is measurable in ¢ for any x,y € X and satisfies the
Lipschitz condition

Ih(t,2,y) = Bt u,0)] < kila —ul + kaly — o], (5.1)

Hg. Let g : Jx X — X is measurable in ¢ for any x € X and satisfies the Lipschitz
condition

l9(t, ) = g(t, u)| < kolw — ul, (5.2)

H;. Let there exists constants L and Lo such that

sup / (o —5)""1g(s,0,0)|ds < Ly, sup / / i —5)P7|h(s,0)|dOds < Lo,
1J0

0;€[0,T 0i€[0,T

Theorem 5.1. Let the assumptions Hs-H; are satisfied. Then the initial value
problem (1.1)-(1.2) has a unique solution.

Proof. From assumption H5 we have h is measurable in ¢ for any u,v € R and
satisfies the lipschitz condition, then it is continuous for z,y € R, Vt € [0, 7], and

\h(t,z,y)| < kilz| + ki]y| + |g(,0,0)].

Which shows that assumption H; is satisfied. In a similar way, we can show that
assumption Hs is also satisfied with the help of assumption Hg. Therefore Theorem
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3.1 ensures the existence of solution of initial value problem (1.1)-(1.2). Let u,v
be two solutions of (1.1)-(1.2), then

ult) = o0 = || ua - Zqz Lo sttt [ oo

_|_Fip (t — )P "h(s, u(s), /Osg(e,u(e))dQ)dS

0

5[ Z s [ (0= 5P hlsols)

1 t

S

g(0, U(@))d@)ds}

0

0

VAN
e
R
S
{g =
o\a
B

|

»
=

+Pip = o= st /Osg(e,u(e))de) ~ hs,v(s), /Osg(ﬁ,v(e))dé’) ds
< EZqiﬁ /Oai@ gt (kluu— oll + /0 19(0, u(6)) —g(@,v(@))\d@)ds
! t p-1 —v S U - v 5
+@/0 (t—s) (/ﬁHU | + /ﬁ/o l9(0,u(0)) — g(0, (9))|d9)d
< kFETP|lu—v|| >0 ¢ kiko ETP M u— o] YO0 4
- F(p+1) C(p+2)
FiTPllu — | kikoTPTYH|u — |
I'(p+1) F'(p+2)

1 = klkng“)
F(P+1)< ;q)<1 p+1 | |
Which gives

1 " kzlk:ng“>>
l1————[1+F i kP 4+ —— — < 0.
(- () (e B ) v <

Since +1) (1 +EY ", ql> <k1TP + k’l’j;%“) < 1, therefore u(t) = v(t) and the
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solution of the initial value problem (1.1)-(1.2) is unique.
6. Continuous Dependence
6.1. Continuous Dependence on uy

Definition 6.1. Let u* is the solution of the initial value problem

CDPu (1) = h{t, (1), /0 F(s,u"(s))ds) (6.1)

with nonlocal condition

—l—qu (0:) = ug, qu>0 o; € (0,7]. (6.2)
i=1

Then, the solution u € C[J, X] of initial value problem (1.1)-(1.2) is said to be
continuously depends on uq, if

Ve>0, 3 6(e) >0 s.t. |ug—ujl <9 = |Ju—u"|| <e

Theorem 6.2. Let the assumptions Hs-H; are satisfied. Then the solution of
initial value problem (1.1)-(1.2) continuously depends on uy.

Proof. Let u,u* be two solutions of the initial value problem (1.1)-(1.2) and
(6.1)-(6.2) respectively. Then

ult) = ()] = |0 - Zqz [ttt [ ato.u@)anas
+F(1p) /Ot(t—s)p (s u(s),/os (0, u(0))d)d
[uo > / oi — )P h(s, u*(s) /0 0,u (9))d¢9)d}
+F(1p) /Ot(t—s)p Yh(s,u (s),/osg(e,u*(a))de)ds
< Fluo il + B aigss [0 9 ptss). [ o0, u)anas
=1
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n 1 o
< Elug -yl + E Qi/ Uz'—Spl(k u—u*
Juo — g ; i @ I
S 1 t
[ 1a(0.000) ~ a0, @)1a0 ) s+ o [0 59 (k- o)
0 L(p) Jo
+ko / l9(0,u(0)) — g(@,u*(ﬁ))|d0>ds
0
P —u* n . p+1 T n )
< Blug— ) 4 AT = wIEY i i Fako TP — B Y g
I(p+1) T(p+2)
ki TP||u —u*||  kikoTPH||lu — u*|
L(p+1) T(p +2)
fey ko TPH!
< P e — .
< E5+F(p+1 ( +EZqZ><k1T R llu — u*||

Which gives
E§

L " ke kg TP+1
[1 - T+ (1 +EY Qi) (]ﬁTp + a—ﬂ)]

Thus, the solution of initial value problem (1.1)-(1.2) continuously depends on u.

Ju =] < =

6.2. Continuous Dependence on the Nonlocal Data ¢;

Definition 6.3. Let u* is the solution of the initial value problem

“D ur(t) = h(t,u*(t),/o g(s,u*(s))ds) (6.3)

with nonlocal condition

+Zq (0;) = uo, Zqz>0 o; € (0,7T]. (6.4)
i=1

Then, the solution uw € C[J, X] of initial value problem (1.1)-(1.2) is said to be
continuously depends on nonlocal data q;, if

Ve>0, 3 6(e) >0 s.t. |up—yyl <d = |lu—u’|| <e

Theorem 6.4. Let the assumptions Hs-H; are satisfied. Then the solution of
initial value problem (1.1)-(1.2) continuously depends on the nonlocal data g;.
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Proof. Let u,u* be two solutions of the initial value problem (1.1)-(1.2) and
(6.3)-(6.4) respectively. Then

ult) = ()] = || - Zqz o [t ato), [ o0 ueanas)

L ! — )P (s uls s y .
+F(p)/o(t )P hs, (),/0 g(0,u(0))do)d

_E [US—Z;qfr(lm/ow(ai—s)p1h(5,u*(5),/Osg(G,U*(G))dG)ds}

S t —8)P " (s, u*(s ’ ot o
g Jy e 0, o0 @)y

* * *L Uioﬂ—s “Ih(s, u(s ) [ S
EE n5|uo+‘E Zqif(p)/o (oi — s)P"'h(s, (),/0 g(0,u(0))do)d

=1

- n * 1 Uia,_sp—l o (s s o, \
E;qu(p)/o (05 = s)P""h(s, (),/0 g9(0,u*(9))do)d
n . 1 Jio.,_sp—l ot (s s " )

_” L Uia._spfl s. uls s u s
;%F(p)/o (0i — 8)P""h(s, (),/0 g(b, (0))d0)d]

kaiTPllu — w*|| | kako TP |lu — u||
T(p+1) T(p+2)

kTP kikyTot! . TPL, ko TP Ly ] &
[l + + > a
F(p+1)  T(p+2) T(p+1)  T(p+2)

Y L[ o; — 5)Ph(s,u* (s ) u* s
_n ' 1 UiO.,_Sp—l 5o (s s . )
;qzr(p)/o ( 4 ) h( ) ( )’/0 9(9, (9))d9)d

- L 7 O; — 8 p—1 s.u*(s # u* s
+;qzr(p)/0 (0 )P h(s, u'( )7/0 g(0,u*(0))dd)d

_n L Uio.,_s . o uls s ; i
i_zlqznp)/o (0= 57 h(s.uts), [ a6, u0)d0)as

kiTP||u — u*||  kikoTPH||u — u*||
L(p+1) T(p +2)

IN

IN

EE*nd|ug| + nd [(
i=1
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kTP kikoTot! TP, koTPH o]
< EE*néluOHnéK : = )II g — 42 2]2%‘

Tp+1)  Tp+2) Tp+1) F Tpr+2)

kTP kykoTPH! ) TPL, k;QTPHLQ}
+E|nd + I+ +
[” Krwn o) Ty T T

N Z (klepHu — u*|| N kiko TP ||u — u¥|| )]
I(p+1) I(p+2)

k:lTpHufu | krkoTPH |u — u*||

T(p+1) I(p+2)

a; TP klk:ng“)H " TPL,y +1<;2TP+1L2]
T(p+1)  T(p+2) L(p+1)  T(p+2)

" kTP ky ko TP >
E+ i+ (1+E ; + —u*.
< ;q> ( Zq>< I'p+1)  T(p+2) s =7}

i=1

< FEE*nd|ug| +nd [(

Hence

« P P+ « TP p+1
EE*n|juo|| +nKF’§pL> + %)Hu I+ Fory + B (E+Z 1%) + (1 +EY} 1qz>

n k1 TP k1koTP+1
— (l + Ezizl Qi) ( T(pr1) + 11—‘@77+2>)

where E* = (143" ¢/)~'. Then the solution of the initial value problem (1.1)-
(1.2) continuously depends on the nonlocal data g;.

lu—u*|| < § =k,

6.3. Continuous Dependence on the Functional ¢

Definition 6.5. Let u* is the solution of the initial value problem

“D"u(t) = h(t,u*(t),/o g (s,u*(s))ds) (6.5)

with nonlocal condition

+Zqz () = o, Zqz >0, o;€(0,T]. (6.6)
i=1
Then, the solution v € C[J, X] of initial value problem (1.1)-(1.2) is said to be
continuously depends on the functional g, if
Ve>0, 3 0(e) >0 st. |[g—g¢"|<d = |lu—u"| <e

Theorem 6.6. Let the assumptions Hs-H; are satisfied. Then the solution of
initial value problem (1.1)-(1.2) continuously depends on the functional g.
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Proof. Let u,u* be two solutions of the initial value problem (1.1)-(1.2) and
(6.5)-(6.6) respectively. Then

IN

IN

IN

u(t) — (1) = 'E - Zqﬁ [ o= sy ntsats) [ ato.aenannas)

+ﬁ /0 (= 5P (s, u(s), /0 (0, u(0))d0)ds
5[~ Zqﬁ [ o=t [ o)
+ﬁ /Ot(t—s)p lh(s,u*(s),/Osg*(é,u*(ﬁ))dﬁ)ds
Ezqﬁ [ o=y pts.uts. [ at0.utopan
1

+ [ sy (lla =+ [ lat0,u(6) 376,00 a0 s

1 u kTP
—(1+EY ¢
F(p+1)( ;q> p+1

1

1 - kleTpH)
4+—— (14+ES ¢ ) [T+ 22— ) |Ju — 7.
el Zq)( pr1 el

Hence

1 n k TPtls
T(p+1) (1 +EY i q") g
lu — '] < — e

1 n oy ko TP+
L= o (1 +EYL Qi> (lep + p2+1p )

Then the solution of the initial value problem (1.1)-(1.2) continuously depends
upon the functional g.
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7. Examples

Example 7.1. Consider the following nonlinear fractional order integro-differential
equation for p € (0, 1]

“D’u(t) = (1 +1)* + ;f; + /0 i(sin@s +2) + %)d& a.et e (0,1]

with infinite point boundary condition

i:::% (211) — o (7:2)

Set

Bt u(t), /0 g(s.u(s))ds) = (1+1)?+ 3u+(t352 + /O i(smﬂs”)*%)ds‘

Then

ittt [ lsulsas) = (107
% (|u(t)| + /Ot Z‘ (Sin(?S +2)+ %)

Jo(s, u(s)| = Slsin(2s +2)] + 2 fu(s)]

and also

With ¢(t) = (1+¢)* € L'[0,1], ¢(t) = 3|sin(2s + 2)| € L'[0,1], ky = 5, k2 = 3,
1 n e TP ki TP 3 1, 35
T(a+1) L+ E> 4 117 + pt1 - F(p+1) L+37 )5+ ) < L,

Vp € (0,1], all the assumption H; — Hy of Theorem 3.1 are satisﬁed. Therefore
by applying the Theorem 3.1 with convergent series > .~ 3-, IVP (7.1)-(7.2) has a
solution w.

31’

Example 7.2. Consider the following nonlinear fractional order integro-differential
equation for a € (0, 1]
u(t)

C P T 43 -2t
D =1 t’e 1—|——
u(t) + + P
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tq ) s3u(s)
+/0 g (COS (28 + 2) + W)d& aet e (07 1]7 (73)

with infinite point boundary condition

— i3 4 42
Set
t
t
e, [ glsulshds) = ¢ pe 1+
0 t+2
b1 9 s3u(s)
+/0 E(COS (28 + 2) + m)ds
Then

¢
|h(t,u(t),/ g(s,u(s))ds)| < t'+ e 4+1
0
+1 |uy+3/t
2 5/,

2 1
J9(s, u(s))| = 7] cos*(2s +2)] + 1]l

3
2 s*u(s)
(cos (2s+2) + 4€u(s))

.

and also

All the assumption H; — H, of Theorem 3.1 are satisfied with ¢(t) = t7 + t3¢ 72! +

1 e L'0,1], ¢(t) = 2|cos?(2s + 2)| € L'0,1], ky = £ ks = 1, F(a+1) 1+

n p+1 1
EY qi) (lep + ’“’;ETTI) = o (1 + )(% + p+g) < 1, Vp € (0,1],

all the assumption H; — Hy of Theorem 3.1 are satisfied. Therefore by applying
the Theorem 3.1 with convergent series > - IVP (7.1)-(7.2) has a solution u.

D=

w\»—A

1= 14“

8. Conclusion

In this paper Caputo fractional differential equations are studied with infinite
point boundary conditions. The statement of the initial value problem is set up
and an interpretation of the solutions is given. Further continuous dependence on
initial point, on nonlocal data, on the functional is also studied. The fixed point
theorems are used to prove main results. The obtained results are verified by some
examples.
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