South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 2 (2020), pp. 179-194

> ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

SOME COMMON FIXED POINT RESULTS IN 2-BANACH SPACES

Krishnadhan Sarkar, Dinanath Barman* and Kalishankar Tiwary*

Department of Mathematics, Raniganj Girls' College, Raniganj, Paschim Bardhaman, West Bengal - 713358, INDIA

E-mail : sarkarkrishnadhan@gmail.com

*Department of Mathematics, Raiganj University, West Bengal - 733134, INDIA

E-mail: dinanath barman 85 @gmail.com, tiwarykalishan kar@yahoo.com

(Received: Jan. 26, 2019 Accepted: Jun. 08, 2020 Published: Aug. 30, 2020)

Abstract: In this paper, we have proved some common fixed point theorems of a family of self maps without continuity in 2-Banach space. We have used functions on \mathbb{R}_{+}^{5} to \mathbb{R}_{+} and also generalize many existing results.

Keywords and Phrases: 2-norm, 2-Banach.

2010 Mathematics Subject Classification: 54H25, 47H10.

1. Introduction

In 1965, Gahler ([5], [6]) introduced 2-Banach space and Iseki [7] obtained some results on fixed point theorems in 2-Banach spaces. After the introduction of 2-Banach space many research workers have extended fixed point theorems of metric, Banach spaces etc. in the new setup of 2-Banach spaces. Mishra et al. [10], Khan and Khan [8], Saha et al. [12], Mishra et al. [11], Saluja [13], Saluja and Dhakde [14], Das et al. [1], Shrivas [15], Das et al, [2] - [3], Liu et al. [9] and etc. have worked on fixed point and common fixed point theorems in this space. In this paper we also have proved some unique common fixed point theorems in 2-Banach spaces.

2. Definitions and Preliminaries

Gahler [5] has introduced the notion of 2-norm as follows:

2-norm: Let X be a linear space and $\|.,.\|$ is a real valued function defined on X where

i) ||a, b|| = 0 if and only if a and b are linearly dependent;

ii) ||a, b|| = ||b, a||;

- iii) ||a, xb|| = |x| ||a, b||;
- iv) $||a, b + c|| \le ||a, b|| + ||a, c||$

for all $a, b, c \in X$ and $x \in \mathbb{R}$. Then $\|.,.\|$ is called a 2-norm and the pair $(X, \|.,.\|)$ is called a 2-norm space.

In this paper, we denote X as a 2-normed space unless otherwise stated.

Convergent: A sequence $\{x_n\}$ in a 2-norm space X is said to be convergent if there is a point $x \in X$ such that $\lim_{n\to\infty} ||x_n - x, a|| = 0$ for all $a \in X$.

Cauchy Sequence: A sequence $\{x_n\}$ in a 2-norm space X is called a Cauchy sequence if $\lim_{n,m\to\infty} ||x_n - x_m, a|| = 0$ for all $a \in X$.

2-Banach Space: A linear 2-norm space is said to be complete if every Cauchy sequence in X is convergent in X. Then we say X is a 2-Banach Space.

Let us consider a function $f : \mathbb{R}_+^5 \to \mathbb{R}_+$ given by

$$f(t_1, t_2, t_3, t_4, t_5) = \max\{t_1, \frac{t_2 + t_3}{2}, \frac{t_4 + t_5}{2}\};$$
(2.1)

$$f(t_1, t_2, t_3, t_4, t_5) = \max\{\frac{t_1 + t_2 + t_3}{3}, \frac{t_4 + t_5}{3}\}.$$
(2.2)

3. Main Part

In this part we have proved some unique common fixed point theorems in 2-Banach spaces.

Theorem 3.1. Let $\{F_n\}_{n=1}^{\infty}$ be sequence of self maps on 2-Banach space $(X, \|., .\|)$ satisfying

 $||F_ix - F_jy, p|| \leq \alpha f(||x - y, p||, ||x - F_ix, p||, ||y - F_jy, p||, ||x - F_jy, p||, ||y - F_ix, p||),$ where $\alpha < 1$ and f satisfies the relation (2.1). Then $\{F_n\}_{n=1}^{\infty}$ have a unique common fixed point in X.

Proof. Let $\{x_n\}$ be sequence of points of X given by $x_{n+1} = F_i x_n$ with the initial approximation $x_0 \in X$ for a fixed *i*. If $F_i x_n = x_n$ i.e., $x_{n+1} = x_n$, then x_n is a common fixed point of $\{F_n\}$. So without loss of generality assume $x_{n+1} \neq x_n$.

We now show that $\lim_{n\to\infty} ||x_n - x, p|| = 0$. Since,

Since, $\|x_{n+1} - x_n, p\| = \|F_i x_n - F_j x_{n-1}, p\|$ $\leq \alpha f(\|x_n - x_{n-1}, p\|, \|x_n - F_i x_n, p\|, \|x_{n-1} - F_j x_{n-1}, p\|, \|x_n - F_j x_{n-1}, p\|, \|x_{n-1} - F_j x_{n-1}, p\|, \|x_n - F_j x_n - F_j x_{n-1}, p\|, \|x_n - F_j x_n - F_j x_{n-1}, p\|, \|x_n - F_j x_n - F_j x$

180

$$F_{i}x_{n}, p\|) = \alpha f(\|x_{n} - x_{n-1}, p\|, \|x_{n} - x_{n+1}, p\|, \|x_{n-1} - x_{n}, p\|, \|x_{n} - x_{n}, p\|, \|x_{n-1} - x_{n+1}, p\|) = \alpha \max\{\|x_{n} - x_{n-1}, p\|, \frac{\|x_{n} - x_{n+1}, p\| + \|x_{n-1} - x_{n}, p\|}{2}, \frac{0 + \|x_{n-1} - x_{n+1}, p\|}{2}\} \le \alpha \max\{\|x_{n} - x_{n-1}, p\|, \frac{\|x_{n} - x_{n+1}, p\| + \|x_{n-1} - x_{n}, p\|}{2}, \frac{\|x_{n-1} - x_{n}, p\| + \|x_{n} - x_{n+1}, p\|}{2}\} \le \alpha \max\{\|x_{n} - x_{n-1}, p\|, \|x_{n} - x_{n-1}, p\|\}.$$

$$(3.1)$$

If $||x_n - x_{n-1}, p|| \le ||x_n - x_{n+1}, p||$, then from (3.1), we have $||x_{n+1} - x_n, p|| \le \alpha ||x_{n+1} - x_n, p||$

implies $1 \leq \alpha$, which is a contradiction. Therefore $\{\|x_n - x_{n-1}, p\|\}$ is a sequence of real numbers monotone decreasing and bounded below.

Suppose $\lim_{n\to\infty} ||x_n - x_{n-1}, p|| = s$. Since, $s = \lim_{n\to\infty} ||x_n - x_{n-1}, p||$

 $= \lim_{n \to \infty} \|F_i x_{n-1} - F_j x_{n-2}, p\|$ $\leq \lim_{n \to \infty} \alpha f(\|x_{n-1} - x_{n-2}, p\|, \|x_{n-1} - F_i x_{n-1}, p\|, \|x_{n-2} - F_j x_{n-2}, p\|,$ $||x_{n-1} - F_j x_{n-2}, p||, ||x_{n-2} - F_i x_{n-1}, p||)$ $\leq \alpha \lim_{n \to \infty} f(\|x_{n-1} - x_{n-2}, p\|, \|x_{n-1} - x_n, p\|, \|x_{n-2} - x_{n-1}, p\|, \|x_{n-1} - x_{n ||x_{n-2} - x_n, p||$ $= \alpha \lim_{n \to \infty} \max\{\|x_{n-1} - x_{n-2}, p\|, \frac{\|x_{n-1} - x_n, p\| + \|x_{n-2} - x_{n-1}, p\|}{2}, \frac{0 + \|x_{n-2} - x_n, p\|}{2}\}$ $\le \alpha \lim_{n \to \infty} \max\{\|x_{n-1} - x_{n-2}, p\|, \frac{\|x_{n-1} - x_n, p\| + \|x_{n-2} - x_{n-1}, p\|}{2}, \frac{\|x_{n-2} - x_{n-1}, p\| + \|x_{n-1} - x_n, p\|}{2}\}$ $\leq \alpha \lim_{n \to \infty} \leq \alpha s$ implies, s = 0i.e., $\lim_{n \to \infty} ||x_n - x, p|| = 0.$ Now, let $n \ge m \in \mathbb{N} \cup \{0\}$. Then $||x_{n+1} - x_{m+1}, p|| = ||F_i x_n - F_i x_m, p||$ $\leq \alpha f(\|x_n - x_m, p\|, \|x_n - F_i x_n, p\|, \|x_m - F_i x_m, p\|, \|x_n - F_i x_m, p\|, \|x_m - F_i x_n, p\|)$ $= \alpha f(\|x_n - x_m, p\|, \|x_n - x_{n+1}, p\|, \|x_m - x_{m+1}, p\|, \|x_n - x_{m+1}, p\|, \|x_n - x_{m+1}, p\|, \|x_m - x_{n+1}, p\|) = \alpha \max\{\|x_n - x_m, p\|, \frac{\|x_n - x_{n+1}, p\| + \|x_m - x_{m+1}, p\|}{2}, \frac{\|x_n - x_{m+1}, p\| + \|x_m - x_{n+1}, p\|}{2}\}.$ Taking limit as $n, m \to \infty$ on the both sides of the above inequality, we get $\lim_{n,m\to\infty} ||x_{n+1} - x_{m+1}, p||$ $\leq \alpha \max\{\lim_{n,m\to\infty} ||x_n - x_m, p||, 0, \lim_{n,m\to\infty} \frac{||x_n - x_m, p|| + ||x_m - x_{m+1}, p|| + ||x_m - x_n, p|| + ||x_n - x_{n+1}, p||}{2}\}$ $= \alpha \max\{\lim_{n,m\to\infty} \|x_n - x_m, p\|, \lim_{n,m\to\infty} \|x_n - x_m, p\|\}$ $= \alpha \lim_{n,m\to\infty} \|x_n - x_m, p\|,$ which implies, $\lim_{n,m\to\infty} ||x_n - x_m, p|| = 0$ [since $\alpha \neq 0$]. Thus $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, there exists an $x \in X$ such that $\lim_{n,m\to\infty} ||x_n - x, p|| = 0.$

Now we show that x is a common fixed point of $\{F_n\}_{n=1}^{\infty}$. Again,

$$\begin{split} \|F_{i}x - x, p\| &\leq \|F_{i}x - x_{n}, p\| + \|x_{n} - x, p\| \\ &= \|F_{i}x - F_{j}x_{n-1}, p\| + \|x_{n} - x, p\| \\ &\leq \alpha f(\|x - x_{n-1}, p\|, \|x - F_{i}x, p\|, \|x_{n-1} - F_{j}x_{n-1}, p\|, \|x - F_{j}x_{n-1}, p\|, \|x_{n-1} - F_{i}x, p\|) + \\ \|x_{n} - x, p\| \\ &= \alpha f(\|x_{n} - x_{n-1}, p\|, \|x - F_{i}x, p\|, \|x_{n-1} - x_{n}, p\|, \|x - x_{n}, p\|, \|x_{n-1} - F_{i}x, p\|) + \\ \|x_{n} - x, p\| \\ &= \alpha \max\{\|x_{n} - x_{n-1}, p\|, \frac{\|x - F_{i}x, p\| + \|x_{n-1} - x_{n}, p\|}{2}, \frac{\|x - x_{n}, p\| + \|x_{n-1} - F_{i}x, p\|}{2}\} + \|x_{n} - x, p\|. \\ \text{Taking limit as } n \to \infty \text{ we get from above} \\ &\lim_{n \to \infty} \|F_{i}x - x, p\| \leq \alpha \max\{0, \frac{\|F_{i}x - x, p\|}{2}, \frac{\|F_{i}x - x, p\|}{2}\} + 0 \\ \text{i.e., } \|F_{i}x - x, p\| \leq \alpha \frac{\|F_{i}x - x, p\|}{2} \leq \alpha \|F_{i}x - x, p\|. \end{split}$$

i.e., $||F_i x - x, p|| \le \alpha \frac{||F_i x - x, p||}{2} \le \alpha ||F_i x - x, p||$ implies, $||F_i x - x, p|| = 0$ i.e., $F_i x = x$. Thus x is a common fixed point of $\{F_n\}_{n=1}^{\infty}$.

To show the uniqueness, let x' be another fixed point of $\{F_n\}_{n=1}^{\infty}$. Since,

$$\begin{split} \|x - x', p\| &= \|F_i x - F_j x', p\| \\ &\leq \alpha f(\|x - x', p\|, \|x - F_i x, p\|, \|x' - F_j x', p\|, \|x - F_j x', p\|, \|x' - F_i x, p\|) \\ &= \alpha f(\|x - x', p\|, \|x - x, p\|, \|x' - x', p\|, \|x - x', p\|, \|x' - x, p\|) \\ &= \alpha \max\{\|x - x', p\|, 0, \frac{\|x - x', p\| + \|x - x', p\|}{2}\} \\ &= \alpha \|x - x', p\|, \\ \text{which implies, } \|x - x', p\| = 0 \text{ [since } \alpha \neq 0 \text{]} \\ \text{i.e., } x = x'. \end{split}$$

Hence $\{F_n\}_{n=1}^{\infty}$ have a unique common fixed point in X.

Corollary 3.1. Let F_1 and F_2 be two self maps on 2-Banach space $(X, \|., .\|)$ satisfying

 $||F_1x-F_2y,p|| \leq \alpha f(||x-y,p||, ||x-F_1x,p||, ||y-F_2y,p||, ||x-F_2y,p||, ||y-F_1x,p||),$ where $\alpha < 1$ and f satisfies the relation (2.1). Then F_1 and F_2 have a unique common fixed point in X.

Proof. Putting $F_i = F_1$ and $F_j = F_2$ in the **Theorem 3.1** we get the result.

Corollary 3.2. Let F be a self map on 2-Banach space $(X, \|., .\|)$ satisfying $\|Fx - Fy, p\| \le \alpha f(\|x - y, p\|, \|x - Fx, p\|, \|y - Fy, p\|, \|x - Fy, p\|, \|y - Fx, p\|)$, where $\alpha < 1$ and f satisfies the relation (2.1). Then F have a unique fixed point in X.

Proof. Putting $F_i = F_j = F$ in the **Theorem 3.1** we get the result.

Theorem 3.2. Let $\{F_n\}_{n=1}^{\infty}$ be sequence of self maps on 2-Banach space $(X, \|., .\|)$ satisfying

 $||F_ix - F_jy, p|| \leq \beta f(||x - F_ix, p||, ||y - F_jy, p||, ||x - F_jy, p||, ||y - F_ix, p||, ||x - y, p||),$ where $\beta < 1$ and f satisfy the relation (2.2). Then $\{F_n\}_{n=1}^{\infty}$ have a unique common fixed point in X.

Proof. Let $x_0 \in X$ be an initial point. Construct a sequence $\{x_n\}$ in X, for a fixed i, such that $x_{n+1} = F_i x_n$. If $x_{n+1} = x_n$ i.e., $F_i x_n = x_n$, then x_n is a common fixed point of $\{F_n\}_{n=1}^{\infty}$. So without loss of generality, suppose $x_{n+1} \neq x_n \forall n \in \mathbb{N} \cup \{0\}$. Since,

$$\|x_{n+1} - x_n, p\| = \|F_i x_n - F_j x_{n-1}, p\|$$

$$\leq \beta f(\|x_n - F_i x_n, p\|, \|x_{n-1} - F_j x_{n-1}, p\|, \|x_n - F_j x_{n-1}, p\|, \|x_{n-1} - F_i x_n, p\|, \|x_n - x_{n-1}, p\|)$$

$$= \beta f(\|x_n - x_{n+1}, p\|, \|x_{n-1} - x_n, p\|, \|x_n - x_n, p\|, \|x_{n-1} - x_{n+1}, p\|, \|x_n - x_{n-1}, p\|)$$

$$= \beta \max\{\frac{\|x_n - x_{n+1}, p\| + \|x_{n-1} - x_n, p\|, \|x_{n-1} - x_{n+1}, p\| + \|x_n - x_{n-1}, p\|\}$$

$$\leq \beta \max\{\frac{\|x_n - x_{n+1}, p\| + \|x_{n-1} - x_n, p\|}{3}, \frac{\|x_{n-1} - x_n, p\| + \|x_n - x_{n-1}, p\|}{3}\}$$

$$\leq \beta \max\{\|x_n - x_{n+1}, p\|, \|x_n - x_{n-1}, p\|\}.$$

$$(3.2)$$

If $||x_n - x_{n-1}, p|| \le ||x_n - x_{n+1}, p||$, then from (3.2) we get $||x_{n+1} - x_n, p|| \le \beta ||x_{n+1} - x_n, p||$ which implies, $1 \le \beta$, a contradiction.

Therefore,

 $||x_{n+1} - x_n, p|| \le ||x_n - x_{n-1}, p||.$ Thus $\{||x_n - x_{n-1}, p||\}$ is a monotone decreasing sequence of non-negative real numbers. Suppose $\lim_{n\to\infty} ||x_n - x_{n-1}, p|| = r.$ Thus

$$\begin{split} r &= \lim_{n \to \infty} \|x_n - x_{n-1}, p\| = \lim_{n \to \infty} \|F_i x_{n-1} - F_j x_{n-2}, p\| \\ &\leq \beta \lim_{n \to \infty} f(\|x_{n-1} - F_i x_{n-1}, p\|, \|x_{n-2} - F_j x_{n-2}, p\|, \|x_{n-1} - F_j x_{n-2}, p\|, \\ \|x_{n-2} - F_i x_{n-1}, p\|, \\ \|x_{n-1} - x_{n-2}, p\|) \\ &= \lim_{n \to \infty} \beta f(\|x_{n-1} - x_n, p\|, \|x_{n-2} - x_{n-1}, p\|, \|x_{n-1} - x_{n-1}, p\|, \|x_{n-2} - x_n, p\|, \\ \|x_{n-1} - x_{n-2}, p\|) \\ &= \lim_{n \to \infty} \beta \max\{\frac{(\|x_{n-1} - x_n, p\| + \|x_{n-2} - x_{n-1}, p\| + \|x_{n-1} - x_{n-1}, p\|}{3}\} \\ &\leq \beta \lim_{n \to \infty} \max\{\frac{(\|x_{n-1} - x_n, p\| + \|x_{n-2} - x_{n-1}, p\| + \|x_{n-1} - x_{n-1}, p\|}{3}\} \\ &\leq \beta \lim_{n \to \infty} \max\{\frac{(\|x_{n-1} - x_n, p\| + \|x_{n-2} - x_{n-1}, p\| + \|x_{n-1} - x_{n-1}, p\|}{3}\} \\ &\leq \beta \lim_{n \to \infty} \max\{\frac{(\|x_n - x_n, p\| + \|x_{n-1} - x_{n-2}, p\|}{3}\} \\ &\leq \beta \lim_{n \to \infty} \max\{\|x_n - x_{n-1}, p\|, \|x_{n-1} - x_{n-2}, p\|\} \\ &= \beta \max\{r, r\} \\ &= \beta r \end{split}$$

$$\begin{split} & \text{implies, } r = 0 \; [\text{as } \beta < 1] \\ & \text{i.e., } \lim_{n \to \infty} \|x_n - x_{n-1}, p\| = 0. \\ & \text{Now, for } n \geq m \in \mathbb{N}, \\ & \|x_{n+1} - x_{m+1}, p\| = \|F_{ix_n} - F_{jx_m}, p\| \\ & \leq \beta f(\|x_n - F_{ix_n}, p\|, \|x_m - F_{jx_m}, p\|, \|x_n - F_{jx_m}, p\|, \|x_m - F_{ix_n}, p\|, \|x_n - x_m, p\|) \\ & = \beta f(\|x_n - x_{n+1}, p\|, \|x_m - x_{m+1}, p\|, \|x_n - x_{m+1}, p\|, \|x_m - x_{n+1}, p\|, \|x_n - x_m, p\|) \\ & = \beta \max\{\frac{\|x_n - x_{n+1}, p\| + \|x_m - x_{m+1}, p\|, \|x_n - x_m, p\|, \|x_m - x_{n+1}, p\|, \|x_n - x_{m+1}, p\|, \|x_m - x_m, p\|\} \\ & \leq \beta \max\{\frac{\|x_n - x_{n+1}, p\| + \|x_m - x_{m+1}, p\|, \|x_n - x_m, p\|, \|x_m - x_m, p\|, \|x_m - x_{m+1}, p\|, \|x_m - x_m, p\|\} \\ & \leq \beta \max\{\frac{\|x_n - x_{n+1}, p\| + \|x_m - x_{m+1}, p\|, \|x_n - x_m, p\|, \|x_m - x_m, p\|\} \\ & \leq \beta \max\{\|x_n - x_{n+1}, p\|, \|x_m - x_{m+1}, p\| \leq \beta \lim_{n,m\to\infty} \|x_n - x_n, p\| \\ & \leq \beta \max\{\|x_n - x_{n+1}, p\|, \|x_m - x_m, p\| = 0. \\ & \text{Taking limit as } n, m \to \infty \text{ on the both sides of the above inequality, we get } \\ & \lim_{n,m\to\infty} \|x_{n+1} - x_{m+1}, p\| \leq \beta \lim_{n,m\to\infty} \|x_n - x_m, p\| \\ & \text{implies, } \lim_{n,m\to\infty} \|x_n - x_m, p\| = 0. \\ & \text{Since } \|F_i z - z_i p\| \leq \|F_i z - x_n, p\| + \|x_n - z_i p\| \\ & = \|F_i z - F_i x_{n-1}, p\| + \|x_n - z_i p\| \\ & \leq \beta f(\|z - F_i z, p\|, \|x_{n-1} - F_j x_{n-1}, p\|, \|z - F_i z_n p\|, \|z - x_{n-1}, p\|) + \|x_n - z_i p\| \\ & = \beta f(\|z - F_i z, p\|, \|x_{n-1} - x_n, p\|, \|z - x_n, p\|, \|x_{n-1} - F_i z, p\|, \|z - x_{n-1}, p\|) + \|x_n - z_i p\| \\ & = \beta \max\{\frac{\|z - F_i z, p\| + \|x_{n-1} - x_n, p\| + \|z - x_n, p\|, \frac{\|x_{n-1} - F_i z, p\| + \|z - x_{n-1}, p\|}{3}\} + \|x_n - z, p\| \\ & = \beta \max\{\frac{\|z - F_i z, p\| + \|x_{n-1} - x_n, p\| + \|z - x_n, p\|, \frac{\|x_{n-1} - F_i z, p\| + \|z - x_{n-1}, p\|}{3}\} + \|x_n - z, p\| \\ & = \beta \max\{\frac{\|z - F_i z, p\| + \|x_{n-1} - x_n, p\| + \|z - x_n, p\|}{3}\} + \frac{\|x_{n-1} - F_i z, p\| + \|x_n - z_n, p\|}{3} \\ & \leq \beta \|F_i z - z_i p\| \\ & = \beta \max\{\frac{\|z - F_i z, p\| + \|x_{n-1} - x_n, p\| + \|z - x_n, p\|}{3}\} + \frac{\|x_{n-1} - F_i z, p\| + \|x_n - z_n, p\|}{3} \\ & \leq \beta \|F_i z - z_i p\| \\ & = \beta \max\{\frac{\|F$$

Let z' be another common fixed point of $\{F_n\}_{n=1}^{\infty}$. Then ,

$$\begin{aligned} \|z - z', p\| &\leq \|F_i z - F_j z', p\| \\ &\leq \beta f(\|z - F_i z, p\|, \|z' - F_j z', p\|, \|z - F_j z', p\|, \|z' - F_i z, p\|, \|z - z', p\|) \\ &= \beta f(\|z - z, p\|, \|z' - z', p\|, \|z - z', p\|, \|z' - z, p\|, \|z - z', p\|) \\ &= \beta \max\{\frac{0 + 0 + \|z - z', p\|}{3}, \frac{\|z - z', p\| + \|z - z', p\|}{3}\} \\ &\leq \beta \|z - z', p\| \end{aligned}$$

implies, ||z - z', p|| = 0 i.e., z = z'.

Hence $\{F_n\}_{n=1}^{\infty}$ have a unique common fixed point in X.

Corollary 3.3 Let F_1 and F_2 be two self maps on 2-Banach space $(X, \|., .\|)$ satisfying

 $||F_1x - F_2y, p|| \le \beta f(||x - F_1x, p||, ||y - F_2y, p||, ||x - F_2y, p||, ||y - F_1x, p||, ||x - y, p||),$ where $\beta < 1$ and f satisfy the relation (2.2). Then F_1 and F_2 have a unique common fixed point in X.

Proof. Put $F_i = F_1$ and $F_j = F_2$ in the above **Theorem 3.2** we get the result.

Corollary 3.4. Let F be a self map on 2-Banach space $(X, \|., .\|)$ satisfying $||Fx - Fy, p|| \le \beta f(||x - Fx, p||, ||y - Fy, p||, ||x - Fy, p||, ||y - Fx, p||, ||x - y, p||),$ where $\beta < 1$ and f satisfy the relation (2.2). Then F have a unique fixed point in Χ.

Proof. Put $F_i = F_j = F$ in the above **Theorem 3.2** we get the result.

Theorem 3.3. Let $\{F_n\}_{n=1}^{\infty}$ be sequence of self maps on 2-Banach space $(X, \|., .\|)$ satisfying

 $\begin{aligned} \|F_{i}x - F_{j}y, p\| \\ &\leq \alpha \frac{\|x - y, p\| + \|x - F_{j}y, p\| + \|y - F_{i}x, p\|}{1 + \|x - F_{j}y, p\| + \|y - F_{i}x, p\|} + \beta \max\{\|x - F_{j}y, p\|, \|y - F_{i}x, p\|\} + \gamma \|y - F_{j}y, p\|, \|y - F_{i}x, p\|\} + \gamma \|y - F_{i}y, p\|, \|y - F_{i}y, p\| + \beta \max\{\|x - F_{j}y, p\|, \|y - F_{i}x, p\|\} + \gamma \|y - F_{i}y, p\|, \|y - F_{i}y, p\|, \|y - F_{i}y, p\| + \beta \max\{\|x - F_{j}y, p\|, \|y - F_{i}x, p\|\} + \gamma \|y - F_{i}y, p\|, \|y - F_{i}y, p\| + \beta \max\{\|x - F_{j}y, p\|, \|y - F_{i}x, p\|\} + \beta \max\{\|y - F_{i}y, p\|, \|y - F_{i}y, p\|\} + \beta \max\{\|y - F_{i}y, p\|, \|y - F_{i}y, p\|\} + \beta \max\{\|y - F_{i}y, p\|, \|y - F_{i}y, p\|\} + \beta \max\{\|y - F_{i}y, p\|, \|y - F_{i}y, p\|\} + \beta \max\{\|y - F_{i}y, p\|, \|y - F_{i}y, p\|\} + \beta \max\{\|y - F_{i}y,$ where α, β, γ are non-negative real numbers and $3\alpha + 2\beta + \gamma < 1$. Then $\{F_n\}_{n=1}^{\infty}$ have a unique common fixed point in X.

Proof. For an initial approximation $y_0 \in X$ construct a sequence $\{y_n\}$ in X such that $y_{n+1} = F_i y_n$ for a fixed i = 1, 2, 3, ... If $y_n = F_i y_n$ i.e., $y_n = y_{n+1}, n = 0, 1, 2, ...$ then y_n is common fixed point of $\{F_n\}_{n=1}^{\infty}$ for all n = 0, 1, 2, ... and the proof is completed.

So we assume that $y_{n+1} \neq y_n \quad \forall n \in \mathbb{N} \cup \{0\}.$

Now we show that $\{y_n\}$ is a Cauchy sequence.

Since,

$$\begin{aligned} \|y_{n+1} - y_n, p\| &= \|F_i y_n - F_j y_{n-1}, p\| \\ &\leq \alpha (\frac{\|y_n - y_{n-1}, p\| + \|y_n - F_j y_{n-1}, p\| + \|y_{n-1} - F_i y_n, p\|}{1 + \|y_n - F_j y_{n-1}, p\| + \|y_{n-1} - F_i y_n, p\|}) + \beta \max\{\|y_n - F_j y_{n-1}, p\|, \|y_{n-1} - F_i y_n, p\|\} \\ &+ \gamma \|y_{n-1} - F_j y_{n-1}, p\| \\ &\leq \alpha (\|y_n - y_{n-1}, p\| + \|y_n - y_n, p\| + \|y_{n-1} - y_{n+1}, p\|) + \beta \max\{\|y_n - y_n, p\|, \|y_{n-1} - y_{n+1}, p\|\} + \gamma \|y_{n-1} - y_n, p\| \\ &\leq \alpha (\|y_n - y_{n-1}, p\| + \|y_{n-1} - y_n, p\| + \|y_n - y_{n+1}, p\|) + \beta [\|y_{n-1} - y_n, p\| + \|y_n - y_{n+1}, p\|] \\ &\leq \alpha (\|y_n - y_{n-1}, p\| + \|y_{n-1} - y_n, p\| + \|y_n - y_{n+1}, p\|) + \beta [\|y_{n-1} - y_n, p\| + \|y_n - y_{n+1}, p\|] \\ &\leq \alpha (\|y_n - y_{n-1}, p\| + \|y_{n-1} - y_n, p\| \\ &= k\|y_n - y_{n-1}, p\| [\text{ where } \frac{2\alpha + \gamma + \beta}{1 - \alpha - \beta} = k < 1] \end{aligned}$$

$$\begin{split} &\leq k^2 \|y_{n-1} - y_{n-2}, p\| \\ &\vdots \\ &\leq k^n \|y_1 - y_0, p\|. \\ \text{Taking limit as } n \to \infty, \text{ we get} \\ &\lim_{n \to \infty} \|y_{n+1} - y_n, p\| = 0 \text{ [as } k < 1 \text{].} \\ \text{Now, let } n \geq m \in \mathbb{N}. \text{ Then} \\ &\|y_n - y_m, p\| = \|F_i y_{n-1} - F_j y_{m-1}, p\| \\ &\leq \alpha (\frac{\|y_{n-1} - y_{m-1} - y_n\| + \|y_{m-1} - F_i y_{m-1}, p\|]}{1 + \|y_{m-1} - F_j y_{m-1}, p\| + \|y_{m-1} - F_j y_{m-1}, p\|} \\ &+ \beta \max\{\|y_{n-1} - y_{m-1}, p\| + \|y_{m-1} - y_{n}, p\|\} + \gamma \|y_{m-1} - F_j y_{m-1}, p\| \\ &\leq \alpha (\|y_{n-1} - y_{m-1}, p\| + \|y_{n-1} - y_n, p\| + \|y_{m-1} - y_n, p\|) + \beta \max\{\|y_{n-1} - y_{m}, p\| + \|y_{m-2} - y_{m} + \|y_{m-2} - y_{m}, p\| + \|y_{m-2} - y_{m} + \|y_{m-2}$$

$$\leq \alpha \frac{\|y-z,p\|+\|y-F_{j}z,p\|+\|z-F_{i}y,p\|}{1+\|y-F_{j}z,p\|+\|z-F_{i}y,p\|} + \beta \max\{\|y-F_{j}z,p\|, \|z-F_{i}y,p\|\} + \gamma \|z-F_{j}z,p\| \\ \leq \alpha \frac{\|y-z,p\|+\|y-z,p\|+\|z-y,p\|}{1+\|y-z,p\|+\|z-y,p\|} + \beta \max\{\|y-z,p\|, \|z-y,p\|\} + \gamma \|z-z,p\| \\ \leq (3\alpha + \beta + \gamma) \|y-z,p\| \\ \text{implies, } (1-3\alpha - \beta - \gamma) \|y-z,p\| \leq 0 \\ \text{i.e., } \|y-z,p\| = 0 \\ \text{i.e., } y = z.$$

Hence $\{F_n\}_{n=1}^{\infty}$ have a unique common fixed point in X.

Corollary 3.5. Let F_1 and F_2 be two self maps on 2-Banach space $(X, \|., .\|)$ satisfying

 $\begin{aligned} &\|F_{1}x - F_{2}y, p\| \\ &\leq \alpha \frac{\|x - y, p\| + \|x - F_{2}y, p\| + \|y - F_{1}x, p\|}{1 + \|x - F_{2}y, p\| + \|y - F_{1}x, p\|} + \beta \max\{\|x - F_{2}y, p\|, \|y - F_{1}x, p\|\} + \gamma \|y - F_{2}y, p\|, \\ & \text{where } \alpha, \beta, \gamma \text{ are non-negative real numbers and } 3\alpha + 2\beta + \gamma < 1. \\ & \text{Then } F_{1} \text{ and } F_{2} \\ & \text{have a unique common fixed point in } X. \end{aligned}$

Proof. Putting $F_i = F_1$ and $F_j = F_2$ in the **Theorem 3.3** we get the desired result.

Corollary 3.6. Let F be a self map on 2-Banach space $(X, \|., .\|)$ satisfying

 $\begin{aligned} & \|Fx - Fy, p\| \\ & \leq \alpha \frac{\|x - y, p\| + \|x - Fy, p\| + \|y - Fx, p\|}{1 + \|x - Fy, p\| + \|y - Fx, p\|} + \beta \max\{\|x - Fy, p\|, \|y - Fx, p\|\} + \gamma \|y - Fy, p\|, \\ & \text{where } \alpha, \beta, \gamma \text{ are non-negative real numbers and } 3\alpha + 2\beta + \gamma < 1. \\ & \text{Then } F \text{ have a } \\ & \text{unique fixed point in } X. \end{aligned}$

Proof. Putting $F_i = F_j = F$ in the **Theorem 3.3** we get the desired result.

Theorem 3.4. Let $\{F_n\}_{n=1}^{\infty}$ be sequence of self maps on 2-Banach space $(X, \|., .\|)$ satisfying

 $\begin{aligned} & \|F_i x - F_j y, p\| \\ & \leq \alpha \frac{\|x - y, p\| + \|y - F_i x, p\|}{1 + \|x - F_j y, p\| + \|y - F_i x, p\|} + \beta \min\{\|x - F_j y, p\|, \|y - F_i x, p\|\} + \gamma \|y - F_j y, p\|, \\ & \text{where } \alpha, \beta, \gamma \text{ are non-negative real numbers and } 3\alpha + 2\beta + \gamma < 1. \\ & \text{Then } \{F_n\}_{n=1}^{\infty} \\ & \text{have a unique common fixed point in } X. \end{aligned}$

Proof. Since $\min\{||x - F_j y, p||, ||y - F_i x, p||\} \le \max\{||x - F_j y, p||, ||y - F_i x, p||\}$, the result follows from the **Theorem 3.3**.

Theorem 3.5. Let $\{F_n\}_{n=1}^{\infty}$ be sequence of self maps on 2-Banach space $(X, \|., .\|)$ satisfying

 $\begin{aligned} &\|F_{ix} - F_{j}y, p\| \\ \leq \alpha \frac{\|x - y, p\| + \|x - F_{ix}, p\|}{1 + \|y - F_{ix}, p\|} + \beta \max\{\|x - F_{j}y, p\|, \|y - F_{j}y, p\|\} + \gamma[\|x - F_{ix}, p\| + \|y - F_{j}y, p\|], \\ where \ \alpha, \beta, \gamma \ are \ non-negative \ real \ numbers \ and \ 2\alpha + \beta + 2\gamma < 1. \ Then \ \{F_n\}_{n=1}^{\infty} \\ have \ a \ unique \ common \ fixed \ point \ in \ X. \end{aligned}$

Proof. With an initial approximation $y_0 \in X$, construct a sequence $\{y_n\}$ such that $y_{n+1} = F_i y_n$; n = 0, 1, 2, ... for a fixed *i*. Similarly as previous theorems, assume $y_{n+1} \neq y_n, \forall n \in \mathbb{N} \cup \{0\}$.

First of all we show that $\{y_n\}$ is a Cauchy sequence. Since,

 $\begin{aligned} \|y_{n+1} - y_n, p\| &= \|F_i y_n - F_j y_{n-1}, p\| \\ &\leq \alpha(\frac{\|y_n - y_{n-1}, p\| + \|y_n - F_i y_{n, p}\|}{1 + \|y_{n-1} - F_i y_{n, p}\|}) + \beta \max\{\|y_n - F_j y_{n-1}, p\|, \|y_{n-1} - F_j y_{n-1}, p\|\} \\ &+ \gamma[\|y_n - F_j y_n, p\| + \|y_{n-1} - F_j y_{n-1}, p\|] \\ &\leq \alpha(\|y_n - y_{n-1}, p\| + \|y_n - y_{n+1}, p\|) + \beta \max\{\|y_n - y_n, p\|, \|y_{n-1} - y_n, p\|\} + \gamma[\|y_n - y_{n+1}, p\| + \|y_{n-1} - y_n, p\|] \\ &= \alpha\|y_n - y_{n-1}, p\| + \alpha\|y_n - y_{n+1}, p\| + \beta\|y_{n-1} - y_n, p\| + \gamma\|y_n - y_{n+1}, p\| + \gamma\|y_{n-1} - y_n, p\| \\ &= \min\{1 - \alpha - \gamma)\|y_{n+1} - y_n, p\| \leq (\alpha + \beta + \gamma)\|y_n - y_{n-1}, p\| \end{aligned}$

i.e.,
$$||y_{n+1} - y_n, p|| \le (\frac{\alpha + \beta + \gamma}{1 - \alpha - \gamma})||y_n - y_{n-1}, p|$$

$$\leq \left(\frac{\alpha+\beta+\gamma}{1-\alpha-\gamma}\right)^2 \|y_{n-1}-y_{n-2},p\|$$
$$\vdots$$
$$\leq \left(\frac{\alpha+\beta+\gamma}{1-\alpha-\gamma}\right)^n \|y_1-y_0,p\|.$$

Taking $\lim_{n\to\infty}$ on the both sides of the above inequality, we get

 $\lim_{n \to \infty} \|y_{n+1} - y_n, p\| = 0.$

Now, let $n \ge m \in \mathbb{N}$. Then $\begin{aligned} \|y_{n+1} - y_{m+1}, p\| \\ &= \|F_i y_n - F_j y_m, p\| \\ &\le \alpha \frac{\|y_n - y_m, p\| + \|y_n - F_i y_n, p\|}{1 + \|y_m - F_i y_n, p\|} + \beta \max\{\|y_n - F_j y_m, p\|, \|y_m - F_j y_m, p\|\} + \gamma[\|y_n - F_i y_n, p\|] + \|y_m - F_j y_m, p\|] \\ &\le \alpha (\|y_n - y_m, p\| + \|y_n - y_{n+1}, p\|) + \beta \max\{\|y_n - y_{m+1}, p\|, \|y_m - y_{m+1}, p\|\} + \gamma[\|y_n - y_{n+1}, p\|] + \|y_m - y_{m+1}, p\|]. \end{aligned}$ Taking limit as $n, m \to \infty$ we get from above $\begin{aligned} \lim_{n,m\to\infty} \|y_{n+1} - y_{m+1}, p\| \\ &\le \alpha \lim_{n,m\to\infty} \|y_n - y_m, p\| + \beta \lim_{n,m\to\infty} \|y_n - y_{m+1}, p\| + \gamma.0 \\ &\le \alpha \lim_{n,m\to\infty} \|y_n - y_m, p\| + \beta \lim_{n,m\to\infty} \|y_n - y_m, p\| + \|y_m - y_{m+1}, p\|] \\ &= (\alpha + \beta) \lim_{n,m\to\infty} \|y_n - y_m, p\| = 0 \end{aligned}$ i.e., $\{y_n\}$ is a Cauchy sequence. Since X is complete, there exists an $y \in X$ such that $\lim_{n\to\infty} ||y_n - y, p|| = 0$.

Now we show that y is a common fixed point of $\{F_n\}_{n=1}^{\infty}$. Since

 $||F_iy - y, p|| \le ||F_iy - y_n, p|| + ||y_n - y, p||$ $||y_{n-1} - F_i y_{n-1}, p|| + ||y_n - y, p||$ $\leq \alpha(\|y - y_{n-1}, p\| + \|y - F_i y, p\|) + \beta \max\{\|y - y_n, p\|, \|y_{n-1} - y_n, p\|\} + \gamma[\|y - y_n, p\|] + \gamma$ $F_i y, p \| + \| y_{n-1} - y_n, p \|] + \| y_n - y, p \|.$ Taking $\lim_{n\to\infty}$ on the both sides of above inequality, we get $\lim_{n \to \infty} \|F_i y - y, p\| \le \alpha \|y - F_i y, p\| + \beta . 0 + \gamma \|y - F_i y, p\| + 0$ which implies, $(1 - \alpha - \gamma) \|F_i y - y, p\| \leq 0$ i.e., $||F_iy - y, p|| = 0$ i.e., $F_i y = y$. Thus y is a common fixed point of $\{F_n\}_{n=1}^{\infty}$. Let y' be another fixed point of $\{F_n\}_{n=1}^{\infty}$. Then $||y - y', p|| = ||F_i y - F_j y', p||$ $\leq \alpha(\underbrace{\|y-y',p\|+\|y-F_{i}y,p\|}_{1+\|y'-F_{i}y,p\|}) + \beta \max\{\|y-F_{j}y',p\|,\|y'-F_{j}y',p\|\} + \gamma[\|y-F_{i}y,p\|+\|y'-F_{i}y,p\|]\} + \alpha[\|y-F_{i}y,p\|+\|y'-F_{i}y,p\|] + \beta \max\{\|y-F_{i}y',p\|,\|y'-F_{i}y',p\|\} + \alpha[\|y-F_{i}y,p\|+\|y'-F_{i}y,p\|]\}$ $F_i y', p \parallel]$ $\leq \alpha (\|y-y',p\|+\|y-y,p\|) + \beta \max \{\|y-y',p\|,\|y'-y',p\|\} + \gamma [\|y-y,p\|+\|y'-y',p\|]$ $= \alpha ||y - y', p|| + \beta ||y - y', p||$ that implies, $(1 - \alpha - \beta) \|y - y', p\| \le 0$ i.e., $\|y - y', p\| = 0$ i.e., y = y'.

Hence the result.

Corollary 3.7. Let F_1 and F_2 be two self maps on 2-Banach space $(X, \|., .\|)$ satisfying

$$\begin{split} & \|F_1x - F_2y, p\| \\ & \leq \alpha \frac{\|x - y, p\| + \|x - F_1x, p\|}{1 + \|y - F_1x, p\|} + \beta \max\{\|x - F_2y, p\|, \|y - F_2y, p\|\} + \gamma[\|x - F_1x, p\| + \|y - F_2y, p\|]\}, \end{split}$$

where α, β, γ are non-negative real numbers and $2\alpha + \beta + 2\gamma < 1$. Then F_1 and F_2 have a unique common fixed point in X.

Proof. Putting $F_i = F_1$ and $F_j = F_2$ in the **Theorem 3.5** the result holds.

Corollary 3.8. Let F be a self map on 2-Banach space $(X, \|., .\|)$ satisfying

$$\begin{aligned} &\|Fx - Fy, p\| \\ &\leq \alpha \frac{\|x - y, p\| + \|x - Fx, p\|}{1 + \|y - Fx, p\|} + \beta \max\{\|x - Fy, p\|, \|y - Fy, p\|\} + \gamma[\|x - Fx, p\| + \|y - Fy, p\|], \end{aligned}$$

where α, β, γ are non-negative real numbers and $2\alpha + \beta + 2\gamma < 1$. Then F have a unique fixed point in X.

Proof. Putting $F_i = F_j = F$ in the **Theorem 3.5** the result holds.

The next theorem is the generalization of Saluja [13] theorem 3.1. In that theorem T was a continuous self map on X. We have proved it to a family of self maps without continuity as follows:

Theorem 3.6. Let X be a 2-Banach space(with dim $X \ge 2$) and $\{T_i\}_{i=1}^{\infty}$ be a family of self maps on X satisfying

 $||T_ix - T_jy, a|| \le h \max\{||x - y, a||, \frac{||x - T_ix, a|| + ||y - T_jy, a||}{2}, \frac{||x - T_jy, a|| + ||y - T_ix, a||}{2}\},$ where 0 < h < 1. Then $\{T_i\}_{i=1}^{\infty}$ have a unique common fixed point in X. **Proof.** Let $x_0 \in X$ be arbitrary. Then we construct a sequence $\{x_n\}$ such that $x_{n+1} = T_ix_n$ for a fixed *i*.

We now show that $\lim_{n\to\infty} ||x_{n+1} - x_n, a|| = 0$. Now,

$$\begin{aligned} \|x_{n+1} - x_n, a\| &= \|T_i x_n - T_{n-1}, a\| \\ &\leq h \max\{\|x_n - x_{n-1}, a\|, \frac{\|x_n - T_i x_n, a\| + \|x_{n-1} - T_j x_{n-1}, a\|}{2}, \frac{\|x_n - T_j x_{n-1}, a\| + \|x_{n-1} - T_i x_n, a\|}{2}\} \\ &= h \max\{\|x_n - x_{n-1}, a\|, \frac{\|x_n - x_{n+1}, a\| + \|x_{n-1} - x_n, a\|}{2}, \frac{\|x_n - x_n, a\| + \|x_{n-1} - x_{n+1}, a\|}{2}\} \\ &\leq h \max\{\|x_n - x_{n-1}, a\|, \frac{\|x_n - x_{n+1}, a\| + \|x_{n-1} - x_n, a\|}{2}, \frac{\|x_{n-1} - x_n, a\| + \|x_n - x_{n+1}, a\|}{2}\} \\ &= h \max\{\|x_n - x_{n-1}, a\|, \frac{\|x_n - x_{n+1}, a\| + \|x_{n-1} - x_n, a\|}{2}\} \\ &\leq h \max\{\|x_n - x_{n-1}, a\|, \frac{\|x_n - x_{n+1}, a\| + \|x_{n-1} - x_n, a\|}{2}\} \\ &\leq h \max\{\|x_n - x_{n-1}, a\|, \|x_n - x_{n-1}, a\|, \|x_n - x_{n+1}, a\|\}. \end{aligned}$$
(3.3)

Suppose $||x_{n-1} - x_n, a|| \le ||x_n - x_{n+1}, a||$. Then from (3.3), $||x_{n+1} - x_n, a|| \le h ||x_{n+1} - x_n, a||$ implies, $1 \le h$, a contradiction.

Thus $||x_{n+1} - x_n, a|| \leq ||x_n - x_{n-1}, a||$. Therefore, $\{||x_{n+1} - x_n, a||\}$ is a sequence of real numbers monotone decreasing and bounded below. Suppose $\lim_{n\to\infty} ||x_{n+1} - x_n, a|| = r$. Suppose $r \neq 0$. Then,

$$\begin{split} r &= \lim_{n \to \infty} \|x_{n+1} - x_n, a\| = \lim_{n \to \infty} \|T_i x_n - T_j x_{n-1}, a\| \\ &\leq \lim_{n \to \infty} h \max\{\|x_n - x_{n-1}, a\|, \frac{\|x_n - T_i x_n, a\| + \|x_{n-1} - T_j x_{n-1}, a\|}{2}, \frac{\|x_n - T_j x_{n-1}, a\| + \|x_{n-1} - T_i x_n, a\|}{2}\} \\ &= h \lim_{n \to \infty} \max\{\|x_n - x_{n-1}, a\|, \frac{\|x_n - x_{n+1}, a\| + \|x_{n-1} - x_n, a\|}{2}, \frac{\|x_n - x_n, a\| + \|x_{n-1} - x_{n+1}, a\|}{2}\} \\ &\leq h \lim_{n \to \infty} \max\{\|x_n - x_{n-1}, a\|, \frac{\|x_n - x_{n+1}, a\| + \|x_{n-1} - x_n, a\|}{2}, \frac{\|x_{n-1} - x_n, a\| + \|x_n - x_{n+1}, a\|}{2}\}\} \\ &= h \lim_{n \to \infty} \max\{r, \frac{r+r}{2}, \frac{r+r}{2}\} = hr \\ &\text{implies, } 1 \leq h, \text{ a contradiction.} \\ &\text{Therefore, } \lim_{n \to \infty} \|x_{n+1} - x_n, a\| = 0. \\ &\text{ Now we show that } \{x_n\} \text{ is a Cauchy sequence.} \end{split}$$

Since for $n > m \in \mathbb{N}$,

$$\lim_{n,m\to\infty} ||x_n - x_m, a|| \\
\leq \lim_{n,m\to\infty} [||x_n - x_{n-1}, a|| + ||x_{n-1} - x_m, a||] \\
= \lim_{n,m\to\infty} ||x_{n-1} - x_m, a|| \\
\vdots \\
\leq \lim_{n,m\to\infty} ||x_m - x_m, a|| \\
= 0.$$

Therefore, $\{x_n\}$ is a Cauchy sequence. Since X is a complete space, there exist a $x \in X$ such that $\lim_{n\to\infty} x_n = x$.

Next, we show that x is a fixed point of $\{T_i\}_{i=1}^{\infty}$. Since

$$\begin{split} &\lim_{n\to\infty} \|T_i x - x, a\| \leq \lim_{n\to\infty} [\|T_i x - x_n, a\| + \|x_n - x, a\|] \\ &= \lim_{n\to\infty} \|T_i x - T_j x_{n-1}, a\| + \lim_{n\to\infty} \|x_n - x, a\| \\ &\leq \lim_{n\to\infty} h \max\{\|x - x_{n-1}, a\|, \frac{\|x - T_i x, a\| + \|x_{n-1} - T_j x_{n-1}, a\|}{2}, \frac{\|x - T_j x_{n-1}, a\| + \|x_{n-1} - T_i x, a\|}{2}\} \\ &= h \lim_{n\to\infty} \max\{\|x - x_{n-1}, a\|, \frac{\|x - T_i x, a\| + \|x_{n-1} - x_n, a\|}{2}, \frac{\|x - x_n, a\| + \|x_{n-1} - T_i x, a\|}{2}\} \\ &\leq h \|T_i x - x, a\| \\ &\text{implies, } \|T_i x - x, a\| \neq 0, \\ &\text{i.e., } T_i x = x. \\ &\text{Thus } x \text{ is fixed point of } X. \end{split}$$

Now we show that x is a unique common fixed point of $\{T_i\}_{i=1}^{\infty}$. Let y be another common fixed point. Then by the given condition, we get

$$\begin{split} \|x - y, a\| &= \|T_i x - T_j y, a\| \\ &\leq h \max\{\|x - y, a\|, \frac{\|x - T_i x, a\| + \|y - T_j y, a\|}{2}, \frac{\|x - T_j y, a\| + \|y - T_i x, a\|}{2}\} \\ &= h \max\{\|x - y, a\|, \frac{\|x - x, a\| + \|y - y, a\|}{2}, \frac{\|x - y, a\| + \|y - x, a\|}{2}\} \\ &= h\|x - y, a\| \\ &\text{implies, } \|x - y, a\| \\ &\text{inplies, } \|x - y, a\| = 0 \\ &\text{i.e., } x = y. \\ &\text{Thus } x \text{ is a unique common fixed point of } \{T_i\}_{i=1}^{\infty}. \\ &\text{Hence the theorem.} \end{split}$$

Corollary 3.9. Let X be a 2-Banach space(with $dim X \ge 2$) and T_1 and T_2 be two self maps on X satisfying

 $||T_1x - T_2y, a|| \le h \max\{||x - y, a||, \frac{||x - T_1x, a|| + ||y - T_2y, a||}{2}, \frac{||x - T_2y, a|| + ||y - T_1x, a||}{2}\},$ where 0 < h < 1. Then T_1 and T_2 have a unique common fixed point in X. **Proof.** Putting $T_i = T_1$ and $T_j = T_2$ in the above **Theorem 3.6** we have the required result.

This result is same as Saluja ([13]) theorem 3.1 without continuity.

Corollary 3.10. Let X be a 2-Banach space(with $dimX \ge 2$) and T be a self maps

on X satisfying

 $\|Tx - Ty, a\| \le h \max\{\|x - y, a\|, \frac{\|x - Tx, a\| + \|y - Ty, a\|}{2}, \frac{\|x - Ty, a\| + \|y - Tx, a\|}{2}\},\$ where 0 < h < 1. Then T have a unique fixed point in X.

Proof. Putting $T_i = T_j = T$ in the above **Theorem 3.6** we have the desired result.

4. Acknowledgement

The authors are thankful to the referee for the suggestions towards the improvement of the paper.

References

- [1] D. Das, N. Goswami, Vandana, Some fixed point theorems in 2-Banach spaces and 2-normed tensor product spaces, NTMSCI, vol. 5(2017), No. 1, pp. 1-12.
- [2] D. Das, N. Goswami, Vishnu Narayan Mishra, Some fixed point theorems in Banach Algebra, In. J. Anal. Appl. 13(1)(2017), 32-40.
- [3] D. Das, N. Goswami, Vishnu Narayan Mishra, Some fixed point theorems in the projective Tensor product of 2-Banach spaces, Global Journal of Advanced Research on Classical and Modern geometries, 6, 1(2017), 20-36.
- [4] R. Dubey, Deepmala, V. N. Mishra, Higher-order symmetric duality in nondifferentiable multiobjective fractional programming problem over cone constraints, Stat., Optim. Inf. Comput., Vol. 8, March 2020, pp 187–205.
- [5] S. Gähler, Linear 2-Normietre Roume, Math. Nachr., 28(1965), 1-43.
- [6] S. Gähler, Metricsche Roume and their topologische strucktur, Math. Nachr., 26(1963), 115-148.
- [7] K. Iseki, Mathematics on 2-normed spaces, Bull. Korean Math. Soc. 13 (2) (1977), 127-135.
- [8] M. S. Khan and M. D. Khan, Involutions with fixed points in 2-Banach spaces, Internat. J. Math. & Math. sci. Vol. 16(1993), No. 3, pp. 429-434.
- [9] X. Liu, M. Zhou, L. N. Mishra, V. N. Mishra, B. Damjanović, Common fixed point theorem of six self-mappings in Menger spaces using (*CLR_{ST}*) property, Open Mathematics, 2018; 16: 1423–1434.

- [10] L. N. Mishra, S. K. Tiwary, V. N. Mishra, Fixed point theorems for generalized weakly S-contractive mappings in partial metric spaces, Journal of Applied Analysis and computation, 5(2015), 4, 600-612.
- [11] L. N. Mishra, S. K. Tiwari, V. N. Mishra, I. A. Khan, Unique Fixed Point Theorems for Generalized Contractive Mappings in Partial Metric Spaces, Journal of Function Spaces, Volume 2015 (2015), Article ID 960827, 8 pages.
- [12] M. Saha, D. Dey, A. Ganguly and L. Debnath, Asymptotic Regularity and fixed point theorems on a 2-Banach spaces, Surveys in Mathematics and its Applications, Vol. 7(2012), pp. 31-38.
- [13] G. S. Saluja, Existence Results of Unique Fixed Point in 2-Banach Spaces, International J. Math. Combin. Vol. 1(2014), pp. 13-18.
- [14] A. S. Saluja, A. K. Dhakde, Some Fixed Point and Common Fixed Point Theorems in 2-Banach Spaces, AJER, Vol. 02(2013), Issue-05, pp. 122-127.
- [15] P. Shrivas, Some Unique Fixed point Theorems in 2-Banach Space, Internat. J. of Sci. Research and Review, Vol. 7(2019), Issue 5, 968-974.