SOME COMMON FIXED POINT RESULTS IN 2-BANACH SPACES

Krishnadhan Sarkar, Dinanath Barman* and Kalishankar Tiwary*
Department of Mathematics, Raniganj Girls' College, Raniganj, Paschim Bardhaman, West Bengal - 713358, INDIA E-mail : sarkarkrishnadhan@gmail.com
*Department of Mathematics, Raiganj University, West Bengal - 733134, INDIA
E-mail : dinanathbarman85@gmail.com, tiwarykalishankar@yahoo.com

(Received: Jan. 26, 2019 Accepted: Jun. 08, 2020 Published: Aug. 30, 2020)
Abstract: In this paper, we have proved some common fixed point theorems of a family of self maps without continuity in 2-Banach space. We have used functions on $\mathbb{R}_{+}{ }^{5}$ to \mathbb{R}_{+}and also generalize many existing results.
Keywords and Phrases: 2-norm, 2-Banach.
2010 Mathematics Subject Classification: 54H25, 47H10.

1. Introduction

In 1965, Gahler ([5], [6]) introduced 2-Banach space and Iseki [7] obtained some results on fixed point theorems in 2-Banach spaces. After the introduction of 2Banach space many research workers have extended fixed point theorems of metric, Banach spaces etc. in the new setup of 2-Banach spaces. Mishra et al. [10], Khan and Khan [8], Saha et al. [12], Mishra et al. [11], Saluja [13], Saluja and Dhakde [14], Das et al. [1], Shrivas [15], Das et al, [2] - [3], Liu et al. [9] and etc. have worked on fixed point and common fixed point theorems in this space. In this paper we also have proved some unique common fixed point theorems in 2-Banach spaces.

2. Definitions and Preliminaries

Gahler [5] has introduced the notion of 2-norm as follows:
2-norm: Let X be a linear space and $\|.,$.$\| is a real valued function defined on X$ where
i) $\|a, b\|=0$ if and only if a and b are linearly dependent;
ii) $\|a, b\|=\|b, a\|$;
iii) $\|a, x b\|=|x|\|a, b\|$;
iv) $\|a, b+c\| \leq\|a, b\|+\|a, c\|$
for all $a, b, c \in X$ and $x \in \mathbb{R}$. Then $\|.,$.$\| is called a 2$-norm and the pair $(X,\|.,\|$. is called a 2 -norm space.

In this paper, we denote X as a 2-normed space unless otherwise stated.
Convergent: A sequence $\left\{x_{n}\right\}$ in a 2 -norm space X is said to be convergent if there is a point $x \in X$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-x, a\right\|=0$ for all $a \in X$.
Cauchy Sequence: A sequence $\left\{x_{n}\right\}$ in a 2-norm space X is called a Cauchy sequence if $\lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}, a\right\|=0$ for all $a \in X$.
2-Banach Space: A linear 2-norm space is said to be complete if every Cauchy sequence in X is convergent in X. Then we say X is a 2 -Banach Space.

Let us consider a function $f: \mathbb{R}_{+}{ }^{5} \rightarrow \mathbb{R}_{+}$given by

$$
\begin{align*}
f\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right) & =\max \left\{t_{1}, \frac{t_{2}+t_{3}}{2}, \frac{t_{4}+t_{5}}{2}\right\} \tag{2.1}\\
f\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right) & =\max \left\{\frac{t_{1}+t_{2}+t_{3}}{3}, \frac{t_{4}+t_{5}}{3}\right\} \tag{2.2}
\end{align*}
$$

3. Main Part

In this part we have proved some unique common fixed point theorems in 2Banach spaces.

Theorem 3.1. Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be sequence of self maps on 2-Banach space ($X,\|.,$.$\|)$ satisfying
$\left\|F_{i} x-F_{j} y, p\right\| \leq \alpha f\left(\|x-y, p\|,\left\|x-F_{i} x, p\right\|,\left\|y-F_{j} y, p\right\|,\left\|x-F_{j} y, p\right\|,\left\|y-F_{i} x, p\right\|\right)$, where $\alpha<1$ and f satisfies the relation (2.1). Then $\left\{F_{n}\right\}_{n=1}^{\infty}$ have a unique common fixed point in X.
Proof. Let $\left\{x_{n}\right\}$ be sequence of points of X given by $x_{n+1}=F_{i} x_{n}$ with the initial approximation $x_{0} \in X$ for a fixed i. If $F_{i} x_{n}=x_{n}$ i.e., $x_{n+1}=x_{n}$, then x_{n} is a common fixed point of $\left\{F_{n}\right\}$. So without loss of generality assume $x_{n+1} \neq x_{n}$.

We now show that $\lim _{n \rightarrow \infty}\left\|x_{n}-x, p\right\|=0$.
Since,

$$
\left\|x_{n+1}-x_{n}, p\right\|=\left\|F_{i} x_{n}-F_{j} x_{n-1}, p\right\|
$$

$\leq \alpha f\left(\left\|x_{n}-x_{n-1}, p\right\|,\left\|x_{n}-F_{i} x_{n}, p\right\|,\left\|x_{n-1}-F_{j} x_{n-1}, p\right\|,\left\|x_{n}-F_{j} x_{n-1}, p\right\|, \| x_{n-1}-\right.$
$\left.F_{i} x_{n}, p \|\right)$
$=\alpha f\left(\left\|x_{n}-x_{n-1}, p\right\|,\left\|x_{n}-x_{n+1}, p\right\|,\left\|x_{n-1}-x_{n}, p\right\|,\left\|x_{n}-x_{n}, p\right\|,\left\|x_{n-1}-x_{n+1}, p\right\|\right)$
$=\alpha \max \left\{\left\|x_{n}-x_{n-1}, p\right\|, \frac{\left\|x_{n}-x_{n+1}, p\right\|+\left\|x_{n-1}-x_{n}, p\right\|}{2}, \frac{0+\left\|x_{n-1}-x_{n+1}, p\right\|}{2}\right\}$
$\leq \alpha \max \left\{\left\|x_{n}-x_{n-1}, p\right\|, \frac{\left\|x_{n}-x_{n+1}, p\right\|+\left\|x_{n-1}-x_{n}, p\right\|}{2}, \frac{\left\|x_{n-1}-x_{n}, p\right\|+\left\|x_{n}-x_{n+1}, p\right\|}{2}\right\}$

$$
\begin{equation*}
\leq \alpha \max \left\{\left\|x_{n}-x_{n-1}, p\right\|,\left\|x_{n}-x_{n+1}, p\right\|\right\} . \tag{3.1}
\end{equation*}
$$

If $\left\|x_{n}-x_{n-1}, p\right\| \leq\left\|x_{n}-x_{n+1}, p\right\|$, then from (3.1), we have

$$
\left\|x_{n+1}-x_{n}, p\right\| \leq \alpha\left\|x_{n+1}-x_{n}, p\right\|
$$

implies $1 \leq \alpha$, which is a contradiction.
Therefore $\left\{\left\|x_{n}-x_{n-1}, p\right\|\right\}$ is a sequence of real numbers monotone decreasing and bounded below.

Suppose $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n-1}, p\right\|=s$.
Since,
$s=\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n-1}, p\right\|$
$=\lim _{n \rightarrow \infty}\left\|F_{i} x_{n-1}-F_{j} x_{n-2}, p\right\|$
$\leq \lim _{n \rightarrow \infty} \alpha f\left(\left\|x_{n-1}-x_{n-2}, p\right\|,\left\|x_{n-1}-F_{i} x_{n-1}, p\right\|,\left\|x_{n-2}-F_{j} x_{n-2}, p\right\|\right.$,
$\left.\left\|x_{n-1}-F_{j} x_{n-2}, p\right\|,\left\|x_{n-2}-F_{i} x_{n-1}, p\right\|\right)$
$\leq \alpha \lim _{n \rightarrow \infty} f\left(\left\|x_{n-1}-x_{n-2}, p\right\|,\left\|x_{n-1}-x_{n}, p\right\|,\left\|x_{n-2}-x_{n-1}, p\right\|,\left\|x_{n-1}-x_{n-1}, p\right\|\right.$, $\left.\left\|x_{n-2}-x_{n}, p\right\|\right)$
$=\alpha \lim _{n \rightarrow \infty} \max \left\{\left\|x_{n-1}-x_{n-2}, p\right\|, \frac{\left\|x_{n-1}-x_{n}, p\right\|+\left\|x_{n-2}-x_{n-1}, p\right\|}{2}, \frac{0+\left\|x_{n-2}-x_{n}, p\right\|}{2}\right\}$
$\leq \alpha \lim _{n \rightarrow \infty} \max \left\{\left\|x_{n-1}-x_{n-2}, p\right\|, \frac{\left\|x_{n-1}-x_{n}, p\right\|+\left\|x_{n-2}-x_{n-1}, p\right\| \|}{2}, \frac{\left\|x_{n-2}-x_{n-1}, p\right\|+\left\|x_{n-1}-x_{n}, p\right\|}{2}\right\}$
$\leq \alpha$ s
implies, $s=0$
i.e., $\lim _{n \rightarrow \infty}\left\|x_{n}-x, p\right\|=0$.

Now, let $n \geq m \in \mathbb{N} \cup\{0\}$. Then
$\left\|x_{n+1}-x_{m+1}, p\right\|=\left\|F_{i} x_{n}-F_{j} x_{m}, p\right\|$
$\leq \alpha f\left(\left\|x_{n}-x_{m}, p\right\|,\left\|x_{n}-F_{i} x_{n}, p\right\|,\left\|x_{m}-F_{j} x_{m}, p\right\|,\left\|x_{n}-F_{j} x_{m}, p\right\|,\left\|x_{m}-F_{i} x_{n}, p\right\|\right)$
$=\alpha f\left(\left\|x_{n}-x_{m}, p\right\|,\left\|x_{n}-x_{n+1}, p\right\|,\left\|x_{m}-x_{m+1}, p\right\|,\left\|x_{n}-x_{m+1}, p\right\|,\left\|x_{m}-x_{n+1}, p\right\|\right)$
$=\alpha \max \left\{\left\|x_{n}-x_{m}, p\right\|, \frac{\left\|x_{n}-x_{n+1}, p\right\|+\left\|x_{m}-x_{m+1}, p\right\|}{2}, \frac{\left\|x_{n}-x_{m+1}, p\right\|+\left\|x_{m}-x_{n+1}, p\right\|}{2}\right\}$.
Taking limit as $n, m \rightarrow \infty$ on the both sides of the above inequality, we get
$\lim _{n, m \rightarrow \infty}\left\|x_{n+1}-x_{m+1}, p\right\|$
$\leq \alpha \max \left\{\lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}, p\right\|, 0, \lim _{n, m \rightarrow \infty} \frac{\left\|x_{n}-x_{m}, p\right\|+\left\|x_{m}-x_{m+1}, p\right\|+\left\|x_{m}-x_{n}, p\right\|+\left\|x_{n}-x_{n+1}, p\right\|}{2}\right\}$
$=\alpha \max \left\{\lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}, p\right\|, \lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}, p\right\|\right\}$
$=\alpha \lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}, p\right\|$,
which implies, $\lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}, p\right\|=0[$ since $\alpha \neq 0$].
Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is complete, there exists an $x \in X$ such that $\lim _{n, m \rightarrow \infty}\left\|x_{n}-x, p\right\|=0$.

Now we show that x is a common fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$.
Again,
$\left\|F_{i} x-x, p\right\| \leq\left\|F_{i} x-x_{n}, p\right\|+\left\|x_{n}-x, p\right\|$
$=\left\|F_{i} x-F_{j} x_{n-1}, p\right\|+\left\|x_{n}-x, p\right\|$
$\leq \alpha f\left(\left\|x-x_{n-1}, p\right\|,\left\|x-F_{i} x, p\right\|,\left\|x_{n-1}-F_{j} x_{n-1}, p\right\|,\left\|x-F_{j} x_{n-1}, p\right\|,\left\|x_{n-1}-F_{i} x, p\right\|\right)+$
$\left\|x_{n}-x, p\right\|$
$=\alpha f\left(\left\|x_{n}-x_{n-1}, p\right\|,\left\|x-F_{i} x, p\right\|,\left\|x_{n-1}-x_{n}, p\right\|,\left\|x-x_{n}, p\right\|,\left\|x_{n-1}-F_{i} x, p\right\|\right)+$ $\left\|x_{n}-x, p\right\|$
$=\alpha \max \left\{\left\|x_{n}-x_{n-1}, p\right\|, \frac{\left\|x-F_{i} x, p\right\|+\left\|x_{n-1}-x_{n}, p\right\|}{2}, \frac{\left\|x-x_{n}, p\right\|+\left\|x_{n-1}-F_{i} x, p\right\|}{2}\right\}+\left\|x_{n}-x, p\right\|$.
Taking limit as $n \rightarrow \infty$ we get from above
$\lim _{n \rightarrow \infty}\left\|F_{i} x-x, p\right\| \leq \alpha \max \left\{0, \frac{\left\|F_{i} x-x, p\right\|}{2}, \frac{\left\|F_{i} x-x, p\right\|}{2}\right\}+0$
i.e., $\left\|F_{i} x-x, p\right\| \leq \alpha \frac{\left\|F_{i} x-x, p\right\|}{2} \leq \alpha\left\|F_{i} x-x, p\right\|$
implies, $\left\|F_{i} x-x, p\right\|=0$
i.e., $F_{i} x=x$.

Thus x is a common fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$.
To show the uniqueness, let x^{\prime} be another fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$.
Since,

$$
\begin{aligned}
& \left\|x-x^{\prime}, p\right\|=\left\|F_{i} x-F_{j} x^{\prime}, p\right\| \\
\leq & \alpha f\left(\left\|x-x^{\prime}, p\right\|,\left\|x-F_{i} x, p\right\|,\left\|x^{\prime}-F_{j} x^{\prime}, p\right\|,\left\|x-F_{j} x^{\prime}, p\right\|,\left\|x^{\prime}-F_{i} x, p\right\|\right) \\
= & \alpha f\left(\left\|x-x^{\prime}, p\right\|,\|x-x, p\|,\left\|x^{\prime}-x^{\prime}, p\right\|,\left\|x-x^{\prime}, p\right\|,\left\|x^{\prime}-x, p\right\|\right) \\
= & \alpha \max \left\{\left\|x-x^{\prime}, p\right\|, 0, \frac{\left\|x-x^{\prime}, p\right\|+\left\|x-x^{\prime}, p\right\|}{2}\right\} \\
= & \alpha\left\|x-x^{\prime}, p\right\|,
\end{aligned}
$$

which implies, $\left\|x-x^{\prime}, p\right\|=0[$ since $\alpha \neq 0]$
i.e., $x=x^{\prime}$.

Hence $\left\{F_{n}\right\}_{n=1}^{\infty}$ have a unique common fixed point in X.
Corollary 3.1. Let F_{1} and F_{2} be two self maps on 2-Banach space $(X,\|.,\|$. satisfying
$\left\|F_{1} x-F_{2} y, p\right\| \leq \alpha f\left(\|x-y, p\|,\left\|x-F_{1} x, p\right\|,\left\|y-F_{2} y, p\right\|,\left\|x-F_{2} y, p\right\|,\left\|y-F_{1} x, p\right\|\right)$, where $\alpha<1$ and f satisfies the relation (2.1). Then F_{1} and F_{2} have a unique common fixed point in X.
Proof. Putting $F_{i}=F_{1}$ and $F_{j}=F_{2}$ in the Theorem 3.1 we get the result.
Corollary 3.2. Let F be a self map on 2-Banach space $(X,\|.,\|$.$) satisfying$ $\|F x-F y, p\| \leq \alpha f(\|x-y, p\|,\|x-F x, p\|,\|y-F y, p\|,\|x-F y, p\|,\|y-F x, p\|)$, where $\alpha<1$ and f satisfies the relation (2.1). Then F have a unique fixed point in X.
Proof. Putting $F_{i}=F_{j}=F$ in the Theorem 3.1 we get the result.

Theorem 3.2. Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be sequence of self maps on 2-Banach space $(X,\|.,\|$. satisfying
$\left\|F_{i} x-F_{j} y, p\right\| \leq \beta f\left(\left\|x-F_{i} x, p\right\|,\left\|y-F_{j} y, p\right\|,\left\|x-F_{j} y, p\right\|,\left\|y-F_{i} x, p\right\|,\|x-y, p\|\right)$, where $\beta<1$ and f satisfy the relation (2.2). Then $\left\{F_{n}\right\}_{n=1}^{\infty}$ have a unique common fixed point in X.
Proof. Let $x_{0} \in X$ be an initial point. Construct a sequence $\left\{x_{n}\right\}$ in X, for a fixed i, such that $x_{n+1}=F_{i} x_{n}$. If $x_{n+1}=x_{n}$ i.e., $F_{i} x_{n}=x_{n}$, then x_{n} is a common fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$. So without loss of generality, suppose $x_{n+1} \neq x_{n} \forall n \in \mathbb{N} \cup\{0\}$. Since,

$$
\left\|x_{n+1}-x_{n}, p\right\|=\left\|F_{i} x_{n}-F_{j} x_{n-1}, p\right\|
$$

$\leq \beta f\left(\left\|x_{n}-F_{i} x_{n}, p\right\|,\left\|x_{n-1}-F_{j} x_{n-1}, p\right\|,\left\|x_{n}-F_{j} x_{n-1}, p\right\|,\left\|x_{n-1}-F_{i} x_{n}, p\right\|, \| x_{n}-\right.$ $\left.x_{n-1}, p \|\right)$
$=\beta f\left(\left\|x_{n}-x_{n+1}, p\right\|,\left\|x_{n-1}-x_{n}, p\right\|,\left\|x_{n}-x_{n}, p\right\|,\left\|x_{n-1}-x_{n+1}, p\right\|,\left\|x_{n}-x_{n-1}, p\right\|\right)$
$=\beta \max \left\{\frac{\left\|x_{n}-x_{n+1}, p\right\|+\left\|x_{n-1}-x_{n}, p\right\|+\left\|x_{n}-x_{n}, p\right\| \|}{3}, \frac{\left\|x_{n-1}-x_{n+1}, p\right\|+\left\|x_{n}-x_{n-1}, p\right\|}{3}\right\}$
$\leq \beta \max \left\{\frac{\left\|x_{n}-x_{n+1}, p\right\|+\left\|x_{n-1}-x_{n}, p\right\| \|}{3}, \frac{\left\|x_{n-1}-x_{n}, p\right\|+\left\|x_{n}-x_{n+1}, p\right\|+\left\|x_{n}-x_{n-1}, p\right\|}{3}\right\}$

$$
\begin{equation*}
\leq \beta \max \left\{\left\|x_{n}-x_{n+1}, p\right\|,\left\|x_{n}-x_{n-1}, p\right\|\right\} . \tag{3.2}
\end{equation*}
$$

If $\left\|x_{n}-x_{n-1}, p\right\| \leq\left\|x_{n}-x_{n+1}, p\right\|$, then from (3.2) we get

$$
\left\|x_{n+1}-x_{n}, p\right\| \leq \beta\left\|x_{n+1}-x_{n}, p\right\|
$$

which implies, $1 \leq \beta$, a contradiction.
Therefore,
$\left\|x_{n+1}-x_{n}, p\right\| \leq\left\|x_{n}-x_{n-1}, p\right\|$.
Thus $\left\{\left\|x_{n}-x_{n-1}, p\right\|\right\}$ is a monotone decreasing sequence of non-negative real numbers. Suppose $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n-1}, p\right\|=r$.
Thus

$$
\begin{aligned}
& r=\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n-1}, p\right\|=\lim _{n \rightarrow \infty}\left\|F_{i} x_{n-1}-F_{j} x_{n-2}, p\right\| \\
& \leq \beta \lim _{n \rightarrow \infty} f\left(\left\|x_{n-1}-F_{i} x_{n-1}, p\right\|,\left\|x_{n-2}-F_{j} x_{n-2}, p\right\|,\left\|x_{n-1}-F_{j} x_{n-2}, p\right\|\right. \text {, } \\
& \left\|x_{n-2}-F_{i} x_{n-1}, p\right\| \text {, } \\
& \left.\left\|x_{n-1}-x_{n-2}, p\right\|\right) \\
& =\lim _{n \rightarrow \infty} \beta f\left(\left\|x_{n-1}-x_{n}, p\right\|,\left\|x_{n-2}-x_{n-1}, p\right\|,\left\|x_{n-1}-x_{n-1}, p\right\|,\left\|x_{n-2}-x_{n}, p\right\|\right. \text {, } \\
& \left.\left\|x_{n-1}-x_{n-2}, p\right\|\right) \\
& =\lim _{n \rightarrow \infty} \beta \max \left\{\frac{\left(\left\|x_{n-1}-x_{n}, p\right\|+\left\|x_{n-2}-x_{n-1}, p\right\|+\left\|x_{n-1}-x_{n-1}, p\right\|\right.}{3}, \frac{\left\|x_{n-2}-x_{n}, p\right\|+\left\|x_{n-1}-x_{n-2}, p\right\|}{3}\right\} \\
& \leq \beta \lim _{n \rightarrow \infty} \max \left\{\frac{\left(\left\|x_{n-1}-x_{n}, p\right\|+\left\|x_{n-2}-x_{n-1}, p\right\|+\left\|x_{n-1}-x_{n-1}, p\right\|\right.}{3},\right. \\
& \left.\llbracket x_{n-2}-x_{n-1}, p\|+\| x_{n-1}-x_{n}, p\|+\| x_{n-1}-x_{n-2}, p \|\right\} \\
& \leq \beta \lim _{n \rightarrow \infty} \max \left\{\left\|x_{n}-x_{n-1}, p\right\|,\left\|x_{n-1}-x_{n-2}, p\right\|\right\} \\
& =\beta \max \{r, r\} \\
& =\beta r
\end{aligned}
$$

implies, $r=0$ [as $\beta<1$]
i.e., $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n-1}, p\right\|=0$.

Now, for $n \geq m \in \mathbb{N}$,

$$
\left\|x_{n+1}-x_{m+1}, p\right\|=\left\|F_{i} x_{n}-F_{j} x_{m}, p\right\|
$$

$\leq \beta f\left(\left\|x_{n}-F_{i} x_{n}, p\right\|,\left\|x_{m}-F_{j} x_{m}, p\right\|,\left\|x_{n}-F_{j} x_{m}, p\right\|,\left\|x_{m}-F_{i} x_{n}, p\right\|,\left\|x_{n}-x_{m}, p\right\|\right)$
$=\beta f\left(\left\|x_{n}-x_{n+1}, p\right\|,\left\|x_{m}-x_{m+1}, p\right\|,\left\|x_{n}-x_{m+1}, p\right\|,\left\|x_{m}-x_{n+1}, p\right\|,\left\|x_{n}-x_{m}, p\right\|\right)$
$=\beta \max \left\{\frac{\left\|x_{n}-x_{n+1}, p\right\|+\left\|x_{m}-x_{m+1}, p\right\|+\left\|x_{n}-x_{m+1}, p\right\|}{3}, \frac{\left\|x_{m}-x_{n+1}, p\right\|+\left\|x_{n}-x_{m}, p\right\|}{3}\right\}$
$\leq \beta \max \left\{\frac{\left\|x_{n}-x_{n+1}, p\right\|+\left\|x_{m}-x_{m+1}, p\right\|+\left\|x_{n}-x_{m}, p\right\|+\left\|x_{m}-x_{m+1}, p\right\|}{3}, \frac{\left\|x_{m}-x_{n}, p\right\|+\left\|x_{n}-x_{n+1}, p\right\|+\left\|x_{n}-x_{m}, p\right\|}{3}\right\}$
$\leq \beta \max \left\{\left\|x_{n}-x_{n+1}, p\right\|,\left\|x_{m}-x_{m+1}, p\right\|,\left\|x_{n}-x_{m}, p\right\|\right\}$.
Taking limit as $n, m \rightarrow \infty$ on the both sides of the above inequality, we get
$\lim _{n, m \rightarrow \infty}\left\|x_{n+1}-x_{m+1}, p\right\| \leq \beta \lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}, p\right\|$
implies, $\lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}, p\right\|=0$.
Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is complete, there is an $z \in X$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-z, p\right\|=0$.
Since $\left\|F_{i} z-z, p\right\| \leq\left\|F_{i} z-x_{n}, p\right\|+\left\|x_{n}-z, p\right\|$
$=\left\|F_{i} z-F_{j} x_{n-1}, p\right\|+\left\|x_{n}-z, p\right\|$
$\leq \beta f\left(\left\|z-F_{i} z, p\right\|,\left\|x_{n-1}-F_{j} x_{n-1}, p\right\|,\left\|z-F_{j} x_{n-1}, p\right\|,\left\|x_{n-1}-F_{i} z, p\right\|,\left\|z-x_{n-1}, p\right\|\right)+$ $\left\|x_{n}-z, p\right\|$
$=\beta f\left(\left\|z-F_{i} z, p\right\|,\left\|x_{n-1}-x_{n}, p\right\|,\left\|z-x_{n}, p\right\|,\left\|x_{n-1}-F_{i} z, p\right\|,\left\|z-x_{n-1}, p\right\|\right)+\| x_{n}-$ $z, p \|$
$=\beta \max \left\{\frac{\left\|z-F_{i} z, p\right\|+\left\|x_{n-1}-x_{n}, p\right\|+\left\|z-x_{n}, p\right\|}{3}, \frac{\left\|x_{n-1}-F_{i} z, p\right\|+\left\|z-x_{n-1}, p\right\|}{3}\right\}+\left\|x_{n}-z, p\right\|$.
Taking $\lim _{n \rightarrow \infty}$ on the both sides of the above inequality, we have
$\lim _{n \rightarrow \infty}\left\|F_{i} z-z, p\right\|$
$\leq \beta \lim _{n \rightarrow \infty} \max \left\{\frac{\left\|z-F_{i} z, p\right\|+\left\|x_{n-1}-x_{n}, p\right\|+\left\|z-x_{n}, p\right\|}{3}, \frac{\left\|x_{n-1}-F_{i} z, p\right\|+\left\|z-x_{n-1}, p\right\|}{3}\right\}+\lim _{n \rightarrow \infty}\left\|x_{n}-z, p\right\|$
$=\beta \max \left\{\frac{\left\|F_{i} z-z, p\right\|}{3}, \frac{\left\|F_{i} z-z, p\right\|}{3}\right\}$
$\leq \beta\left\|F_{i} z-z, p\right\|$
which implies, $(1-\beta)\left\|F_{i} z-z, p\right\| \leq 0$
i.e., $\quad\left\|F_{i} z-z, p\right\|=0$
i.e., $\quad F_{i} z=z$.

So z is a common fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$.
Let z^{\prime} be another common fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$.
Then,

$$
\begin{aligned}
& \left\|z-z^{\prime}, p\right\| \leq\left\|F_{i} z-F_{j} z^{\prime}, p\right\| \\
\leq & \beta f\left(\left\|z-F_{i} z, p\right\|,\left\|z^{\prime}-F_{j} z^{\prime}, p\right\|,\left\|z-F_{j} z^{\prime}, p\right\|,\left\|z^{\prime}-F_{i} z, p\right\|,\left\|z-z^{\prime}, p\right\|\right) \\
= & \beta f\left(\|z-z, p\|,\left\|z^{\prime}-z^{\prime}, p\right\|,\left\|z-z^{\prime}, p\right\|,\left\|z^{\prime}-z, p\right\|,\left\|z-z^{\prime}, p\right\|\right) \\
= & \beta \max \left\{\frac{0+0+\left\|z-z^{\prime}, p\right\|}{3}, \frac{\left\|z-z^{\prime}, p\right\|+\left\|z-z^{\prime}, p\right\|}{3}\right\} \\
\leq & \beta\left\|z-z^{\prime}, p\right\|
\end{aligned}
$$

implies, $\left\|z-z^{\prime}, p\right\|=0$ i.e., $\quad z=z^{\prime}$.
Hence $\left\{F_{n}\right\}_{n=1}^{\infty}$ have a unique common fixed point in X.
Corollary 3.3 Let F_{1} and F_{2} be two self maps on 2-Banach space $(X,\|.,\|$.$) sat-$ isfying
$\left\|F_{1} x-F_{2} y, p\right\| \leq \beta f\left(\left\|x-F_{1} x, p\right\|,\left\|y-F_{2} y, p\right\|,\left\|x-F_{2} y, p\right\|,\left\|y-F_{1} x, p\right\|,\|x-y, p\|\right)$, where $\beta<1$ and f satisfy the relation (2.2). Then F_{1} and F_{2} have a unique common fixed point in X.
Proof. Put $F_{i}=F_{1}$ and $F_{j}=F_{2}$ in the above Theorem 3.2 we get the result.
Corollary 3.4. Let F be a self map on 2-Banach space ($X, \|$, , .\|) satisfying $\|F x-F y, p\| \leq \beta f(\|x-F x, p\|,\|y-F y, p\|,\|x-F y, p\|,\|y-F x, p\|,\|x-y, p\|)$, where $\beta<1$ and f satisfy the relation (2.2). Then F have a unique fixed point in X.
Proof. Put $F_{i}=F_{j}=F$ in the above Theorem 3.2 we get the result.
Theorem 3.3. Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be sequence of self maps on 2-Banach space $(X,\|.,\|$. satisfying
$\left\|F_{i} x-F_{j} y, p\right\|$
$\leq \alpha \frac{\|x-y, p\|+\left\|x-F_{j} y, p\right\|+\left\|y-F_{i} x, p\right\|}{1+\left\|x-F_{j} y, p\right\|+\left\|y-F_{i} x, p\right\|}+\beta \max \left\{\left\|x-F_{j} y, p\right\|,\left\|y-F_{i} x, p\right\|\right\}+\gamma\left\|y-F_{j} y, p\right\|$, where α, β, γ are non-negative real numbers and $3 \alpha+2 \beta+\gamma<1$. Then $\left\{F_{n}\right\}_{n=1}^{\infty}$ have a unique common fixed point in X.
Proof. For an initial approximation $y_{0} \in X$ construct a sequence $\left\{y_{n}\right\}$ in X such that $y_{n+1}=F_{i} y_{n}$ for a fixed $i=1,2,3, \ldots$. If $y_{n}=F_{i} y_{n}$ i.e., $y_{n}=y_{n+1}, n=0,1,2, \ldots$ then y_{n} is common fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$ for all $n=0,1,2, \ldots$ and the proof is completed.

So we assume that $y_{n+1} \neq y_{n} \quad \forall n \in \mathbb{N} \cup\{0\}$.
Now we show that $\left\{y_{n}\right\}$ is a Cauchy sequence.
Since,

$$
\begin{aligned}
& \quad\left\|y_{n+1}-y_{n}, p\right\|=\left\|F_{i} y_{n}-F_{j} y_{n-1}, p\right\| \\
& \leq \\
& \leq\left(\frac{\left\|y_{n}-y_{n-1}, p\right\|+\left\|y_{n}-F_{j} y_{n-1}, p\right\|+\left\|y_{n-1}-F_{i} y_{n}, p\right\|}{1+\left\|y_{n}-F_{j} n_{n-1}, p\right\|++1 y_{n-1}-F_{i} y_{n}, p \|}\right)+\beta \max \left\{\left\|y_{n}-F_{j} y_{n-1}, p\right\|,\left\|y_{n-1}-F_{i} y_{n}, p\right\|\right\} \\
& +\gamma\left\|y_{n-1}-F_{j} y_{n-1}, p\right\| \\
& \leq \alpha\left(\left\|y_{n}-y_{n-1}, p\right\|+\left\|y_{n}-y_{n}, p\right\|+\left\|y_{n-1}-y_{n+1}, p\right\|\right)+\beta \max \left\{\left\|y_{n}-y_{n}, p\right\|, \| y_{n-1}-\right. \\
& \left.y_{n+1}, p \|\right\}+\gamma\left\|y_{n-1}-y_{n}, p\right\| \\
& \leq \alpha\left(\left\|y_{n}-y_{n-1}, p\right\|+\left\|y_{n-1}-y_{n}, p\right\|+\left\|y_{n}-y_{n+1}, p\right\|\right)+\beta\left[\left\|y_{n-1}-y_{n}, p\right\|+\| y_{n}-\right. \\
& \left.y_{n+1}, p \|\right]+\gamma\left\|y_{n-1}-y_{n}, p\right\| \\
& \text { implies, }(1-\alpha-\beta)\left\|y_{n+1}-y_{n}, p\right\| \leq(2 \alpha+\beta+\gamma)\left\|y_{n}-y_{n-1}, p\right\| \\
& \text { i.e., }\left\|y_{n+1}-y_{n}, p\right\| \leq\left(\frac{2 \alpha+++\gamma}{1-\alpha-\beta}\right)\left\|y_{n}-y_{n-1}, p\right\| \\
& = \\
& =k\left\|y_{n}-y_{n-1}, p\right\|\left[\text { where } \frac{2 \alpha+\gamma+\beta}{1-\alpha-\beta}=k<1\right]
\end{aligned}
$$

$\leq k^{2}\left\|y_{n-1}-y_{n-2}, p\right\|$
\vdots
$\leq k^{n}\left\|y_{1}-y_{0}, p\right\|$.
Taking limit as $n \rightarrow \infty$, we get

$$
\lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}, p\right\|=0[\text { as } k<1]
$$

Now, let $n \geq m \in \mathbb{N}$. Then

$$
\left\|y_{n}-y_{m}, p\right\|=\left\|F_{i} y_{n-1}-F_{j} y_{m-1}, p\right\|
$$

$\leq \alpha\left(\frac{\left\|y_{n-1}-y_{m-1}, p\right\|+\left\|y_{n-1}-F_{j} y_{m-1}, p\right\|+\left\|y_{m-1}-F_{i} y_{n-1}, p\right\|}{1+\left\|y_{n-1}-F_{j} y_{m-1}, p\right\|+\left\|y_{m-1}-F_{i} y_{n-1}, p\right\|}\right)$
$+\beta \max \left\{\left\|y_{n-1}-F_{j} y_{m-1}, p\right\|,\left\|y_{m-1}-F_{i} y_{n-1}, p\right\|\right\}+\gamma\left\|y_{m-1}-F_{j} y_{m-1}, p\right\|$
$\leq \alpha\left(\left\|y_{n-1}-y_{m-1}, p\right\|+\left\|y_{n-1}-y_{m}, p\right\|+\left\|y_{m-1}-y_{n}, p\right\|\right)+\beta \max \left\{\left\|y_{n-1}-y_{m}, p\right\|, \| y_{m-1}-\right.$
$\left.y_{n}, p \|\right\}+\gamma\left\|y_{m-1}-y_{m}, p\right\|$
$\leq \alpha\left(\left\|y_{n-1}-y_{m-1}, p\right\|+\left\|y_{n-1}-y_{n}, p\right\|+\left\|y_{n}-y_{m}, p\right\|+\left\|y_{m-1}-y_{m}, p\right\|+\left\|y_{m}-y_{n}, p\right\|\right)+$ $\beta \max \left\{\left\|y_{n-1}-y_{n}, p\right\|+\left\|y_{n}-y_{m}, p\right\|,\left\|y_{m-1}-y_{m}, p\right\|+\left\|y_{m}-y_{n}, p\right\|\right\}+\gamma\left\|y_{m-1}-y_{m}, p\right\|$.

Let $\lim _{n, m \rightarrow \infty}\left\|y_{m}-y_{n}, p\right\|=r$.
Then from above we get

$$
r \leq \alpha(r+0+r+0+r)+\beta \max \{0+r, 0+r\}+\gamma .0
$$

implies, $r \leq 3 \alpha r+\beta r$
i.e., $(1-3 \alpha-\beta) r \leq 0$
i.e., $r=0[$ since $1-3 \alpha-\beta \neq 0]$
i.e., $\lim _{n, m \rightarrow \infty}\left\|y_{n}-y_{m}, p\right\|=0$.

Thus $\left\{y_{n}\right\}$ is a Cauchy sequence. Since X is complete, there exists a $y \in X$ such that $\lim _{n \rightarrow \infty}\left\|y_{n}-y, p\right\|=0$.

Since,
$\left\|F_{i} y-y, p\right\| \leq\left\|F_{i} y-y_{n}, p\right\|+\left\|y_{n}-y, p\right\|$
$=\left\|F_{i} y-F_{j} y_{n-1}, p\right\|+\left\|y_{n}-y, p\right\|$
$\leq \alpha\left(\frac{\left\|y-y_{n-1}, p\right\|+\left\|y-F_{j} y_{n-1}, p\right\|+\left\|y_{n-1}-F_{i} y, p\right\|}{1+\left\|y-F_{j} y_{n-1}, p\right\|+\left\|y_{n-1}-F_{i} y, p\right\|}\right)+\beta \max \left\{\left\|y-F_{j} y_{n-1}, p\right\|,\left\|y_{n-1}-F_{i} y, p\right\|\right\}+$ $\gamma\left\|y_{n-1}-F_{j} y_{n-1}, p\right\|+\left\|y_{n}-y, p\right\|$
$\leq \alpha\left(\left\|y-y_{n-1}, p\right\|+\left\|y-y_{n}, p\right\|+\left\|y_{n-1}-F_{i} y, p\right\|\right)+\beta \max \left\{\left\|y-y_{n}, p\right\|, \| y_{n-1}-\right.$ $\left.F_{i} y, p \|\right\}+\gamma\left\|y_{n-1}-y_{n}, p\right\|+\left\|y_{n}-y, p\right\|$.
Taking limit as $n \rightarrow \infty$ we get from the above inequality,
$\lim _{n \rightarrow \infty}\left\|F_{i} y-y, p\right\| \leq \alpha\left\|y-F_{i} y, p\right\|+\beta\left\|y-F_{i} y, p\right\|+\gamma .0+0$
implies, $(1-\alpha-\beta)\left\|y-F_{i} y, p\right\| \leq 0$
i.e., $\left\|y-F_{i} y, p\right\|=0$
i.e., $F_{i} y=y$.

Thus y is a common fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$.
Let z be another common fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$. Then
$\|y-z, p\|=\left\|F_{i} y-F_{j} z, p\right\|$
$\leq \alpha \frac{\|y-z, p\|+\left\|y-F_{j} z, p\right\|+\left\|z-F_{i} y, p\right\|}{1+\left\|y-F_{j} z, p\right\|+\left\|z-F_{i} y, p\right\|}+\beta \max \left\{\left\|y-F_{j} z, p\right\|,\left\|z-F_{i} y, p\right\|\right\}+\gamma\left\|z-F_{j} z, p\right\|$
$\leq \alpha \frac{\|y-z, p\|+\|y-z, p\|+\|z-y, p\|}{1+\|y-z, p\|+\|z-y, p\|}+\beta \max \{\|y-z, p\|,\|z-y, p\|\}+\gamma\|z-z, p\|$
$\leq(3 \alpha+\beta+\gamma)\|y-z, p\|$
implies, $(1-3 \alpha-\beta-\gamma)\|y-z, p\| \leq 0$
i.e., $\|y-z, p\|=0$
i.e., $y=z$.

Hence $\left\{F_{n}\right\}_{n=1}^{\infty}$ have a unique common fixed point in X.
Corollary 3.5. Let F_{1} and F_{2} be two self maps on 2-Banach space $(X,\|.\|$, satisfying

$$
\begin{aligned}
& \left\|F_{1} x-F_{2} y, p\right\| \\
& \leq \alpha \frac{\|x-y, p\|++x-F_{2 y}, p\|+\| y-F_{1} x, p \|}{1++\left\|-F_{2}, p\right\|+\left\|y-F_{1} x, p\right\|}+\beta \max \left\{\left\|x-F_{2} y, p\right\|,\left\|y-F_{1} x, p\right\|\right\}+\gamma\left\|y-F_{2} y, p\right\| \text {, } \\
& \text { where } \alpha, \beta, \gamma \text { are non-negative real numbers and } 3 \alpha+2 \beta+\gamma<1 \text {. Then } F_{1} \text { and } F_{2} \\
& \text { have a unique common fixed point in } X \text {. }
\end{aligned}
$$

Proof. Putting $F_{i}=F_{1}$ and $F_{j}=F_{2}$ in the Theorem 3.3 we get the desired result.
Corollary 3.6. Let F be a self map on 2-Banach space ($X,\|.,\|$.$) satisfying$
$\|F x-F y, p\|$
$\leq \alpha \frac{\|x-y, p\|+\|x-F y, p\|+\|y-F x, p\|}{1+\|x-F y, p\|+\|y-F x, p\|}+\beta \max \{\|x-F y, p\|,\|y-F x, p\|\}+\gamma\|y-F y, p\|$, where α, β, γ are non-negative real numbers and $3 \alpha+2 \beta+\gamma<1$. Then F have a unique fixed point in X.
Proof. Putting $F_{i}=F_{j}=F$ in the Theorem 3.3 we get the desired result.
Theorem 3.4. Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be sequence of self maps on 2-Banach space $(X,\|.,\|$. satisfying

$$
\left.\begin{array}{rl}
& \left\|F_{i} x-F_{j} y, p\right\| \\
\leq & \alpha \frac{\|x-y, p\|+\left\|x-F_{j} y, p\right\|+\left\|y-F_{i} x, p\right\|}{1+\left\|x-F_{j}, p\right\|++\left\|y-F_{i} x, p\right\|}
\end{array}\right) \beta \min \left\{\left\|x-F_{j} y, p\right\|,\left\|y-F_{i} x, p\right\|\right\}+\gamma\left\|y-F_{j} y, p\right\|,
$$

$$
\text { where } \alpha, \beta, \gamma \text { are non-negative real numbers and } 3 \alpha+2 \beta+\gamma<1 \text {. Then }\left\{F_{n}\right\}_{n=1}^{\infty}
$$ have a unique common fixed point in X.

Proof. Since $\min \left\{\left\|x-F_{j} y, p\right\|,\left\|y-F_{i} x, p\right\|\right\} \leq \max \left\{\left\|x-F_{j} y, p\right\|,\left\|y-F_{i} x, p\right\|\right\}$, the result follows from the Theorem 3.3.
Theorem 3.5. Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be sequence of self maps on 2-Banach space $(X,\|.,\|$. satisfying

$$
\left\|F_{i} x-F_{j} y, p\right\|
$$

$\leq \alpha \frac{\|x-y, p\|+\left\|x-F_{i} x, p\right\|}{1+\left\|y-F_{i} x, p\right\|}+\beta \max \left\{\left\|x-F_{j} y, p\right\|,\left\|y-F_{j} y, p\right\|\right\}+\gamma\left[\left\|x-F_{i} x, p\right\|+\left\|y-F_{j} y, p\right\|\right]$, where α, β, γ are non-negative real numbers and $2 \alpha+\beta+2 \gamma<1$. Then $\left\{F_{n}\right\}_{n=1}^{\infty}$ have a unique common fixed point in X.

Proof. With an initial approximation $y_{0} \in X$, construct a sequence $\left\{y_{n}\right\}$ such that $y_{n+1}=F_{i} y_{n} ; n=0,1,2, \ldots$ for a fixed i. Similarly as previous theorems, assume $y_{n+1} \neq y_{n}, \forall n \in \mathbb{N} \cup\{0\}$.

First of all we show that $\left\{y_{n}\right\}$ is a Cauchy sequence.
Since,

$$
\begin{aligned}
& \quad\left\|y_{n+1}-y_{n}, p\right\|=\left\|F_{i} y_{n}-F_{j} y_{n-1}, p\right\| \\
& \leq \alpha\left(\frac{\left\|y_{n}-y_{n-1}, p\right\|+\left\|y_{n}-F_{i} y_{n}, p\right\|}{1+\left\|y_{n-1}-F_{i} y_{n}, p\right\|}\right)+\beta \max \left\{\left\|y_{n}-F_{j} y_{n-1}, p\right\|,\left\|y_{n-1}-F_{j} y_{n-1}, p\right\|\right\} \\
& \quad+\gamma\left[\left\|y_{n}-F_{j} y_{n}, p\right\|+\left\|y_{n-1}-F_{j} y_{n-1}, p\right\|\right] \\
& \leq \alpha\left(\left\|y_{n}-y_{n-1}, p\right\|+\left\|y_{n}-y_{n+1}, p\right\|\right)+\beta \max \left\{\left\|y_{n}-y_{n}, p\right\|,\left\|y_{n-1}-y_{n}, p\right\|\right\}+\gamma\left[\| y_{n}-\right.
\end{aligned}
$$

$$
\left.y_{n+1}, p\|+\| y_{n-1}-y_{n}, p \|\right]
$$

$$
=\alpha\left\|y_{n}-y_{n-1}, p\right\|+\alpha\left\|y_{n}-y_{n+1}, p\right\|+\beta\left\|y_{n-1}-y_{n}, p\right\|+\gamma\left\|y_{n}-y_{n+1}, p\right\|+\gamma\left\|y_{n-1}-y_{n}, p\right\|
$$

$$
\text { implies, }(1-\alpha-\gamma)\left\|y_{n+1}-y_{n}, p\right\| \leq(\alpha+\beta+\gamma)\left\|y_{n}-y_{n-1}, p\right\|
$$

$$
\begin{gathered}
\text { i.e., }\left\|y_{n+1}-y_{n}, p\right\| \leq\left(\frac{\alpha+\beta+\gamma}{1-\alpha-\gamma}\right)\left\|y_{n}-y_{n-1}, p\right\| \\
\leq\left(\frac{\alpha+\beta+\gamma}{1-\alpha-\gamma}\right)^{2}\left\|y_{n-1}-y_{n-2}, p\right\| \\
\vdots \\
\leq\left(\frac{\alpha+\beta+\gamma}{1-\alpha-\gamma}\right)^{n}\left\|y_{1}-y_{0}, p\right\|
\end{gathered}
$$

Taking $\lim _{n \rightarrow \infty}$ on the both sides of the above inequality, we get

$$
\lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}, p\right\|=0
$$

Now, let $n \geq m \in \mathbb{N}$. Then
$\left\|y_{n+1}-y_{m+1}, p\right\|$
$=\left\|F_{i} y_{n}-F_{j} y_{m}, p\right\|$
$\leq \alpha \frac{\left\|y_{n}-y_{m}, p\right\|+\left\|y_{n}-F_{i} y_{n}, p\right\|}{1+\left\|y_{m}-F_{i} y_{n}, p\right\|}+\beta \max \left\{\left\|y_{n}-F_{j} y_{m}, p\right\|,\left\|y_{m}-F_{j} y_{m}, p\right\|\right\}+\gamma\left[\left\|y_{n}-F_{i} y_{n}, p\right\|+\right.$ $\left.\left\|y_{m}-F_{j} y_{m}, p\right\|\right]$
$\leq \alpha\left(\left\|y_{n}-y_{m}, p\right\|+\left\|y_{n}-y_{n+1}, p\right\|\right)+\beta \max \left\{\left\|y_{n}-y_{m+1}, p\right\|,\left\|y_{m}-y_{m+1}, p\right\|\right\}+\gamma\left[\| y_{n}-\right.$ $\left.y_{n+1}, p\|+\| y_{m}-y_{m+1}, p \|\right]$.
Taking limit as $n, m \rightarrow \infty$ we get from above

$$
\begin{aligned}
& \quad \lim _{n, m \rightarrow \infty}\left\|y_{n+1}-y_{m+1}, p\right\| \\
& \leq \alpha \lim _{n, m \rightarrow \infty}\left\|y_{n}-y_{m}, p\right\|+\beta \lim _{n, m \rightarrow \infty}\left\|y_{n}-y_{m+1}, p\right\|+\gamma \cdot 0 \\
& \leq \alpha \lim _{n, m \rightarrow \infty}\left\|y_{n}-y_{m}, p\right\|+\beta \lim _{n, m \rightarrow \infty}\left[\left\|y_{n}-y_{m}, p\right\|+\left\|y_{m}-y_{m+1}, p\right\|\right] \\
& =(\alpha+\beta) \lim _{n, m \rightarrow \infty}\left\|y_{n}-y_{m}, p\right\| \\
& \text { implies, } \lim _{n, m \rightarrow \infty}\left\|y_{n}-y_{m}, p\right\|=0
\end{aligned}
$$

i.e., $\left\{y_{n}\right\}$ is a Cauchy sequence. Since X is complete, there exists an $y \in X$ such that $\lim _{n \rightarrow \infty}\left\|y_{n}-y, p\right\|=0$.

Now we show that y is a common fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$.
Since
$\left\|F_{i} y-y, p\right\| \leq\left\|F_{i} y-y_{n}, p\right\|+\left\|y_{n}-y, p\right\|$
$=\left\|F_{i} y-F_{j} y_{n-1}, p\right\|+\left\|y_{n}-y, p\right\|$
$\leq \alpha \frac{\left\|y-y_{n-1}, p\right\|+\left\|y-F_{i} y, p\right\|}{1+\left\|y_{n-1}-F_{i} y, p\right\|}+\beta \max \left\{\left\|y-F_{j} y_{n-1}, p\right\|,\left\|y_{n-1}-F_{j} y_{n-1}, p\right\|\right\}+\gamma\left[\left\|y-F_{i} y, p\right\|+\right.$ $\left.\left\|y_{n-1}-F_{j} y_{n-1}, p\right\|\right]+\left\|y_{n}-y, p\right\|$
$\leq \alpha\left(\left\|y-y_{n-1}, p\right\|+\left\|y-F_{i} y, p\right\|\right)+\beta \max \left\{\left\|y-y_{n}, p\right\|,\left\|y_{n-1}-y_{n}, p\right\|\right\}+\gamma[\| y-$ $\left.F_{i} y, p\|+\| y_{n-1}-y_{n}, p \|\right]+\left\|y_{n}-y, p\right\|$.
Taking $\lim _{n \rightarrow \infty}$ on the both sides of above inequality, we get

$$
\lim _{n \rightarrow \infty}\left\|F_{i} y-y, p\right\| \leq \alpha\left\|y-F_{i} y, p\right\|+\beta .0+\gamma\left\|y-F_{i} y, p\right\|+0
$$

which implies, $(1-\alpha-\gamma)\left\|F_{i} y-y, p\right\| \leq 0$
i.e., $\left\|F_{i} y-y, p\right\|=0$
i.e., $F_{i} y=y$.

Thus y is a common fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$.
Let y^{\prime} be another fixed point of $\left\{F_{n}\right\}_{n=1}^{\infty}$. Then
$\left\|y-y^{\prime}, p\right\|=\left\|F_{i} y-F_{j} y^{\prime}, p\right\|$
$\leq \alpha\left(\frac{\left\|y-y^{\prime}, p\right\|+\left\|y-F_{F} y, p\right\|}{1+\left\|y^{\prime}-F_{i} y, p\right\|}\right)+\beta \max \left\{\left\|y-F_{j} y^{\prime}, p\right\|,\left\|y^{\prime}-F_{j} y^{\prime}, p\right\|\right\}+\gamma\left[\left\|y-F_{i} y, p\right\|+\| y^{\prime}-\right.$ $\left.F_{j} y^{\prime}, p \|\right]$
$\leq \alpha\left(\left\|y-y^{\prime}, p\right\|+\|y-y, p\|\right)+\beta \max \left\{\left\|y-y^{\prime}, p\right\|,\left\|y^{\prime}-y^{\prime}, p\right\|\right\}+\gamma\left[\|y-y, p\|+\left\|y^{\prime}-y^{\prime}, p\right\|\right]$ $=\alpha\left\|y-y^{\prime}, p\right\|+\beta\left\|y-y^{\prime}, p\right\|$
that implies, $(1-\alpha-\beta)\left\|y-y^{\prime}, p\right\| \leq 0$ i.e., $\left\|y-y^{\prime}, p\right\|=0$
i.e., $y=y^{\prime}$.

Hence the result.
Corollary 3.7. Let F_{1} and F_{2} be two self maps on 2-Banach space $(X,\|.\|$, satisfying

$$
\left\|F_{1} x-F_{2} y, p\right\|
$$

$\leq \alpha \frac{\|x-y, p\|+\left\|x-F_{1} x, p\right\|}{1+\left\|y-F_{1} x, p\right\|}+\beta \max \left\{\left\|x-F_{2} y, p\right\|,\left\|y-F_{2} y, p\right\|\right\}+\gamma\left[\left\|x-F_{1} x, p\right\|+\| y-\right.$ $\left.F_{2} y, p \|\right]$,
where α, β, γ are non-negative real numbers and $2 \alpha+\beta+2 \gamma<1$. Then F_{1} and F_{2} have a unique common fixed point in X.
Proof. Putting $F_{i}=F_{1}$ and $F_{j}=F_{2}$ in the Theorem 3.5 the result holds.
Corollary 3.8. Let F be a self map on 2-Banach space ($X,\|.,\|$.$) satisfying$

$$
\begin{aligned}
& \|F x-F y, p\| \\
\leq & \alpha \frac{\|x-y, p\|+\|x-F x, p\|}{1+\|y-F x, p\|}+\beta \max \{\|x-F y, p\|,\|y-F y, p\|\}+\gamma[\|x-F x, p\|+\|y-F y, p\|],
\end{aligned}
$$

where α, β, γ are non-negative real numbers and $2 \alpha+\beta+2 \gamma<1$. Then F have a unique fixed point in X.
Proof. Putting $F_{i}=F_{j}=F$ in the Theorem 3.5 the result holds.
The next theorem is the generalization of Saluja [13] theorem 3.1. In that theorem T was a continuous self map on X. We have proved it to a family of self maps without continuity as follows:
Theorem 3.6. Let X be a 2-Banach space(with $\operatorname{dim} X \geq 2$) and $\left\{T_{i}\right\}_{i=1}^{\infty}$ be a family of self maps on X satisfying
$\left\|T_{i} x-T_{j} y, a\right\| \leq h \max \left\{\|x-y, a\|, \frac{\left\|x-T_{i} x, a\right\|+\left\|y-T_{j} y, a\right\|}{2}, \frac{\left\|x-T_{j} y, a\right\|+\left\|y-T_{i} x, a\right\|}{2}\right\}$, where $0<h<1$. Then $\left\{T_{i}\right\}_{i=1}^{\infty}$ have a unique common fixed point in X.
Proof. Let $x_{0} \in X$ be arbitrary. Then we construct a sequence $\left\{x_{n}\right\}$ such that $x_{n+1}=T_{i} x_{n}$ for a fixed i.

We now show that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}, a\right\|=0$.
Now,

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}, a\right\|=\left\|T_{i} x_{n}-T_{n-1}, a\right\| \\
\leq & h \max \left\{\left\|x_{n}-x_{n-1}, a\right\|, \frac{\left\|x_{n}-T_{i} x_{n}, a\right\|+\left\|x_{n-1}-T_{j} x_{n-1}, a\right\|}{2}, \frac{\left\|x_{n}-T_{j} x_{n-1}, a\right\|+\left\|x_{n-1}-T_{i} x_{n}, a\right\|}{2}\right\} \\
= & h \max \left\{\left\|x_{n}-x_{n-1}, a\right\|, \frac{\left\|x_{n}-x_{n+1}, a\right\|+\left\|x_{n-1}-x_{n}, a\right\|}{2}, \frac{\left\|x_{n}-x_{n}, a\right\|+\left\|x_{n-1}-x_{n+1}, a\right\|}{2}\right\} \\
\leq & h \max \left\{\left\|x_{n}-x_{n-1}, a\right\|, \frac{\left\|x_{n}-x_{n+1}, a\right\|+\left\|x_{n-1}-x_{n}, a\right\|}{2}, \frac{\left\|x_{n-1}-x_{n}, a\right\|+\left\|x_{n}-x_{n+1}, a\right\|}{2}\right\} \\
= & h \max \left\{\left\|x_{n}-x_{n-1}, a\right\|, \frac{\left\|x_{n}-x_{n+1}, a\right\|+\left\|x_{n-1}-x_{n}, a\right\|}{2}\right\} \\
& \leq h \max \left\{\left\|x_{n}-x_{n-1}, a\right\|,\left\|x_{n}-x_{n+1}, a\right\|\right\} . \tag{3.3}
\end{align*}
$$

Suppose $\left\|x_{n-1}-x_{n}, a\right\| \leq\left\|x_{n}-x_{n+1}, a\right\|$.
Then from (3.3), $\left\|x_{n+1}-x_{n}, a\right\| \leq h\left\|x_{n+1}-x_{n}, a\right\|$
implies, $1 \leq h$, a contradiction.
Thus $\left\|x_{n+1}-x_{n}, a\right\| \leq\left\|x_{n}-x_{n-1}, a\right\|$.
Therefore, $\left\{\left\|x_{n+1}-x_{n}, a\right\|\right\}$ is a sequence of real numbers monotone decreasing and bounded below. Suppose $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}, a\right\|=r$.
Suppose $r \neq 0$. Then,
$r=\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}, a\right\|=\lim _{n \rightarrow \infty}\left\|T_{i} x_{n}-T_{j} x_{n-1}, a\right\|$
$\leq \lim _{n \rightarrow \infty} h \max \left\{\left\|x_{n}-x_{n-1}, a\right\|, \frac{\left\|x_{n}-T_{i} x_{n}, a\right\|+\left\|x_{n-1}-T_{j} x_{n-1}, a\right\|}{2}, \frac{\left\|x_{n}-T_{j} x_{n-1}, a\right\|+\left\|x_{n-1}-T_{i} x_{n}, a\right\|}{2}\right\}$
$=h \lim _{n \rightarrow \infty} \max \left\{\left\|x_{n}-x_{n-1}, a\right\|, \frac{\left\|x_{n}-x_{n+1}, a\right\|+\left\|x_{n-1}-x_{n}, a\right\|}{2}, \frac{\left\|x_{n}-x_{n}, a\right\|+\left\|x_{n-1}-x_{n+1}, a\right\|}{2}\right\}$
$\left.\leq h \lim _{n \rightarrow \infty} \max \left\{\left\|x_{n}-x_{n-1}, a\right\|, \frac{\left\|x_{n}-x_{n+1}, a\right\|+\left\|x_{n-1}-x_{n}, a\right\|}{2}, \frac{\left\|x_{n-1}-x_{n}, a\right\|+\left\|x_{n}-x_{n+1}, a\right\|}{2}\right\}\right\}$
$=h \lim _{n \rightarrow \infty} \max \left\{r, \frac{r+r}{2}, \frac{r+r}{2}\right\}=h r$
implies, $1 \leq h$, a contradiction.
Therefore, $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}, a\right\|=0$.
Now we show that $\left\{x_{n}\right\}$ is a Cauchy sequence.
Since for $n>m \in \mathbb{N}$,

$$
\begin{aligned}
& \lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}, a\right\| \\
& \leq \lim _{n, m \rightarrow \infty}\left[\left\|x_{n}-x_{n-1}, a\right\|+\left\|x_{n-1}-x_{m}, a\right\|\right] \\
&= \lim _{n, m \rightarrow \infty}\left\|x_{n-1}-x_{m}, a\right\| \\
& \vdots \\
& \leq \lim _{n, m \rightarrow \infty}\left\|x_{m}-x_{m}, a\right\| \\
&= 0
\end{aligned}
$$

Therefore, $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is a complete space, there exist a $x \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$.

Next, we show that x is a fixed point of $\left\{T_{i}\right\}_{i=1}^{\infty}$.
Since

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|T_{i} x-x, a\right\| \leq \lim _{n \rightarrow \infty}\left[\left\|T_{i} x-x_{n}, a\right\|+\left\|x_{n}-x, a\right\|\right] \\
&= \lim _{n \rightarrow \infty}\left\|T_{i} x-T_{j} x_{n-1}, a\right\|+\lim _{n \rightarrow \infty}\left\|x_{n}-x, a\right\| \\
& \leq \lim _{n \rightarrow \infty} h \max \left\{\left\|x-x_{n-1}, a\right\|, \frac{\left\|x-T_{i} x, a\right\|+\left\|x_{n-1}-T_{j} x_{n-1}, a\right\|}{2}, \frac{\left\|x-T_{j} x_{n-1}, a\right\|+\left\|x_{n-1}-T_{i} x, a\right\|}{2}\right\} \\
&= h \lim _{n \rightarrow \infty} \max \left\{\left\|x-x_{n-1}, a\right\|, \frac{\left\|x-T_{i} x, a\right\|+\left\|x_{n-1}-x_{n}, a\right\|}{2}, \frac{\left\|x-x_{n}, a\right\|+\left\|x_{n-1}-T_{i} x, a\right\|}{2}\right\} \\
& \leq h\left\|T_{i} x-x, a\right\| \\
& \text { implies, }\left\|T_{i} x-x, a\right\| \neq 0 \\
& \text { i.e., } T_{i} x=x
\end{aligned}
$$

Thus x is fixed point of X.
Now we show that x is a unique common fixed point of $\left\{T_{i}\right\}_{i=1}^{\infty}$. Let y be another common fixed point. Then by the given condition, we get

$$
\|x-y, a\|=\left\|T_{i} x-T_{j} y, a\right\|
$$

$\leq h \max \left\{\|x-y, a\|, \frac{\left\|x-T_{i} x, a\right\|++\left\|y-T_{j} y, a\right\|}{2}, \frac{\left\|x-T_{j} y, a\right\|+\left\|y-T_{i} x, a\right\|}{2}\right\}$
$=h \max \left\{\|x-y, a\|, \frac{\|x-x, a\|+\|y-y, a\|}{2}, \frac{\|x-y, a\|++\|y-x, a\|}{2}\right\}$
$=h\|x-y, a\|$
implies, $\|x-y, a\|=0$
i.e., $x=y$.

Thus x is a unique common fixed point of $\left\{T_{i}\right\}_{i=1}^{\infty}$.
Hence the theorem.
Corollary 3.9. Let X be a 2-Banach space(with $\operatorname{dim} X \geq 2$) and T_{1} and T_{2} be two self maps on X satisfying

$$
\left\|T_{1} x-T_{2} y, a\right\| \leq h \max \left\{\|x-y, a\|, \frac{\left\|x-T_{1} x, a\right\|+\left\|y-T_{2} y, a\right\|}{2}, \frac{\left\|x-T_{2} y, a\right\|++\left\|y-T_{1} x, a\right\|}{2}\right\}
$$ where $0<h<1$. Then T_{1} and T_{2} have a unique common fixed point in X.

Proof. Putting $T_{i}=T_{1}$ and $T_{j}=T_{2}$ in the above Theorem 3.6 we have the required result.

This result is same as Saluja ([13]) theorem 3.1 without continuity.
Corollary 3.10. Let X be a 2-Banach space(with $\operatorname{dim} X \geq 2$) and T be a self maps
on X satisfying
$\|T x-T y, a\| \leq h \max \left\{\|x-y, a\|, \frac{\|x-T x, a\|+\|y-T y, a\|}{2}, \frac{\|x-T y, a\|++\|y-T x, a\|}{2}\right\}$, where $0<h<1$. Then T have a unique fixed point in X.
Proof. Putting $T_{i}=T_{j}=T$ in the above Theorem 3.6 we have the desired result.

4. Acknowledgement

The authors are thankful to the referee for the suggestions towards the improvement of the paper.

References

[1] D. Das, N. Goswami, Vandana, Some fixed point theorems in 2-Banach spaces and 2-normed tensor product spaces, NTMSCI, vol. 5(2017), No. 1, pp. 1-12.
[2] D. Das, N. Goswami, Vishnu Narayan Mishra, Some fixed point theorems in Banach Algebra, In. J. Anal. Appl. 13(1)(2017), 32-40.
[3] D. Das, N. Goswami, Vishnu Narayan Mishra, Some fixed point theorems in the projective Tensor product of 2-Banach spaces, Global Journal of Advanced Research on Classical and Modern geometries, 6, 1(2017), 20-36.
[4] R. Dubey, Deepmala, V. N. Mishra, Higher-order symmetric duality in nondifferentiable multiobjective fractional programming problem over cone constraints, Stat., Optim. Inf. Comput., Vol. 8, March 2020, pp 187-205.
[5] S. Gähler, Linear 2-Normietre Roume, Math. Nachr., 28(1965), 1-43.
[6] S. Gähler, Metricsche Roume and their topologische strucktur, Math. Nachr., 26(1963), 115-148.
[7] K. Iseki, Mathematics on 2-normed spaces, Bull. Korean Math. Soc. 13 (2) (1977), 127-135.
[8] M. S. Khan and M. D. Khan, Involutions with fixed points in 2-Banach spaces, Internat. J. Math. \& Math. sci. Vol. 16(1993), No. 3, pp. 429-434.
[9] X. Liu, M. Zhou, L. N. Mishra, V. N. Mishra, B. Damjanović, Common fixed point theorem of six self-mappings in Menger spaces using $\left(C L R_{S T}\right)$ property, Open Mathematics, 2018; 16: 1423-1434.
[10] L. N. Mishra, S. K. Tiwary, V. N. Mishra, Fixed point theorems for generalized weakly S-contractive mappings in partial metric spaces, Journal of Applied Analysis and computation, 5(2015), 4, 600-612.
[11] L. N. Mishra, S. K. Tiwari, V. N. Mishra, I. A. Khan, Unique Fixed Point Theorems for Generalized Contractive Mappings in Partial Metric Spaces, Journal of Function Spaces, Volume 2015 (2015), Article ID 960827, 8 pages.
[12] M. Saha, D. Dey, A. Ganguly and L. Debnath, Asymptotic Regularity and fixed point theorems on a 2-Banach spaces, Surveys in Mathematics and its Applications, Vol. 7(2012), pp. 31-38.
[13] G. S. Saluja, Existence Results of Unique Fixed Point in 2-Banach Spaces, International J. Math. Combin. Vol. 1(2014), pp. 13-18.
[14] A. S. Saluja, A. K. Dhakde, Some Fixed Point and Common Fixed Point Theorems in 2-Banach Spaces, AJER, Vol. 02(2013), Issue-05, pp. 122-127.
[15] P. Shrivas, Some Unique Fixed point Theorems in 2-Banach Space, Internat. J. of Sci. Research and Review, Vol. 7(2019), Issue 5, 968-974.

