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Abstract: In this paper, we have proved some common fixed point theorems of a
family of self maps without continuity in 2-Banach space. We have used functions
on R+

5 to R+ and also generalize many existing results.

Keywords and Phrases: 2-norm, 2-Banach.

2010 Mathematics Subject Classification: 54H25, 47H10.

1. Introduction
In 1965, Gahler ([5], [6]) introduced 2-Banach space and Iseki [7] obtained some

results on fixed point theorems in 2-Banach spaces. After the introduction of 2-
Banach space many research workers have extended fixed point theorems of metric,
Banach spaces etc. in the new setup of 2-Banach spaces. Mishra et al. [10], Khan
and Khan [8], Saha et al. [12], Mishra et al. [11], Saluja [13], Saluja and Dhakde
[14], Das et al. [1], Shrivas [15], Das et al, [2] - [3], Liu et al. [9] and etc. have
worked on fixed point and common fixed point theorems in this space. In this
paper we also have proved some unique common fixed point theorems in 2-Banach
spaces.
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2. Definitions and Preliminaries
Gahler [5] has introduced the notion of 2-norm as follows:

2-norm: Let X be a linear space and ‖., .‖ is a real valued function defined on X
where

i) ‖a, b‖ = 0 if and only if a and b are linearly dependent;
ii) ‖a, b‖ = ‖b, a‖;
iii) ‖a, xb‖ = |x| ‖a, b‖;
iv)‖a, b+ c‖ ≤ ‖a, b‖+ ‖a, c‖

for all a, b, c ∈ X and x ∈ R. Then ‖., .‖ is called a 2-norm and the pair (X, ‖., .‖)
is called a 2-norm space.

In this paper, we denote X as a 2-normed space unless otherwise stated.
Convergent: A sequence {xn} in a 2-norm space X is said to be convergent if
there is a point x ∈ X such that limn→∞ ‖xn − x, a‖ = 0 for all a ∈ X.
Cauchy Sequence: A sequence {xn} in a 2-norm space X is called a Cauchy
sequence if limn,m→∞ ‖xn − xm, a‖ = 0 for all a ∈ X.
2-Banach Space: A linear 2-norm space is said to be complete if every Cauchy
sequence in X is convergent in X. Then we say X is a 2-Banach Space.

Let us consider a function f : R+
5 → R+ given by

f(t1, t2, t3, t4, t5) = max{t1,
t2 + t3

2
,
t4 + t5

2
}; (2.1)

f(t1, t2, t3, t4, t5) = max{t1 + t2 + t3
3

,
t4 + t5

3
}. (2.2)

3. Main Part
In this part we have proved some unique common fixed point theorems in 2-

Banach spaces.

Theorem 3.1. Let {Fn}∞n=1 be sequence of self maps on 2-Banach space (X, ‖., .‖)
satisfying
‖Fix−Fjy, p‖ ≤ αf(‖x−y, p‖, ‖x−Fix, p‖, ‖y−Fjy, p‖, ‖x−Fjy, p‖, ‖y−Fix, p‖),
where α < 1 and f satisfies the relation (2.1). Then {Fn}∞n=1 have a unique common
fixed point in X.
Proof. Let {xn} be sequence of points of X given by xn+1 = Fixn with the initial
approximation x0 ∈ X for a fixed i. If Fixn = xn i.e., xn+1 = xn, then xn is a
common fixed point of {Fn}. So without loss of generality assume xn+1 6= xn.

We now show that limn→∞ ‖xn − x, p‖ = 0.
Since,
‖xn+1 − xn, p‖ = ‖Fixn − Fjxn−1, p‖

≤ αf(‖xn − xn−1, p‖, ‖xn − Fixn, p‖, ‖xn−1 − Fjxn−1, p‖, ‖xn − Fjxn−1, p‖, ‖xn−1 −
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Fixn, p‖)
= αf(‖xn − xn−1, p‖, ‖xn − xn+1, p‖, ‖xn−1 − xn, p‖, ‖xn − xn, p‖, ‖xn−1 − xn+1, p‖)
= αmax{‖xn − xn−1, p‖, ‖xn−xn+1,p‖+‖xn−1−xn,p‖

2
, 0+‖xn−1−xn+1,p‖

2
}

≤ αmax{‖xn − xn−1, p‖, ‖xn−xn+1,p‖+‖xn−1−xn,p‖
2

, ‖xn−1−xn,p‖+‖xn−xn+1,p‖
2

}

≤ αmax{‖xn − xn−1, p‖, ‖xn − xn+1, p‖}. (3.1)

If ‖xn − xn−1, p‖ ≤ ‖xn − xn+1, p‖, then from (3.1), we have
‖xn+1 − xn, p‖ ≤ α‖xn+1 − xn, p‖

implies 1 ≤ α, which is a contradiction.
Therefore {‖xn−xn−1, p‖} is a sequence of real numbers monotone decreasing and
bounded below.

Suppose limn→∞ ‖xn − xn−1, p‖ = s.
Since,
s = limn→∞ ‖xn − xn−1, p‖
= limn→∞ ‖Fixn−1 − Fjxn−2, p‖
≤ limn→∞ αf(‖xn−1 − xn−2, p‖, ‖xn−1 − Fixn−1, p‖, ‖xn−2 − Fjxn−2, p‖,
‖xn−1 − Fjxn−2, p‖, ‖xn−2 − Fixn−1, p‖)
≤ α limn→∞ f(‖xn−1 − xn−2, p‖, ‖xn−1 − xn, p‖, ‖xn−2 − xn−1, p‖, ‖xn−1 − xn−1, p‖,
‖xn−2 − xn, p‖)
= α limn→∞max{‖xn−1 − xn−2, p‖, ‖xn−1−xn,p‖+‖xn−2−xn−1,p‖

2
, 0+‖xn−2−xn,p‖

2
}

≤ α lim
n→∞

max{‖xn−1 − xn−2, p‖, ‖xn−1−xn,p‖+‖xn−2−xn−1,p‖
2

, ‖xn−2−xn−1,p‖+‖xn−1−xn,p‖
2

}
≤ α s
implies, s = 0
i.e., limn→∞ ‖xn − x, p‖ = 0.

Now, let n ≥ m ∈ N ∪ {0}. Then
‖xn+1 − xm+1, p‖ = ‖Fixn − Fjxm, p‖

≤ αf(‖xn−xm, p‖, ‖xn−Fixn, p‖, ‖xm−Fjxm, p‖, ‖xn−Fjxm, p‖, ‖xm−Fixn, p‖)
= αf(‖xn− xm, p‖, ‖xn− xn+1, p‖, ‖xm− xm+1, p‖, ‖xn− xm+1, p‖, ‖xm− xn+1, p‖)
= αmax{‖xn − xm, p‖, ‖xn−xn+1,p‖+‖xm−xm+1,p‖

2
, ‖xn−xm+1,p‖+‖xm−xn+1,p‖

2
}.

Taking limit as n,m→∞ on the both sides of the above inequality, we get
limn,m→∞ ‖xn+1 − xm+1, p‖

≤ αmax{ lim
n,m→∞

‖xn − xm, p‖, 0, lim
n,m→∞

‖xn−xm,p‖+‖xm−xm+1,p‖+‖xm−xn,p‖+‖xn−xn+1,p‖
2

}
= αmax{limn,m→∞ ‖xn − xm, p‖, limn,m→∞ ‖xn − xm, p‖}
= α limn,m→∞ ‖xn − xm, p‖,
which implies, limn,m→∞ ‖xn − xm, p‖ = 0 [ since α 6= 0].
Thus {xn} is a Cauchy sequence in X. Since X is complete, there exists an x ∈ X
such that limn,m→∞ ‖xn − x, p‖ = 0.
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Now we show that x is a common fixed point of {Fn}∞n=1.
Again,

‖Fix− x, p‖ ≤ ‖Fix− xn, p‖+ ‖xn − x, p‖
= ‖Fix− Fjxn−1, p‖+ ‖xn − x, p‖
≤ αf(‖x−xn−1, p‖, ‖x−Fix, p‖, ‖xn−1−Fjxn−1, p‖, ‖x−Fjxn−1, p‖, ‖xn−1−Fix, p‖)+
‖xn − x, p‖
= αf(‖xn − xn−1, p‖, ‖x − Fix, p‖, ‖xn−1 − xn, p‖, ‖x − xn, p‖, ‖xn−1 − Fix, p‖) +
‖xn − x, p‖
= αmax{‖xn − xn−1, p‖, ‖x−Fix,p‖+‖xn−1−xn,p‖

2
, ‖x−xn,p‖+‖xn−1−Fix,p‖

2
}+ ‖xn − x, p‖.

Taking limit as n→∞ we get from above

limn→∞ ‖Fix− x, p‖ ≤ αmax{0, ‖Fix−x,p‖
2

, ‖Fix−x,p‖
2
}+ 0

i.e., ‖Fix− x, p‖ ≤ α ‖Fix−x,p‖
2

≤ α‖Fix− x, p‖
implies, ‖Fix− x, p‖ = 0
i.e., Fix = x.
Thus x is a common fixed point of {Fn}∞n=1.

To show the uniqueness, let x′ be another fixed point of {Fn}∞n=1.
Since,

‖x− x′, p‖ = ‖Fix− Fjx′, p‖
≤ αf(‖x− x′, p‖, ‖x− Fix, p‖, ‖x′ − Fjx′, p‖, ‖x− Fjx′, p‖, ‖x′ − Fix, p‖)
= αf(‖x− x′, p‖, ‖x− x, p‖, ‖x′ − x′, p‖, ‖x− x′, p‖, ‖x′ − x, p‖)
= αmax{‖x− x′, p‖, 0, ‖x−x

′,p‖+‖x−x′,p‖
2

}
= α‖x− x′, p‖,
which implies, ‖x− x′, p‖ = 0 [ since α 6= 0 ]
i.e., x = x′.

Hence {Fn}∞n=1 have a unique common fixed point in X.

Corollary 3.1. Let F1 and F2 be two self maps on 2-Banach space (X, ‖., .‖)
satisfying
‖F1x−F2y, p‖ ≤ αf(‖x−y, p‖, ‖x−F1x, p‖, ‖y−F2y, p‖, ‖x−F2y, p‖, ‖y−F1x, p‖),
where α < 1 and f satisfies the relation (2.1). Then F1 and F2 have a unique
common fixed point in X.
Proof. Putting Fi = F1 and Fj = F2 in the Theorem 3.1 we get the result.

Corollary 3.2. Let F be a self map on 2-Banach space (X, ‖., .‖) satisfying
‖Fx− Fy, p‖ ≤ αf(‖x− y, p‖, ‖x− Fx, p‖, ‖y − Fy, p‖, ‖x− Fy, p‖, ‖y − Fx, p‖),
where α < 1 and f satisfies the relation (2.1). Then F have a unique fixed point
in X.
Proof. Putting Fi = Fj = F in the Theorem 3.1 we get the result.
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Theorem 3.2. Let {Fn}∞n=1 be sequence of self maps on 2-Banach space (X, ‖., .‖)
satisfying
‖Fix−Fjy, p‖ ≤ βf(‖x−Fix, p‖, ‖y−Fjy, p‖, ‖x−Fjy, p‖, ‖y−Fix, p‖, ‖x−y, p‖),
where β < 1 and f satisfy the relation (2.2). Then {Fn}∞n=1 have a unique common
fixed point in X.
Proof. Let x0 ∈ X be an initial point. Construct a sequence {xn} in X, for a fixed
i, such that xn+1 = Fixn. If xn+1 = xn i.e., Fixn = xn, then xn is a common fixed
point of {Fn}∞n=1. So without loss of generality, suppose xn+1 6= xn∀n ∈ N ∪ {0}.
Since,
‖xn+1 − xn, p‖ = ‖Fixn − Fjxn−1, p‖

≤ βf(‖xn − Fixn, p‖, ‖xn−1 − Fjxn−1, p‖, ‖xn − Fjxn−1, p‖, ‖xn−1 − Fixn, p‖, ‖xn −
xn−1, p‖)
= βf(‖xn − xn+1, p‖, ‖xn−1 − xn, p‖, ‖xn − xn, p‖, ‖xn−1 − xn+1, p‖, ‖xn − xn−1, p‖)
= βmax{‖xn−xn+1,p‖+‖xn−1−xn,p‖+‖xn−xn,p‖

3
, ‖xn−1−xn+1,p‖+‖xn−xn−1,p‖

3
}

≤ βmax{‖xn−xn+1,p‖+‖xn−1−xn,p‖
3

, ‖xn−1−xn,p‖+‖xn−xn+1,p‖+‖xn−xn−1,p‖
3

}

≤ βmax{‖xn − xn+1, p‖, ‖xn − xn−1, p‖}. (3.2)

If ‖xn − xn−1, p‖ ≤ ‖xn − xn+1, p‖, then from (3.2) we get
‖xn+1 − xn, p‖ ≤ β‖xn+1 − xn, p‖

which implies, 1 ≤ β, a contradiction.
Therefore,
‖xn+1 − xn, p‖ ≤ ‖xn − xn−1, p‖.

Thus {‖xn − xn−1, p‖} is a monotone decreasing sequence of non-negative real
numbers. Suppose limn→∞ ‖xn − xn−1, p‖ = r.
Thus

r = limn→∞ ‖xn − xn−1, p‖ = limn→∞ ‖Fixn−1 − Fjxn−2, p‖
≤ β limn→∞ f(‖xn−1 − Fixn−1, p‖, ‖xn−2 − Fjxn−2, p‖, ‖xn−1 − Fjxn−2, p‖,
‖xn−2 − Fixn−1, p‖,
‖xn−1 − xn−2, p‖)
= limn→∞ βf(‖xn−1 − xn, p‖, ‖xn−2 − xn−1, p‖, ‖xn−1 − xn−1, p‖, ‖xn−2 − xn, p‖,
‖xn−1 − xn−2, p‖)
= limn→∞ βmax{ (‖xn−1−xn,p‖+‖xn−2−xn−1,p‖+‖xn−1−xn−1,p‖

3
, ‖xn−2−xn,p‖+‖xn−1−xn−2,p‖

3
}

≤ β limn→∞max{ (‖xn−1−xn,p‖+‖xn−2−xn−1,p‖+‖xn−1−xn−1,p‖
3

,
‖xn−2−xn−1,p‖+‖xn−1−xn,p‖+‖xn−1−xn−2,p‖

3
}

≤ β limn→∞max{‖xn − xn−1, p‖, ‖xn−1 − xn−2, p‖}
= βmax{r, r}
= βr
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implies, r = 0 [as β < 1]
i.e., limn→∞ ‖xn − xn−1, p‖ = 0.
Now, for n ≥ m ∈ N,

‖xn+1 − xm+1, p‖ = ‖Fixn − Fjxm, p‖
≤ βf(‖xn−Fixn, p‖, ‖xm−Fjxm, p‖, ‖xn−Fjxm, p‖, ‖xm−Fixn, p‖, ‖xn− xm, p‖)
= βf(‖xn− xn+1, p‖, ‖xm− xm+1, p‖, ‖xn− xm+1, p‖, ‖xm− xn+1, p‖, ‖xn− xm, p‖)
= βmax{‖xn−xn+1,p‖+‖xm−xm+1,p‖+‖xn−xm+1,p‖

3
, ‖xm−xn+1,p‖+‖xn−xm,p‖

3
}

≤ βmax{‖xn−xn+1,p‖+‖xm−xm+1,p‖+‖xn−xm,p‖+‖xm−xm+1,p‖
3

, ‖xm−xn,p‖+‖xn−xn+1,p‖+‖xn−xm,p‖
3

}
≤ βmax{‖xn − xn+1, p‖, ‖xm − xm+1, p‖, ‖xn − xm, p‖}.
Taking limit as n,m→∞ on the both sides of the above inequality, we get

limn,m→∞ ‖xn+1 − xm+1, p‖ ≤ β limn,m→∞ ‖xn − xm, p‖
implies, limn,m→∞ ‖xn − xm, p‖ = 0.
Thus {xn} is a Cauchy sequence in X. Since X is complete, there is an z ∈ X such
that limn→∞ ‖xn − z, p‖ = 0.
Since ‖Fiz − z, p‖ ≤ ‖Fiz − xn, p‖+ ‖xn − z, p‖
= ‖Fiz − Fjxn−1, p‖+ ‖xn − z, p‖
≤ βf(‖z−Fiz, p‖, ‖xn−1−Fjxn−1, p‖, ‖z−Fjxn−1, p‖, ‖xn−1−Fiz, p‖, ‖z−xn−1, p‖)+
‖xn − z, p‖
= βf(‖z−Fiz, p‖, ‖xn−1−xn, p‖, ‖z−xn, p‖, ‖xn−1−Fiz, p‖, ‖z−xn−1, p‖)+‖xn−
z, p‖
= βmax{‖z−Fiz,p‖+‖xn−1−xn,p‖+‖z−xn,p‖

3
, ‖xn−1−Fiz,p‖+‖z−xn−1,p‖

3
}+ ‖xn − z, p‖.

Taking limn→∞ on the both sides of the above inequality, we have
lim
n→∞
‖Fiz − z, p‖

≤ β lim
n→∞

max{‖z−Fiz,p‖+‖xn−1−xn,p‖+‖z−xn,p‖
3

, ‖xn−1−Fiz,p‖+‖z−xn−1,p‖
3

}+ lim
n→∞
‖xn−z, p‖

= βmax{‖Fiz−z,p‖
3

, ‖Fiz−z,p‖
3
}

≤ β‖Fiz − z, p‖
which implies, (1− β)‖Fiz − z, p‖ ≤ 0
i.e., ‖Fiz − z, p‖ = 0
i.e., Fiz = z.
So z is a common fixed point of {Fn}∞n=1.

Let z′ be another common fixed point of {Fn}∞n=1.
Then ,

‖z − z′, p‖ ≤ ‖Fiz − Fjz′, p‖
≤ βf(‖z − Fiz, p‖, ‖z′ − Fjz′, p‖, ‖z − Fjz′, p‖, ‖z′ − Fiz, p‖, ‖z − z′, p‖)
= βf(‖z − z, p‖, ‖z′ − z′, p‖, ‖z − z′, p‖, ‖z′ − z, p‖, ‖z − z′, p‖)
= βmax{0+0+‖z−z′,p‖

3
, ‖z−z

′,p‖+‖z−z′,p‖
3

}
≤ β‖z − z′, p‖
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implies, ‖z − z′, p‖ = 0 i.e., z = z′.

Hence {Fn}∞n=1 have a unique common fixed point in X.

Corollary 3.3 Let F1 and F2 be two self maps on 2-Banach space (X, ‖., .‖) sat-
isfying
‖F1x−F2y, p‖ ≤ βf(‖x−F1x, p‖, ‖y−F2y, p‖, ‖x−F2y, p‖, ‖y−F1x, p‖, ‖x−y, p‖),
where β < 1 and f satisfy the relation (2.2). Then F1 and F2 have a unique com-
mon fixed point in X.
Proof. Put Fi = F1 and Fj = F2 in the above Theorem 3.2 we get the result.

Corollary 3.4. Let F be a self map on 2-Banach space (X, ‖., .‖) satisfying
‖Fx− Fy, p‖ ≤ βf(‖x− Fx, p‖, ‖y − Fy, p‖, ‖x− Fy, p‖, ‖y − Fx, p‖, ‖x− y, p‖),
where β < 1 and f satisfy the relation (2.2). Then F have a unique fixed point in
X.
Proof. Put Fi = Fj = F in the above Theorem 3.2 we get the result.

Theorem 3.3. Let {Fn}∞n=1 be sequence of self maps on 2-Banach space (X, ‖., .‖)
satisfying
‖Fix− Fjy, p‖
≤ α

‖x−y,p‖+‖x−Fjy,p‖+‖y−Fix,p‖
1+‖x−Fjy,p‖+‖y−Fix,p‖ + βmax{‖x− Fjy, p‖, ‖y − Fix, p‖}+ γ‖y − Fjy, p‖,

where α, β, γ are non-negative real numbers and 3α + 2β + γ < 1. Then {Fn}∞n=1

have a unique common fixed point in X.
Proof. For an initial approximation y0 ∈ X construct a sequence {yn} in X such
that yn+1 = Fiyn for a fixed i = 1, 2, 3, .... If yn = Fiyn i.e., yn = yn+1, n = 0, 1, 2, ...
then yn is common fixed point of {Fn}∞n=1 for all n = 0, 1, 2, ... and the proof is
completed.

So we assume that yn+1 6= yn ∀ n ∈ N ∪ {0}.
Now we show that {yn} is a Cauchy sequence.

Since,

‖yn+1 − yn, p‖ = ‖Fiyn − Fjyn−1, p‖
≤ α(

‖yn−yn−1,p‖+‖yn−Fjyn−1,p‖+‖yn−1−Fiyn,p‖
1+‖yn−Fjyn−1,p‖+‖yn−1−Fiyn,p‖ )+βmax{‖yn−Fjyn−1, p‖, ‖yn−1−Fiyn, p‖}

+ γ‖yn−1 − Fjyn−1, p‖
≤ α(‖yn− yn−1, p‖+ ‖yn− yn, p‖+ ‖yn−1− yn+1, p‖) + βmax{‖yn− yn, p‖, ‖yn−1−
yn+1, p‖}+ γ‖yn−1 − yn, p‖
≤ α(‖yn − yn−1, p‖ + ‖yn−1 − yn, p‖ + ‖yn − yn+1, p‖) + β[‖yn−1 − yn, p‖ + ‖yn −
yn+1, p‖] + γ‖yn−1 − yn, p‖
implies, (1− α− β)‖yn+1 − yn, p‖ ≤ (2α + β + γ)‖yn − yn−1, p‖
i.e., ‖yn+1 − yn, p‖ ≤ (2α+β+γ

1−α−β )‖yn − yn−1, p‖
= k‖yn − yn−1, p‖ [ where 2α+γ+β

1−α−β = k < 1 ]
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≤ k2‖yn−1 − yn−2, p‖
...
≤ kn‖y1 − y0, p‖.
Taking limit as n→∞, we get

limn→∞ ‖yn+1 − yn, p‖ = 0 [ as k < 1].
Now, let n ≥ m ∈ N. Then

‖yn − ym, p‖ = ‖Fiyn−1 − Fjym−1, p‖
≤ α(

‖yn−1−ym−1,p‖+‖yn−1−Fjym−1,p‖+‖ym−1−Fiyn−1,p‖
1+‖yn−1−Fjym−1,p‖+‖ym−1−Fiyn−1,p‖ )

+ βmax{‖yn−1 − Fjym−1, p‖, ‖ym−1 − Fiyn−1, p‖}+ γ‖ym−1 − Fjym−1, p‖
≤ α(‖yn−1−ym−1, p‖+‖yn−1−ym, p‖+‖ym−1−yn, p‖)+βmax{‖yn−1−ym, p‖, ‖ym−1−
yn, p‖}+ γ‖ym−1 − ym, p‖
≤ α(‖yn−1−ym−1, p‖+‖yn−1−yn, p‖+‖yn−ym, p‖+‖ym−1−ym, p‖+‖ym−yn, p‖)+
βmax{‖yn−1−yn, p‖+‖yn−ym, p‖, ‖ym−1−ym, p‖+‖ym−yn, p‖}+γ‖ym−1−ym, p‖.

Let limn,m→∞ ‖ym − yn, p‖ = r.
Then from above we get

r ≤ α(r + 0 + r + 0 + r) + βmax{0 + r, 0 + r}+ γ.0
implies, r ≤ 3αr + βr
i.e.,(1− 3α− β)r ≤ 0
i.e., r = 0 [ since 1− 3α− β 6= 0 ]
i.e., limn,m→∞ ‖yn − ym, p‖ = 0.
Thus {yn} is a Cauchy sequence. Since X is complete, there exists a y ∈ X such
that limn→∞ ‖yn − y, p‖ = 0.

Since,
‖Fiy − y, p‖ ≤ ‖Fiy − yn, p‖+ ‖yn − y, p‖
= ‖Fiy − Fjyn−1, p‖+ ‖yn − y, p‖
≤ α(

‖y−yn−1,p‖+‖y−Fjyn−1,p‖+‖yn−1−Fiy,p‖
1+‖y−Fjyn−1,p‖+‖yn−1−Fiy,p‖ ) +βmax{‖y−Fjyn−1, p‖, ‖yn−1−Fiy, p‖}+

γ‖yn−1 − Fjyn−1, p‖+ ‖yn − y, p‖
≤ α(‖y − yn−1, p‖ + ‖y − yn, p‖ + ‖yn−1 − Fiy, p‖) + βmax{‖y − yn, p‖, ‖yn−1 −
Fiy, p‖}+ γ‖yn−1 − yn, p‖+ ‖yn − y, p‖.
Taking limit as n→∞ we get from the above inequality,
limn→∞ ‖Fiy − y, p‖ ≤ α‖y − Fiy, p‖+ β‖y − Fiy, p‖+ γ.0 + 0
implies, (1− α− β)‖y − Fiy, p‖ ≤ 0
i.e., ‖y − Fiy, p‖ = 0
i.e., Fiy = y.
Thus y is a common fixed point of {Fn}∞n=1.

Let z be another common fixed point of {Fn}∞n=1. Then

‖y − z, p‖ = ‖Fiy − Fjz, p‖
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≤ α
‖y−z,p‖+‖y−Fjz,p‖+‖z−Fiy,p‖

1+‖y−Fjz,p‖+‖z−Fiy,p‖ + βmax{‖y − Fjz, p‖, ‖z − Fiy, p‖}+ γ‖z − Fjz, p‖
≤ α ‖y−z,p‖+‖y−z,p‖+‖z−y,p‖

1+‖y−z,p‖+‖z−y,p‖ + βmax{‖y − z, p‖, ‖z − y, p‖}+ γ‖z − z, p‖
≤ (3α + β + γ)‖y − z, p‖
implies, (1− 3α− β − γ)‖y − z, p‖ ≤ 0
i.e., ‖y − z, p‖ = 0
i.e., y = z.

Hence {Fn}∞n=1 have a unique common fixed point in X.

Corollary 3.5. Let F1 and F2 be two self maps on 2-Banach space (X, ‖., .‖)
satisfying

‖F1x− F2y, p‖
≤ α ‖x−y,p‖+‖x−F2y,p‖+‖y−F1x,p‖

1+‖x−F2y,p‖+‖y−F1x,p‖ + βmax{‖x− F2y, p‖, ‖y− F1x, p‖}+ γ‖y− F2y, p‖,
where α, β, γ are non-negative real numbers and 3α+ 2β + γ < 1. Then F1 and F2

have a unique common fixed point in X.
Proof. Putting Fi = F1 and Fj = F2 in the Theorem 3.3 we get the desired
result.

Corollary 3.6. Let F be a self map on 2-Banach space (X, ‖., .‖) satisfying

‖Fx− Fy, p‖
≤ α ‖x−y,p‖+‖x−Fy,p‖+‖y−Fx,p‖

1+‖x−Fy,p‖+‖y−Fx,p‖ + βmax{‖x− Fy, p‖, ‖y − Fx, p‖}+ γ‖y − Fy, p‖,
where α, β, γ are non-negative real numbers and 3α + 2β + γ < 1. Then F have a
unique fixed point in X.
Proof. Putting Fi = Fj = F in the Theorem 3.3 we get the desired result.

Theorem 3.4. Let {Fn}∞n=1 be sequence of self maps on 2-Banach space (X, ‖., .‖)
satisfying

‖Fix− Fjy, p‖
≤ α

‖x−y,p‖+‖x−Fjy,p‖+‖y−Fix,p‖
1+‖x−Fjy,p‖+‖y−Fix,p‖ + βmin{‖x− Fjy, p‖, ‖y − Fix, p‖}+ γ‖y − Fjy, p‖,

where α, β, γ are non-negative real numbers and 3α + 2β + γ < 1. Then {Fn}∞n=1

have a unique common fixed point in X.
Proof. Since min{‖x − Fjy, p‖, ‖y − Fix, p‖} ≤ max{‖x − Fjy, p‖, ‖y − Fix, p‖},
the result follows from the Theorem 3.3.

Theorem 3.5. Let {Fn}∞n=1 be sequence of self maps on 2-Banach space (X, ‖., .‖)
satisfying

‖Fix− Fjy, p‖
≤ α ‖x−y,p‖+‖x−Fix,p‖

1+‖y−Fix,p‖ +βmax{‖x−Fjy, p‖, ‖y−Fjy, p‖}+γ[‖x−Fix, p‖+‖y−Fjy, p‖],
where α, β, γ are non-negative real numbers and 2α + β + 2γ < 1. Then {Fn}∞n=1

have a unique common fixed point in X.
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Proof. With an initial approximation y0 ∈ X, construct a sequence {yn} such that
yn+1 = Fiyn; n = 0, 1, 2, ... for a fixed i. Similarly as previous theorems, assume
yn+1 6= yn,∀ n ∈ N ∪ {0}.

First of all we show that {yn} is a Cauchy sequence.
Since,
‖yn+1 − yn, p‖ = ‖Fiyn − Fjyn−1, p‖

≤ α(‖yn−yn−1,p‖+‖yn−Fiyn,p‖
1+‖yn−1−Fiyn,p‖ ) + βmax{‖yn − Fjyn−1, p‖, ‖yn−1 − Fjyn−1, p‖}

+γ[‖yn − Fjyn, p‖+ ‖yn−1 − Fjyn−1, p‖]
≤ α(‖yn−yn−1, p‖+‖yn−yn+1, p‖) +βmax{‖yn−yn, p‖, ‖yn−1−yn, p‖}+γ[‖yn−
yn+1, p‖+ ‖yn−1 − yn, p‖]
= α‖yn−yn−1, p‖+α‖yn−yn+1, p‖+β‖yn−1−yn, p‖+γ‖yn−yn+1, p‖+γ‖yn−1−yn, p‖
implies, (1− α− γ)‖yn+1 − yn, p‖ ≤ (α + β + γ)‖yn − yn−1, p‖

i.e., ‖yn+1 − yn, p‖ ≤ (
α + β + γ

1− α− γ
)‖yn − yn−1, p‖

≤ (
α + β + γ

1− α− γ
)2‖yn−1 − yn−2, p‖

...

≤ (
α + β + γ

1− α− γ
)n‖y1 − y0, p‖.

Taking limn→∞ on the both sides of the above inequality, we get
limn→∞ ‖yn+1 − yn, p‖ = 0.

Now, let n ≥ m ∈ N. Then
‖yn+1 − ym+1, p‖

= ‖Fiyn − Fjym, p‖
≤ α ‖yn−ym,p‖+‖yn−Fiyn,p‖

1+‖ym−Fiyn,p‖ +βmax{‖yn−Fjym, p‖, ‖ym−Fjym, p‖}+γ[‖yn−Fiyn, p‖+
‖ym − Fjym, p‖]
≤ α(‖yn−ym, p‖+‖yn−yn+1, p‖)+βmax{‖yn−ym+1, p‖, ‖ym−ym+1, p‖}+γ[‖yn−
yn+1, p‖+ ‖ym − ym+1, p‖].
Taking limit as n,m→∞ we get from above

limn,m→∞ ‖yn+1 − ym+1, p‖
≤ α limn,m→∞ ‖yn − ym, p‖+ β limn,m→∞ ‖yn − ym+1, p‖+ γ.0
≤ α limn,m→∞ ‖yn − ym, p‖+ β limn,m→∞[‖yn − ym, p‖+ ‖ym − ym+1, p‖]
= (α + β) limn,m→∞ ‖yn − ym, p‖
implies, limn,m→∞ ‖yn − ym, p‖ = 0
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i.e., {yn} is a Cauchy sequence. Since X is complete, there exists an y ∈ X such
that limn→∞ ‖yn − y, p‖ = 0.

Now we show that y is a common fixed point of {Fn}∞n=1.
Since

‖Fiy − y, p‖ ≤ ‖Fiy − yn, p‖+ ‖yn − y, p‖
= ‖Fiy − Fjyn−1, p‖+ ‖yn − y, p‖
≤ α ‖y−yn−1,p‖+‖y−Fiy,p‖

1+‖yn−1−Fiy,p‖ +βmax{‖y−Fjyn−1, p‖, ‖yn−1−Fjyn−1, p‖}+γ[‖y−Fiy, p‖+
‖yn−1 − Fjyn−1, p‖] + ‖yn − y, p‖
≤ α(‖y − yn−1, p‖ + ‖y − Fiy, p‖) + βmax{‖y − yn, p‖, ‖yn−1 − yn, p‖} + γ[‖y −
Fiy, p‖+ ‖yn−1 − yn, p‖] + ‖yn − y, p‖.
Taking limn→∞ on the both sides of above inequality, we get

limn→∞ ‖Fiy − y, p‖ ≤ α‖y − Fiy, p‖+ β.0 + γ‖y − Fiy, p‖+ 0
which implies, (1− α− γ)‖Fiy − y, p‖ ≤ 0
i.e., ‖Fiy − y, p‖ = 0
i.e., Fiy = y.
Thus y is a common fixed point of {Fn}∞n=1.

Let y′ be another fixed point of {Fn}∞n=1. Then

‖y − y′, p‖ = ‖Fiy − Fjy′, p‖
≤ α(‖y−y

′,p‖+‖y−Fiy,p‖
1+‖y′−Fiy,p‖ ) +βmax{‖y−Fjy′, p‖, ‖y′−Fjy′, p‖}+γ[‖y−Fiy, p‖+‖y′−

Fjy
′, p‖]

≤ α(‖y−y′, p‖+‖y−y, p‖)+βmax{‖y−y′, p‖, ‖y′−y′, p‖}+γ[‖y−y, p‖+‖y′−y′, p‖]
= α‖y − y′, p‖+ β‖y − y′, p‖
that implies, (1− α− β)‖y − y′, p‖ ≤ 0 i.e., ‖y − y′, p‖ = 0
i.e., y = y′.

Hence the result.

Corollary 3.7. Let F1 and F2 be two self maps on 2-Banach space (X, ‖., .‖)
satisfying

‖F1x− F2y, p‖
≤ α ‖x−y,p‖+‖x−F1x,p‖

1+‖y−F1x,p‖ + βmax{‖x − F2y, p‖, ‖y − F2y, p‖} + γ[‖x − F1x, p‖ + ‖y −
F2y, p‖],
where α, β, γ are non-negative real numbers and 2α+ β + 2γ < 1. Then F1 and F2

have a unique common fixed point in X.
Proof. Putting Fi = F1 and Fj = F2 in the Theorem 3.5 the result holds.

Corollary 3.8. Let F be a self map on 2-Banach space (X, ‖., .‖) satisfying

‖Fx− Fy, p‖
≤ α ‖x−y,p‖+‖x−Fx,p‖

1+‖y−Fx,p‖ +βmax{‖x−Fy, p‖, ‖y−Fy, p‖}+γ[‖x−Fx, p‖+‖y−Fy, p‖],
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where α, β, γ are non-negative real numbers and 2α + β + 2γ < 1. Then F have a
unique fixed point in X.
Proof. Putting Fi = Fj = F in the Theorem 3.5 the result holds.

The next theorem is the generalization of Saluja [13] theorem 3.1. In that
theorem T was a continuous self map on X. We have proved it to a family of self
maps without continuity as follows:

Theorem 3.6. Let X be a 2-Banach space(with dimX ≥ 2) and {Ti}∞i=1 be a
family of self maps on X satisfying
‖Tix− Tjy, a‖ ≤ hmax{‖x− y, a‖, ‖x−Tix,a‖+‖y−Tjy,a‖

2
,
‖x−Tjy,a‖+‖y−Tix,a‖

2
},

where 0 < h < 1. Then {Ti}∞i=1 have a unique common fixed point in X.
Proof. Let x0 ∈ X be arbitrary. Then we construct a sequence {xn} such that
xn+1 = Tixn for a fixed i.

We now show that limn→∞ ‖xn+1 − xn, a‖ = 0.
Now,
‖xn+1 − xn, a‖ = ‖Tixn − Tn−1, a‖

≤ hmax{‖xn − xn−1, a‖, ‖xn−Tixn,a‖+‖xn−1−Tjxn−1,a‖
2

,
‖xn−Tjxn−1,a‖+‖xn−1−Tixn,a‖

2
}

= hmax{‖xn − xn−1, a‖, ‖xn−xn+1,a‖+‖xn−1−xn,a‖
2

, ‖xn−xn,a‖+‖xn−1−xn+1,a‖
2

}
≤ hmax{‖xn − xn−1, a‖, ‖xn−xn+1,a‖+‖xn−1−xn,a‖

2
, ‖xn−1−xn,a‖+‖xn−xn+1,a‖

2
}

= hmax{‖xn − xn−1, a‖, ‖xn−xn+1,a‖+‖xn−1−xn,a‖
2

}
≤ hmax{‖xn − xn−1, a‖, ‖xn − xn+1, a‖}. (3.3)

Suppose ‖xn−1 − xn, a‖ ≤ ‖xn − xn+1, a‖.
Then from (3.3), ‖xn+1 − xn, a‖ ≤ h‖xn+1 − xn, a‖
implies, 1 ≤ h, a contradiction.

Thus ‖xn+1 − xn, a‖ ≤ ‖xn − xn−1, a‖.
Therefore, {‖xn+1−xn, a‖} is a sequence of real numbers monotone decreasing and
bounded below. Suppose limn→∞ ‖xn+1 − xn, a‖ = r.
Suppose r 6= 0. Then,

r = limn→∞ ‖xn+1 − xn, a‖ = limn→∞ ‖Tixn − Tjxn−1, a‖
≤ lim

n→∞
hmax{‖xn − xn−1, a‖, ‖xn−Tixn,a‖+‖xn−1−Tjxn−1,a‖

2
,
‖xn−Tjxn−1,a‖+‖xn−1−Tixn,a‖

2
}

= h limn→∞max{‖xn − xn−1, a‖, ‖xn−xn+1,a‖+‖xn−1−xn,a‖
2

, ‖xn−xn,a‖+‖xn−1−xn+1,a‖
2

}
≤ h limn→∞max{‖xn − xn−1, a‖, ‖xn−xn+1,a‖+‖xn−1−xn,a‖

2
, ‖xn−1−xn,a‖+‖xn−xn+1,a‖

2
}}

= h limn→∞max{r, r+r
2
, r+r

2
} = hr

implies, 1 ≤ h, a contradiction.
Therefore, limn→∞ ‖xn+1 − xn, a‖ = 0.

Now we show that {xn} is a Cauchy sequence.
Since for n > m ∈ N,
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limn,m→∞ ‖xn − xm, a‖
≤ limn,m→∞[‖xn − xn−1, a‖+ ‖xn−1 − xm, a‖]
= limn,m→∞ ‖xn−1 − xm, a‖
...
≤ limn,m→∞ ‖xm − xm, a‖
= 0.
Therefore, {xn} is a Cauchy sequence. Since X is a complete space, there exist a
x ∈ X such that limn→∞ xn = x.

Next, we show that x is a fixed point of {Ti}∞i=1.
Since

limn→∞ ‖Tix− x, a‖ ≤ limn→∞[‖Tix− xn, a‖+ ‖xn − x, a‖]
= limn→∞ ‖Tix− Tjxn−1, a‖+ limn→∞ ‖xn − x, a‖
≤ limn→∞ hmax{‖x− xn−1, a‖, ‖x−Tix,a‖+‖xn−1−Tjxn−1,a‖

2
,
‖x−Tjxn−1,a‖+‖xn−1−Tix,a‖

2
}

= h limn→∞max{‖x− xn−1, a‖, ‖x−Tix,a‖+‖xn−1−xn,a‖
2

, ‖x−xn,a‖+‖xn−1−Tix,a‖
2

}
≤ h‖Tix− x, a‖
implies, ‖Tix− x, a‖ 6= 0,
i.e., Tix = x.
Thus x is fixed point of X.

Now we show that x is a unique common fixed point of {Ti}∞i=1. Let y be
another common fixed point. Then by the given condition, we get

‖x− y, a‖ = ‖Tix− Tjy, a‖
≤ hmax{‖x− y, a‖, ‖x−Tix,a‖+‖y−Tjy,a‖

2
,
‖x−Tjy,a‖+‖y−Tix,a‖

2
}

= hmax{‖x− y, a‖, ‖x−x,a‖+‖y−y,a‖
2

, ‖x−y,a‖+‖y−x,a‖
2

}
= h‖x− y, a‖
implies, ‖x− y, a‖ = 0
i.e., x = y.
Thus x is a unique common fixed point of {Ti}∞i=1.
Hence the theorem.

Corollary 3.9. Let X be a 2-Banach space(with dimX ≥ 2) and T1 and T2 be two
self maps on X satisfying

‖T1x− T2y, a‖ ≤ hmax{‖x− y, a‖, ‖x−T1x,a‖+‖y−T2y,a‖
2

, ‖x−T2y,a‖+‖y−T1x,a‖
2

},
where 0 < h < 1. Then T1 and T2 have a unique common fixed point in X.
Proof. Putting Ti = T1 and Tj = T2 in the above Theorem 3.6 we have the
required result.

This result is same as Saluja ([13]) theorem 3.1 without continuity.

Corollary 3.10. Let X be a 2-Banach space(with dimX ≥ 2) and T be a self maps
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on X satisfying

‖Tx− Ty, a‖ ≤ hmax{‖x− y, a‖, ‖x−Tx,a‖+‖y−Ty,a‖
2

, ‖x−Ty,a‖+‖y−Tx,a‖
2

},
where 0 < h < 1. Then T have a unique fixed point in X.
Proof. Putting Ti = Tj = T in the above Theorem 3.6 we have the desired
result.
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