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Abstract: Let By 5(n) denote the number of (4, 5)-regular bipartitions of a positive
integer n into distinct parts. In this paper, we establish many infinite families of
congruences modulo powers of 2 for B, 5(n). For example,

234’5 (16 . 32a . 525 . 72'Yn +92. 32a . 525 . 72’7 — 1) qn
n=0

=2f? (mod 4), for all o, 3,7 > 0.
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1. Introduction
Throughout this paper, we let |g| < 1. We use the standard notation

fr = (¢"; ¢") oo
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Following Ramanujan, we define

(=) = f(=¢,—*) = > (=1)"¢"®" I = (g;¢). (1.1)

n=—oo

Ramanujan’s general theta function f(a,b) [1] is defined by

fla,b) = > a2 ap| < 1. (1.2)

n=—oo

In Ramanujan’s notation, Jacobi’s famous triple product identity becomes
fla,b) = (—a;ab) oo (—b; ab) oo (ab; ab) . (1.3)

A partition of a positive integer n is a non-increasing sequence of positive integers
whose sum is n. An (-regular partition is a partition in which none of its parts
are divisible by ¢. Let by(n) denote the number of f-regular partitions of n with
be(0) = 1. The generating function for b,(n) is

%) n_ﬂ
nz%bg(n)q =

Recently, arithmetic properties of ¢-regular partition functions have been studied
by a number of mathematicians. Calkin et al. [2] established congruences for 5-
regular partitions modulo 2 and 13-regular partitions modulo 2 and 3 using the
theory of modular forms. For more details, one can see [3], [5], [6] and [7].
Suppose ¢, m > 0 and (¢,m) = 1. A partition is an (¢, m)-regular partitions of the
positive integer n if none of the parts are divisible by £ or m. Let a,,(n) denote the
number of such partitions of n into distinct parts with as,,,(0) = 1. The generating
function is given by
(=% Doo(=0": 4™

Z apm(n)q" = (1.4)

(=% 0" oo (—0™; 4™

For example, there are 3 partitions for as5(11), namely
11, 8+2+1, 7T+4.

For more details, one can see [9] and [10].
Let By,,(n) denote the number of (¢, m)-regular bipartitions of n into distinct parts
with By,,(0) = 1 and the generating function is given by

iBe () = CEDA™ 0™ S LS
wr A (=45 492 (=q™ q™%  fofsnfifin

(1.5)
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For example, there are 12 bipartitions for B, 5(6), namely

(0,6), (6,0), (3,3), (241, 24+1), (3+2+1,0), (0, 3+2+1)
(1, 3+2), (3+2,1), (2, 3+1), (341, 2), (3, 2+1), (2+1, 3).

2. Preliminary Results

Lemma 2.1. we have
— = +4q . .
o 50

For proof, see [1, p. 40].
Lemma 2.2. The following 3-dissection holds :

6 2 16
2= =gy gL (22)

For proof, see [1, p. 395].
Lemma 2.3. The following 2-dissections hold :

b Bfh Pl

T 2o B (2:3)
and , )

£ hifh P o

fs fifofo UffE

The equation (2.3) was proved by Hirschhorn and Sellers [5], see also [11]. Replac-
ing ¢ by —¢ in (2.3) and using the fact that

S
(—q; q)oo—flf4,

we obtain (2.4).
Lemma 2.4. [8] We have

2 r2 4 2
fifs = fg’flo—qm+2q2f4f§’0—2q3f4f10‘2f40 (2.5)
7 f
i S T N
= 2 2 . 2.6
[ I Y R Y R Z Y (2:6)



164 South FEast Asian J. of Mathematics and Mathematical Sciences

Lemma 2.5. [1, p. 303, Entry 17 (v)] We have
B(¢")  Al¢") o, 5C(d)
_ N _ 2.
i =t () ~ 307~ ) 20
where A(q) = f(=¢*,—q"), B(q) = f(—=¢* —¢*) and C(q) = f(—q,—d°).
We shall prove the following Theorems :

Theorem 2.1. Let ry € {62,78}, ro € {14,46,62,78}, r3 € {14,62,158,206} and
ry € {46,94,142,238}. Then for all «, 3,y > 0, we have for modulo 16,

D Bus (165465 — 1) ¢" = 8fufs + 8¢} fio, (2.8)
n=0
> Bus (1657 n 4+ 1452 — 1) ¢" = 81 fao + 813 12, (2.9)
n=0
Bys (16 - 5% n 4y - 527 — 1) =0, (2.10)
D By (163520 72 4 6. 34 5207 1) ¢ =87, (2.11)

n=0

> Bys (16 3% 527y g gl 5208 g ) r = 870 (2.12)
n=0

D Bus (16-3% . 5742 72y 4 0. 300 522 g ) g =8 f), (2.13)
n=0

By (16 - 3% . 523 .72 gy gl 52652727 1) =, (2.14)

D Bys (16- 3% 520 72 4 22 g 527 1) gt =8 fF, (2.15)

n=0

Z By (16 - 3%+ 52042 727 4 9. gla 52542 72041 _ ) ¢
n=0

= 8¢° fo /s, (2.16)
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By (16 - 3% 52043 727 4y 30 5252 720 )

Il
o

D Bys (16 3% 520 72 4 38 30 520 72T 1) g = 81 f8

n=0

Z B475 (16 . 34a+1 . 52/3+2 . 72"/n 446 - 34a . 52,3+2 . 727 o 1) qn = 8q3f5f9?0,

n=0

B475 (16 . 34a+1 . 52,3+3 . 72’yn +ry 34a i 52,3+2 . 727 _ 1)

Il
e

Theorem 2.2. For a > 0, we have
By5(223n 4221 1) = Bys(8n+7) (mod 16).

Theorem 2.3. For «, f > 0, we have for modulo 8,

S Bua(22 50 4 2202 5 1)g = dgfy f] - 232,
n=0

oo

Z 22a+3 526+1 + 22a+2 52ﬂ+1 )qn = 2f12f52 + 4f17f57
=0

[e.9]

Z 5(220T4 . 52 4 22013 520 Vg = dqf fT — 21712,
=0

[e.9]

Z 22a+4 526+1 + 22a+3 . 525—1—1 - 1>qn = 2f12f5? + 4f17f57
=0

[e.e]

Z 5(22075 . 520y 4 92t 520 1Yo = dqf T — 2f2£2,
n=0

[e.e]

Z 22a+5 52ﬂ+ln + 22a+4 52,8+1 )qn = 2f12f§ + 4f17f5
=0

165

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

Theorem 2.4. Let r5 € {22,38}, rg € {34,66}, r; € {26,42,58,74}, rg €
(88,152}, 1o € {136,264}, o € {104,168,232,296}, 1, € {176,304}, 11y €



166 South FEast Asian J. of Mathematics and Mathematical Sciences

{272,528} and ri3 € {208,336,464,592}. Then for all o, 5,y > 0, we have for

modulo 4,

> Bus (1632 5% 70 2. 3% . 5% .7 — 1) ¢" = 2},

n=0

> Bus (163257 7y 4 2. 320 520 7002 1) g = 2f],

n=0

By (163211 . 520 77n 4 2. 32 . 5% . 727 — 1)
{ 2 if n=k(Bk+1)/2 for somek € Z,

0 otherwise,

Z B475 (16 . 32041 526 72y, +2. 32042 526 72y _ 1) q" = 2f§,

n=0

Bys (163271 5% . 7270 434 - 32 . 5% . 70 — 1) = 0,

By (16 - 3%*72 . 5% . 7T 4 py - 3201 529 727 — 1) = 0,

> Bus (1632527 4 2. 320 52020 1) g = 2fF,

n=0

By (16 - 3% - 52071 770 4 g - 3% 5% . 77 — 1) = 0,

By (16 - 3% - 5772 . 7% 4 pp - 32 50T 727 — 1) = 0,

D Bus (163752 7 4 2. 320 527 1) g = 2f,

n=0

234’5 (16 320 52841 g2yl 9 3200 2641 o2yH2 1) q" = 2f73,

n=0

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)
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B4’5 (16 . 32a+1 . 52[‘34—1 . 72’yn + 2 . 32(1 . 5254—1 . 72'7 . 1)

_ 2 if n=k(Bk+1)/2 for somek € Z,
o 0 otherwise,

> Bus (16327152 72y 4 2. 3202 2L 72 ) " = of

n=0

B475 (16 . 32a+1 . 52,8—1—1 . 727n +34- 32a . 5264—1 i 72’y . 1)

Il
o

B475 (16 3 32a+2 . 52B+1 . 72’yn + Ts - 32a+1 . 526—}—1 A 72’7 o 1) = 07

Z B475 (16 . 32a . 5254—2 . 72’Yn + 9. 32a . 52ﬁ+3 ) 727 _ 1) qn _ 2]‘?7
n=0

Bujs (16 - 3% - 52942720 4 g 32 52941720 )

0,

By (16 - 3% - 5713 . 727 4 pp . 3% 521270 — 1) =,

> Bys(64-3% 5% 7 4832 5% 7 — 1)q" = 2],

n=0

D Bus(64-3% 5% 77 8. 32 520 7R 1)g" = 2 fF,
n=0

B4,5(64 . 32a+1 X 525 A 72’)/n +8. 32a . 52,8 . 72’}/ o 1)

2 if n=k@Bk+1)/2 for somek € Z,
0 otherwise,

Z B4,5(64 32041 528 72y, +8. 32042 528 o2y 1)qn — 2f§,

n=0

By (64 - 3% 5% .72 4136 - 32 - 527 . 77 — 1) = 0,

Bys(64-3%072. 5% .72 4 g - 32071520 70 1) =0,

167

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)
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D Bus(64-3% 5272 4 8. 32 5T 1)t = 2f3,

n=0

Bys(64 - 3% . 5200727 4y 320520 .72 ) =

=

Bys(64 - 3% - 522720 4y - 320 520HL 70 1) = 0,

Z B4’5<64 . 32a . 525+1 . 72’yn 8. 32& . 52[3+1 . 72’}/ o 1)qn = 2ff,

n=0

Z B4’5<64 A 32a . 52ﬁ+1 X 72’Y+1n + 8. 32a A 52,3+1 . 72’Y+2 . 1)qn = 2f':73,

n=0

B475(64 . 32a+1 X 52,3-1-1 . 72777, 8. 32a . 52ﬂ+1 X 72’y . 1)

_ 2 if n=kBk+1)/2 for some k € Z,
o 0 otherwise,

Z By5(64 - g2l 528+1 72y, 4 Q. 32042 52841 o2y _ 1)q" = 2f§’,

n=0

Bys(64 - 3% 52172 4136 - 32 . 52T L7 )

0,

Bys(64 - 3272 5200 720 4 g 20D 520HL 72y )

0,

Z B4’5<64 . 32a . 525+2 . 72’yn 1+ 8. 32& . 525+3 . 72’}/ - 1)qn = 2f§’7

n=0

Bys(64 - 3% . 522720 4 g - 320 52T 70 1) = 0,

Bys(64 - 3% . 523 .70 4y - 320 520F2 70 1) = 0,

D Bus (1283757 . 7 416 - 3% - 57 7 — 1) " = 2},

n=0

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)
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> Bys (128375 7 n 416 3% - 520 7 1) ¢ = 2fF,
n=0
By (128 - 3% 527 . 77n 4+ 16 - 3%* - 520 . 727 — 1)

_ 2 if n=kBk+1)/2 for somek € Z,
o 0  otherwise,

> Bus (12837452 70 16 3702 . 520 7Y — 1) ¢" = 2,

n=0

By (128 - 3% . 520 . 727 4 272 3% . 527 . 77 — 1) = 0,

By (128 - 372 528 .72 gy - 3701 528727 1) =0,

> Bys (1283752 70 416 3% - 5272 70 — 1) ¢" = 23,

n=0

By (128 -3%* - 5% 7270 4y - 37 5% . 79 — 1) = 0,

By (128 - 3% - 5772 . 7% 4 pyg - 3% 52HL. 7 — 1) = 0,

> Bys (12832520 70 416 3% 5207 1) " = 27,
n=0

> Bys (12832 520 7y 416 32 520 7 1) gt = 2f2,
n=0

Bys (128 - 32 52741 797 416 - 3% - 52771 727 — 1)
_ { 2 if n=k(Bk+1)/2 for somek € Z,

0 otherwise,

D Bys (128 3% . 520 7 16 37002 5207 — 1) ¢ = 2fF,

n=0

169

(2.65)

(2.66)

(2.67)
(2.68)

(2.69)

(2.70)
(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)
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By (128 - 3%F1 . 520 727 4 272 . 3% . 52041 7 1) =, (2.77)

B475 (128 . 32&4—2 . 526—}—1 . 72'7n + Ty - 320(-{-1 . 52[‘34‘1 . 72’)/ o 1)

Il
o

(2.78)

> Bys (128-3% 52077 7Pn 4 1632 - 50T 7 — 1) " = 2f8, (2,79

n=0
By (128 - 3% - 5772 . 7In 4y - 32 521727 — 1) = 0, (2.80)
By (128 - 3%* - 52973 . 727 4y - 32 520270 — 1) = 0. (2.81)
3. Proof of the Theorem (2.1).
From (1.5), we find that
- fififi 13
Bys(n)q" = . (3.1)
; f82f120f20 3

Using (2.3) in (3.1) and extracting the terms involving ¢***! from both sides, we
arrive at

f2 f50
% Bys(2n+1)¢" = f4 i (3.2)
Using (2.1) and (2.4) in (3.2), we get
> 11 5
; Bys(dn +1)¢" = fo;f]éofzo f2 J}LlJ};)f% (3.3)
and )
ZB‘“’ dn + 3)q" fif _ 92 f10f20 (3.4)

2 “Hihfifn P

From the binomial theorem, it is easy to see that for any positive integers k& and
m?

2m = fm o (mod 2), (3.5)

;jm = f2m  (mod 2?), (3.6)

Sm = 51,;” (mod 23). (3.7)
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From (3.7) along with (2.1) and (2.6) in (3.3), we get, modulo 16,

S Busfen+ D" = 2200 g2 g9 (33)
o f fs
and .
> Bus(8n+5)q" = 815 fro + 8> fio f1 5. (3.9)
n=0
Employing (2.5) in (3.9), we find that
> Bus(16n+5)q" = 8fufs + 8af} [ (3.10)
n=0
and .
> Bus(16n+13)g" = 8¢/ (3.11)

n=0

The equation (3.10) is a = 0 case of (2.8). Suppose the result (2.8) is true for
« > 0. Ramanujan recorded the following identity in his notebooks without proof:

fi=fos(R(@°) ' —qa— ¢*R(q%)), (3.12)

where R(q) = J{(q—_(fﬁ))

2
For a proof of (3.12), one can see [4], [12].

Using (3.12) in (2.8) and then extracting the coefficients of ¢°"** from both sides,
we see that

> Bis (1652 + 1452 — 1) ¢" = 8y fao + 815 /2, (3.13)
n=0

which is (2.9). Again using (3.12) in (3.13) and extracting the terms involving
¢®"*! from both sides, we get

> Bus (1657046572 — 1) ¢" = 8, f5 + 8¢/ [, (3.14)
n=0

which implies that the congruence (2.8) is true for @+ 1. Hence, by induction, the
congruence (2.8) is true for non-negative integer .
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Extracting the coefficients of ¢ 3 and ¢°"** in (3.13) along with (3.12), we obtain
(2.10). Extracting the coefficients of ¢°**! from both sides of (3.11), we find that

> Bys(80n +29)¢" =8}, (3.15)

n=0

which is @« = f = 7 = 0 case of (2.11). Let us consider the case f = v = 0.
Suppose that the congruence (2.11) holds for some integer a > 0. Employing the
equation (2.2) in (2.11) with 8 = v = 0 and then extracting the coefficients of ¢>"
from both sides, we find that

Y Bus (803 n410-3' — 1) ¢" = 8/} + 8¢5 = 8f5+ 8qf; + 8qf§, (3.16)

n=0

which implies

> Bis (803" 4+ 103" — 1) ¢" = 817 + 8f5 = 8qf3 f5 + 8¢° f3./5 + 84° 5.

n=0

Collecting the coefficients of ¢" from both sides, we get 10
i By (80 - 3% n 4+ 10 - 3'*%2 — 1) ¢" = 8¢/, (3.18)
n=0

which implies
i Bys (80 3% n 410 - 3% — 1) ¢" = 8}, (3.19)
n=0

which implies that the congruence (2.11) is true for « + 1. By induction, the
congruence (2.11) holds for all & > 0 with =~ = 0.
Now, suppose the congruence (2.11) is true for «, 5 > 0 with v = 0. Utilizing

. m (2. and then extracting the terms involvin we deduce that
(312)' (211) d th ing th ] l'gq5"+4, ded h
> Bus(16-3% 570 14 3% . 52002 _ 1) ¢" =8¢ (3.20)
n=0

Extracting the coefficient of ¢ in (3.20), we get

D Bus (16 3% 524y 2. gletl 52008 1) g = 8. (3.21)

n=0
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Thus, the congruence (2.11) is true for 5 + 1. Hence, by mathematical induction,
the congruence (2.11) holds for all o, 5 > 0 with 7 = 0. Suppose the congruence
(2.11) is true for «, 5,7 > 0. Employing (2.7) in (2.11) and then extracting the
coefficients of ¢ from the resultant equation, we get

ZB4’5 (16 A 34a . 525+1 . 72'y+1n + 2 . 3404 . 52,3+2 X 72’y+1 - 1) qn = 8q2f'?, (322)

n=0

which is (2.12). Extracting the coefficients of ¢""*? in (3.22), we obtain

> Bus (16-3% . 527y 4 6. 3 2L 7 ) gt =8 f) (3.23)

n=0

which implies that the congruence (2.11) is true for v+ 1.

Hence, by induction, the congruence (2.11) holds for all integers a, 3,7 > 0. Em-
ploying (3.12) in (2.11) and then collecting the coefficients of ¢°*™, we get (2.13).
From (2.13), we arrive at (2.14). Utilizing (2.2) in (2.11) and then collecting the
coefficients of ¢*"*1 and ¢, we obtain (2.15) and (2.18) respectively. From the
equations (2.15) and (2.18) along with (3.12), we get (2.16) and (2.19) respectively.
From the equations (2.16) and (2.19), we obtain (2.17) and (2.20) respectively.

4. Proof of the Theorem (2.2).
Employing (3.5) and (3.7) in (3.4), we find that, modulo 16,

S w_ g ol2fiofo
Z B475(4n + 3)q = 8f2 f10 — 2—3 (41)
2 i f:
Using (2.6) in (4.1), we arrive at
S no— g2 3 2 ¢2 fofi
> Bis(8n+3)q" =815 [0 fz — 2f1 f2 — dq 5 (4.2)
n—=0 f1f5
and - , )
> Bis(8n+7)q" = _pfwhis 4qf202fS . (4.3)
2 2 Iz
Employing (2.3) and (2.5) in (4.3), we obtain
o 3 3
S Bus(16n+7)g" = Sqfd fuf} — 222 — 4Ll (1.4)

f2

n=0
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and - ,
> Bus(16n+15)¢" = pJ10h s Af272. (4.5)
n=0 f2
Using (2.5) in (4.5), we get
% 3 r3
S Bus(32n + 15)g" = 4g 10115 _pp2pe (46)
n=0 f2
and . , )
> Bus(32n+31)¢" = _pfwhls 4q—f2055 . (4.7)
n=0 f2 fl
From the equations (4.3) and (4.7), we have
By5(32n+431) = By5(8n+ 7). (4.8)

Hence, by mathematical induction on «, we obtain (2.21).

5. Proof of the Theorem (2.3)
From the equation (4.2), we get, modulo 8,

Z Bys(8n+3)q" = 4qf1f1 — 2f1 f2 (5.1)

n=0

which is @ > 0 and 5 = 0 case of (2.22). Suppose the congruence (2.22) is true for
a, 3 > 0. Using (3.12) in (2.22) and then collecting the coefficients of ¢°" 2, we get

Z B4’5(2204+3 A 52,3+1n + 22a+2 X 52,3+1 _ 1)qn = 2f12f5? =+ 4fff5’ (52)
n=0
which proves (2.23). Again collecting the coefficients of ¢°**2 from (5.2) along with
(3.12), we obtain

S Bup(2H9 . 5 20k 00 g = dgf T~ 2f2 2, (5.3)

n=0

which implies that the congruence (2.22) is true for § + 1. By mathematical
induction, the congruence (2.22) is true for all integers a, > 0. From the equation
(4.4), we find that

3 Bus(2 i+ 2207 1)q" = dgfi f] - 2f2 2, (5.4)

n=0
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which is @ > 0 and 8 = 0 case of (2.24). The rest of the proofs of the identities
(2.24) and (2.25) are similar to the proofs of the identities (2.22) and (2.23). So,
we omit the details. From the congruence (4.6), we get,

234,5(3271 +15)q" = 4qf1f5 — 211 13, (5.5)

n=0

which is @ > 0 and 8 = 0 case of (2.26). The rest of the proofs of the identities
(2.26) and (2.27) are similar to the proofs of the identities (2.22) and (2.23). So,
we omit the details.

6. Proof of the Theorem (2.4)

From the equation (3.8), we get, modulo 4,

> Bis(8n+1)q" = pJ1/10 (6.1)
n=0 f5
Using (2.4) in (6.1), we obtain
> Bus(16n+1)¢" = 2f} (6.2)
n=0
and -
Z Bys(16n 4+ 9)¢" = 23, (6.3)
n=0

The equation (6.2) is @« = § = v = 0 case of (2.28). Suppose that the congruence
(2.28) holds for some integer o > 0 with 5 = v = 0. Employing the equation (2.2)
in (2.28) with =~ = 0, we find that

D Bus (16-3%n+2-3* —1) ¢" = 2(fs + ¢f5). (6.4)
n=0

Extracting the coefficients of ¢*"*! from (6.4), we find that

> Bys (163 n 423207 — 1) " = 2], (6.5)
n=0

which implies
> Bis (1630 42307 — 1) " = 27, (6.6)

n=0
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which implies that the congruence (2.28) is true for @ + 1. Hence, by induction,
the congruence (2.28) holds for any non-negative integer a with 5 =~ = 0. Now,
suppose that the congruence (2.28) holds for some integers a, 3 > 0 and v = 0.
Employing the equation (3.12) in the equation (2.28), we find that

Z By s (16 .32 . 528 4 9. 320 526 1) q" = 2f235 (R(qS)_1 —q— q2R(q5))3 )

n=0

Extracting the coefficients of ¢°**3 in (6.7), we arrive at o0
i Bys (16 - 3% - 527 n + 2.3 . 5212 _ 1) ¢" = 2f2, (6.8)
n=0

Extracting the coefficients of ¢° in (6.8), we get
f: Bys (16 3% - 5202 4 2. 3% . 52012 1) " = 2, (6.9)

n=0

which implies that the congruence (2.28) is true for f+ 1. Hence, by induction, the
congruence (2.28) holds for any non-negative integers cv and § with v = 0. Suppose
that the congruence (2.28) holds for some integers a, 8,y > 0. Employing (2.7) in
(2.28) and then collecting the coefficients of g™ from the resultant equation, we
get

ZB4,5 (16 . 32a . 52ﬁ . 72’y+1n +92. 32a . 525 . 72'y+2 . 1) qn = 2f737 (610)

n=0

which proves (2.29) and extracting the coefficients of ¢™ in (6.10), we obtain

D Bus (163257 772 4 0. 320 520 700 1) g = 2f7, (6.11)

n=0

which implies that the congruence (2.28) is true for v + 1. Hence, by induction,
the congruence (2.28) holds for any non-negative integers «, 5 and 7. Employing
the equation (2.2) in the equation (2.28) and then extracting the coefficients of
@, 2" and @22, we obtain (2.30), (2.31) and (2.32) respectively. Collecting
the coefficients of ¢*"*1 and ¢*"*3 from (2.31), we get (2.33). Using the equation
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(2.28) along with the equation (3.12), we obtain (2.34) and (2.35). From the
equation (2.34), we get (2.36). Extracting the coefficients of ¢° in (6.3), we get

> Bis(80n+9)q" = 2f7, (6.12)

n=0

which is & = § = v = 0 case of (2.37). The rest of the proofs of the identities
(2.37)- (2.45) are similar to the proofs of the identities (2.28)- (2.36). So, we omit
the details. From the equation (4.4), we find that

2f1f2

HZ:O Bys(32n+7)¢" = = 213 + 2q 3, (6.13)

which yields N
> Bus(64n + 7)q" = 2f} (6.14)

and :O_O
> Bus(64n + 39)g" = 2. (6.15)

n=0

The rest of the proofs of the identities (2.46)- (2.63) are similar to the proofs of
the identities (2.28)- (2.36). So, we omit the details.
From the congruence (5.5), we have

. n 2f1f53 — 3 3
> " Bys(64n + 15)¢" = = 2f3 4+ 2¢f3, (6.16)
e fi0
which implies
> Bis(128n + 15)¢" = 2} (6.17)
n=0
and o
> Bys(128n + 79)q" = 2. (6.18)
n=0

The rest of the proofs of the identities (2.64)-(2.81) are similar to the proofs of the
identities (2.28)- (2.36).
So, we omit the details.
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