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1. Introduction

Fuzzy set theory as introduced by Lotfi A. Zadeh [1] in 1965 is the expansion
of the classical set theory and it expanded the basic definition of the classical or
crisp sets. So fuzzy mathematics is just a kind of mathematics developed in this
framework and fuzzy topology introduced by C.L Chang [2] in 1968 is the gener-
alization of ordinary topology in classical mathematics. Since the introduction of
fuzzy sets and fuzzy topological spaces, work started taking place at a good rate in
this field of mathematics and various types of fuzzy sets were introduced and stud-
ied by various researchers, Like S.S Benchalli and G.P.Siddapur introduced fuzzy
g* pre continuous maps|[3|, Hamid Reza Moradi and Anahid Kamali introduced
fuzzy strongly g* -closed sets and g**-closed sets in 2015 [4], And almost all the
mathematical, engineering, medicinal etc concepts have been redefined using fuzzy
theory and it has further deepened the understanding of basic set theory.
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In this paper fuzzy gp*- closed sets is defined and its relation with other sets like
fuzzy closed sets, fuzzy g*-closed sets and g*p-closed sets are found and also some
other properties of these sets are investigated. Moreover fuzzy gp*-open sets are
introduced and their relation with other fuzzy sets are found. Fuzzy gp*- continu-
ous function and fuzzy gp*-irresolute functions are defined and their relation with
other fuzzy functions are investigated, also investigated some other properties of
these functions. Fuzzy gp*-connectedness and fuzzy T*gp-spaces in fuzzy topolog-
ical spaces are also introduced and some of their properties are investigated.

2. Preliminaries

Definition 2.1. [1]| Let X be a space of objects, with a generic element of X denoted
by x. Then a fuzzy set A in X is a set of ordered pairs {(z, f(x))} where fa(x) is
called the membership function which associates each point in X a real number in
the interval [0,1].

Definition 2.2. [2] A family 7 of fuzzy sets of X is called fuzzy topology on X
if 0 and 1 belong to T and 7 is closed with respect to arbitrary union and finite
intersection. The elements of T are called fuzzy open sets and there complements
are called fuzzy closed sets. The space X with topology T s called fuzzy topological
space denoted by (X,T).

Definition 2.3. [2| For a fuzzy set a of X, the closure cl o and the interior int
a of a are defined respectively, as

cda=Np:p>aoa,1—pé€rthand

inta =V{p:p<a,uer}

Definition 2.4. [5] A subset A of X is called fuzzy pre-closed (in short pcl) set if
A < cl(int(A)) and fuzzy pre-open set if A < int(cl(A)).

Definition 2.5. [4] Let (X, T) be a fuzzy topological space. A fuzzy set A of (X, T)
is called fuzzy strongly g*-closed if cl(int(A)) < H, whenever A < H and H is
fuzzy generalized -open in X.

Definition 2.6. [6] A fuzzy set A of a fuzzy topological space (X, T) is called a
fuzzy generalized star closed or g x —closed if cl(A) < O whenever A < O and O
18 fuzzy generalized-open or g-open.

Definition 2.7. [7] A fuzzy set A of a fuzzy topological space (X, T) is called fuzzy
generalized closed or g-closed if cl(A) < G whenever A < G and G € 7 and is
called fuzzy generalized open or g-open if 1 — A is fuzzy g-closed.

Definition 2.8. [8] A fuzzy set A of a fuzzy topological space (X, T) is called fuzzy
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generalized pre -closed or gp-closed set if pcl(A) < U whenever A < U and U is a
fuzzy open set in (X, 7). And complement of a Fuzzy gp-closed set is called fuzzy
generalized pre-open or gp-open set.

Definition 2.9. [3] A fuzzy set A of a fuzzy topological space (X, T) is called a
fuzzy generalized star pre-closed (briefly g*p-closed) set if pcl(A) < U whenever
A<U and U is fuzzy g-open set in (X, 7).

Definition 2.10. [2] A function f from a fts (X,7) to a fts (Y,6) is fuzzy-
continuous iff the inverse of each d-open fuzzy set in Y is T-open fuzzy set in
X.

Definition 2.11. [9] A function f from a fts (X,7) to a fts (Y,9) is fuzzy ¢g*
continuous if f~H(A) is fuzzy g*-closed in X for every fuzzy closed set of Y.

Definition 2.12. [10] A fuzzy topological space X is said to be fuzzy connected if
it has no proper fuzzy clopen set, (A fuzzy set X in X is proper if X # 0 and \ #
1, clopen means closed-open).

Definition 2.13. [9] A fuzzy topological space (X, ) is called a fuzzy T}, space if
every g*-closed fuzzy set is a closed fuzzy set.

Definition 2.14. [3] A fts (X, 7) is called a fuzzy-T) - space if every g*p closed
fuzzy set is closed fuzzy set.

Theorem 1. Fvery fuzzy generalized-closed set is fuzzy generalized pre-closed set.
Proof. Let 6 is a fuzzy g-closed set and p be a fuzzy open set such that 8 < pu,
then ¢l(0) < u and hence pcl(6) < cl(0) < p implies 0 is a fuzzy gp-closed set.

Theorem 2. All fuzzy generalized open sets are fuzzy generalized pre-open sets.
Proof. Consider 6 is a fuzzy generalized open set. Then (1- ) is a fuzzy gener-
alized closed set. Now by Theorem 1, (1-6) is a fuzzy generalized pre closed set
implying that 6 is a fuzzy generalized pre-open set.

3. Fuzzy gp*-closed sets

Definition 3.1. A fuzzy set X of a fuzzy topological space (fts) (Y, T) is called fuzzy
generalized pre star closed (briefly fuzzy gp*-closed) if cl(A) < p whenever A < pu
and p s fuzzy generalized pre-open in 'Y .

Example 3.2. Let Y = {y} and 7 = {Oy, y2/3,¥3/4, Ly’ }. Then in this fuzzy topo-
logical space (Y, 7), fuzzy sets Oy, A = y1/3, B = 31,4 and 1y satisfy the condition
cl(N) < p whenever A\ < p and p is fuzzy generalized pre-open in Y. Implying Oy,
A =113, B =114 and 1y are fuzzy gp*-closed sets in (Y, 7).
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Theorem 3.3. All fuzzy closed sets are fuzzy gp* closed sets.

Proof. Consider 6 is a fuzzy closed set in fuzzy topological space Y and u is a
fuzzy generalized pre- open set in Y containing ¢l(f) < 6 = p. Implying that fis a
fuzzy gp*-closed set in Y.

Theorem 3.4. All fuzzy generalized star pre-closed sets are fuzzy gp* closed.
Proof. Consider ¢ is any arbitrary fuzzy generalized star pre closed set in fuzzy
topological space (Y, 7). Let o is contained in fuzzy generalized open p. Now as
every fuzzy generalized open set is fuzzy generalized pre-open set (By Theorem 2)
so pcl(o) < cl(o) < p. Implying cl(o) < p, Which in turn implies that o is fuzzy
gp*-closed.

Theorem 3.5. All fuzzy g*-closed sets are fuzzy gp*-closed sets.

Proof. Consider 0 is a fuzzy g*-closed set in fuzzy topological space (Y, 7) and p
is any generalized-open set that contains 6. Now as every fuzzy generalized-open
set is fuzzy generalized pre-open set (By theorem 2), so cl(0) < p, where p is a
fuzzy generalized pre-open set in Y. Implying that 6 is fuzzy gp*-closed set.

Remark 3.6. The following diagram depicts the relation of fuzzy gp*-closed set
and other fuzzy sets discussed above.

Fuzzy closed sets ‘Fuzzy g*-closed sets

‘ Fuzzy gp*-closed sets ‘

‘ Fuzzy g*p-closed sets ‘

Theorem 3.7. The Union of two fuzzy gp*-closed sets A and V in fuzzy topological
space (Y, 1) is also fuzzy gp*-closed set in Y.

Proof. Suppose that A and V are two fuzzy gp*-closed sets in Y. Let u be a
fuzzy generalized pre-open set that contains both A and V. so ¢l(A) < p and
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c(v) < pu. Now, as A < pand V < p implying that A UV < p which inturn
implies cl(AU V) = cl(A)Ucl(V) < u, which gives the required result i.e AUV is
also a fuzzy gp*-closed set in Y.

Theorem 3.8. If A and V are two fuzzy gp*-closed sets in fuzzy topological space
(Y, 7) then ANV is also fuzzy gp*-closed in'Y .

Proof. Suppose A&V are two fuzzy gp*-closed sets in fuzzy topological space Y,
such that A < p and V < pu, where p is a fuzzy generalized pre-open set in Y.
Then cl(A) < p, cl(V) < p therefore cl(A N V) < u, where p is fuzzy generalized
pre-open set in Y. Which implies that A NV is also fuzzy gp*-closed set in Y.

Theorem 3.9. Suppose that v is fuzzy gp*-closed set in fuzzy topological space A
such that p <V < A, then i is also fuzzy gp*-closed relative to V.

Proof. Given that u < v < A, where u is fuzzy gp*-closed in A. Now suppose
that © < v N6, where 0 is fuzzy generalized pre-open in A. As pu is fuzzy gp*-
closed, 1 < 6 implies cl(u) < 6. Which implies that V Nel(p) < VN0 ie pis also
fuzzy gp*-closed relative to V.

4. Fuzzy gp*-open sets

Definition 4.1. Suppose a fuzzy set X\ is fuzzy generalized pre star closed set in
fts (Y, 7), Then its complement i,e 1 — X\ is called fuzzy generalized pre star open

(briefly fuzzy gp*-open) in (Y, 7).
Example 4.2. In the fuzzy topological space (Y, 7) defined in example 3.2, the
complements of the fuzzy gp*-closed sets Oy, A = yi/3, B = y1/4 and 1y are re-
spectively as 1y, C=yy/3, D=y3/4 and Oy. Implying 1y, C=ys/3, D=y3/4 and Oy
are fuzzy gp*-open sets in (Y, 7).

Theorem 4.3. All fuzzy open sets are fuzzy gp*-open.

Proof. Consider p is a fuzzy open set in fuzzy topological space (Y, 7), implies
1— v is a fuzzy closed set. Now from the theorem 3.3 all fuzzy closed sets are fuzzy
gp*-closed sets. So 1 — p is also a fuzzy gp*-closed set implying that u is fuzzy
gp*-open in fuzzy topological space (Y, 7).

Theorem 4.4. The intersection of two fuzzy gp*-open sets A and V in fuzzy topo-
logical space (Y, T) is also a fuzzy gp*-open set in (Y, T).

Proof. SupposeA&V are two fuzzy gp*-open sets in fuzzy topological space (Y, 7).
Which implies 1 — A and 1 — V are fuzzy gp*-closed in (Y,7). Now accord-
ing to theorem 3.9 (1 — A) U (1 — V)is also a fuzzy gp*-closed in (Y,7). So
(1-A)uU(l1-v)=(1-(ANV))is fuzzy gp*-closed in (Y, 7). Implying that
ANV is also a fuzzy gp*-open set in (Y, 7).
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5. Fuzzy gp*-continuous mappings

Definition 5.1. If G and H are two fuzzy topological spaces then a mapping
g : G — H is called fuzzy gp*-continuous mapping if g=1(¢) is fuzzy gp*-open set
i G, for every fuzzy open ¢ of H.

Definition 5.2. If G and H are two fuzzy topological spaces then a mapping
g : G — H is called fuzzy gp*-irresolute mapping if g~ (¢) is fuzzy gp*-closed set
m G, for every fuzzy gp*-closed set ¢ of H.

Theorem 5.3. A function g : G — H s fuzzy gp*-continuous if & only if the
wmverse image of each fuzzy closed set in H is fuzzy gp*-closed set in G.

Proof. Suppose that G and H are two fuzzy topological spaces and g : G — H
be a fuzzy gp*- continuous function. Let « be a fuzzy closed set in H implies
that 1 — « is a fuzzy open set in H. Now as g is a fuzzy gp*-continuous function
implies g7 }(1 —a) =1 — g '(a) is a fuzzy gp*-open set in G, implying g~ '(a) is
a fuzzy gp*-closed set in GG. Conversely let’s suppose that « is a fuzzy closed set
in H and g~!(«a) is fuzzy gp*-closed in G. Now 1 — « is a fuzzy open set in H and
g1 —a)=1-ga) is fuzzy gp*-open, which was the required proof.

Theorem 5.4. All fuzzy continuous functions are fuzzy gp*-continuous.

Proof. Suppose that G and H are two fuzzy topological spaces and g : G — H
be a fuzzy continuous function. Now , suppose « is a fuzzy open set in H & as g
is fuzzy continuous function implies ¢g~!(«) is fuzzy open set in G. So by theorem
4.3 g~ Y(«) is fuzzy gp*-open set in G, implying that g : G — H is a fuzzy gp*-
continuous function.

Theorem 5.5. All fuzzy g"-continuous functions are fuzzy gp*-continuous func-
tion.

Proof. Let G and H are two fuzzy topological spaces and g : G — H be a fuzzy g*-
continuous function. Now, suppose « is a fuzzy closed set in H & as g is fuzzy g*-
continuous function implies g~ '(«a) is fuzzy generalized star-closed set in G. Now
as by theorem 3.4 All fuzzy generalized star pre-closed sets are fuzzy gp* closed im-
plying that ¢~!(«) is also a fuzzy gp*-closed set, means ¢ is fuzzy gp*-continuous.

Theorem 5.6. If G, H and I are fuzzy topological spaces and j : G — H &
k. H — I are such that k is a fuzzy gp*-continuous function and j is fuzzy gp*-
wrresolute, then koj is a fuzzy gp* continuous function.

Proof. Suppose « is a fuzzy closed set in I. Also (koj) '(a) = j7' (k7' (a)) . Now
as k is fuzzy gp*-continuous, so by its definition A = k~!(«) is a fuzzy gp*-closed
set in H. Now as j is a fuzzy gp*-irresolute implies j71(A4) = ;7 (k7! («)) is also
fuzzy gp*-closed set in GG, implying that koj is a fuzzy gp* continuous function.
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Theorem 5.7. Suppose j : G — H € k: H — I are such that k is a fuzzy con-
tinuous function and j is fuzzy gp*-continuous, then koj is a fuzzy gp™* continuous
function.

Proof. Suppose a < I be any fuzzy closed set in I. Also (koj) ! (a) = ;7 k™ (a))
. Now as k is a fuzzy continuous function, implies A = k~1(«) is a fuzzy closed set in
H. Now j is a fuzzy gp*-continuous function, implying that j~'(A4) = ;7 (k7! («))
is a fuzzy gp*-closed set in G. Which shows that koj is a fuzzy gp*-continuous
function by theorem 5.3.

Theorem 5.8. Suppose j : G — H &k : H — I are fuzzy gp*-irresolute functions,
then koj is a also fuzzy gp*-irresolute function.

Proof. Let a < I be any fuzzy gp*- closed set in I. Also (koj) ! (a) = ;7 k™ (a))
. Now as k is a fuzzy gp*-irresolute function, implies A = k~(«) is a fuzzy gp*-
closed set in H. Now as j is also fuzzy gp*-irresolute, implying that j7'(A4) =
J 1 (k7)) is a fuzzy gp*-closed set in G. So by definition 5.2 koj is also a fuzzy
gp*-irresolute function.

6. Fuzzy gp*-connectedness

Definition 6.1. A fuzzy gp*-connected space is a fuzzy topological space (Y, T) that
cannot be written as the union of two non-empty disjoint fuzzy gp*-open sets in

(Y, 7).

Theorem 6.2. If (Y, T) is a fts, then the following are equivalent;

(a) Y is a fuzzy gp*-connected space.

(b) The only subsets in Y which are both fuzzy gp*-open and fuzzy gp*-closed are
Oy & 1y.

Proof. (a) = (b): Let Y is a fuzzy gp*-connected space. Now, suppose a < Y is
both fuzzy gp*-open & fuzzy gp*-closed. Then 1 — « is also both fuzzy gp*-closed
& fuzzy gp*-open. So Y = aV (1 — «) is the union of two disjoint non empty fuzzy
gp*-open sets, which contradicts (a). Implying a = Oy or o = 1,,.

(b) = (a): Suppose a & ( are non-empty disjoint fuzzy gp*-open sets such that
Y=aVp.Nowa=1-08& [ =1-«a are fuzzy gp*-open sets, which in turn
implies « & 3 are also fuzzy gp*-closed sets. Now by (b) a = 0y or a = 1y implies
Y is fuzzy gp*-connected.

Theorem 6.3. All fuzzy gp*-connected spaces are fuzzy connected spaces.

Proof. Let Y is a fuzzy gp*-connected space and suppose that Y is not a con-
nected space. Then by Definition 2.12 there exists a non-empty proper fuzzy clopen
subset A in Y. Now as every fuzzy closed set is fuzzy gp*-closed implying that A
is also a non-empty proper subset of Y, which is both fuzzy gp*-closed and fuzzy
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gp*-open in Y. So by Theorem 6.2 Y is not a fuzzy gp*-connected space, which is
a contradiction implying that Y is a connected space.

Theorem 6.4. Suppose g : G — H is an onto fuzzy gp*-continuous map and G s
a fuzzy gp*-connected space then H is also a fuzzy connected space.

Proof. Let’s suppose that H is not a fuzzy connected space and suppose that
H = MYV N, where M & N are disjoint fuzzy non-empty open sets in H. Since
g is fuzzy gp*-continuous implies ¢~ (M) & g~ (N) are non-empty disjoint fuzzy
gp*-open sets in G and as g is onto also implies G = g~ *(M) V g '(N), which
contradicts fuzzy gp*-connectedness of G. So H is a fuzzy connected space.

Theorem 6.5. Suppose g : G — H is an onto fuzzy gp*-irresolute map and G s
fuzzy gp*-connected space then H is also a fuzzy gp*- connected space.

Proof. Let’s suppose that H is not a fuzzy gp*-connected space and let’s suppose
that H = M V N where M & N are non-empty fuzzy disjoint gp*-open sets in H.
Now, as g is fuzzy gp*-irresolute function implies g~ (M) & ¢g~'(N) are non-empty
disjoint fuzzy gp*-open sets in G and as g is onto also implies G = g~ (M)Vg~(N),
which contradicts fuzzy gp*-connectedness of G. Implies H is a fuzzy connected
space.

7. Fuzzy T*gp-Space

Definition 7.1. A fts (Y, ) is called a fuzzy T*gp-space if every fuzzy gp*-closed
set in (Y, T) is a fuzzy closed set in (Y, T).

Theorem 7.2. Fvery fuzzy T gp-space is fuzzy T*p-space.

Proof. Let Y be a fuzzy T*gp-space. Let A be a fuzzy g*p-closed set in Y. Now
by Theorem 3.4 as every fuzzy g*p-closed set is fuzzy gp*-closed set, implies A is
fuzzy gp*-closed set in Y. Since Y is a fuzzy T*gp-space, A is a fuzzy closed set in
Y. Hence Y is a fuzzy T*p-space.

Theorem 7.3. Every fuzzy T*gp-space is fuzzy T /2 Space.

Proof. Let Y be a fuzzy T*gp-space. Let A be a fuzzy g*-closed set in Y. Now by
Theorem 3.6, A is fuzzy gp*-closed set in Y. Since Y is a fuzzy-T*gp-space implies
A is fuzzy closed set in Y. Hence Y is a T} /o Space.

Theorem 7.4. If G is a fuzzy T gp-space then G is fuzzy connected iff it is fuzzy
gp*-connected.

Proof. Let G is a fuzzy connected space & suppose that G is not fuzzy gp*-
connected. Then there exists two proper fuzzy gp*-open sets M & N of G such
that G = MV N & M NN = ¢, which implies M =1—- N & N =1— M are
also fuzzy gp*-closed sets and G is a fuzzy T*gp-space implies M & N are fuzzy
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closed sets (by Definition 7.1). So M =1—- N & N =1— M implies M & N are
fuzzy open sets & G = MV N , M N N = ¢ contradicts the fuzzy connectedness
of G. So G is a fuzzy gp*-connected space. Conversely suppose that G is fuzzy
gp*-connected and let G is not fuzzy connected implies there exists two proper
fuzzy open subsets M & N of G such that G = M VN & M AN = ¢ . Now,
as every fuzzy open set is fuzzy gp*-open, so G = M V N contradicts the fuzzy
gp*-connectedness of G. Implies G is a fuzzy connected space.
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