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Abstract: The vertex set L ⊆ V (G) is a liar’s dominating set if and only if it sat-
isfies the following two conditions: (i) L double dominates every v ∈ V (G) and (ii)
for every pair u, v of distinct vertices, |(N [u]∪N [v])∩L| ≥ 3. The liar’s domination
number for a graph G is denoted by γL(G) which is the minimum cardinality of
the liar’s dominating set L. Liar’s domination was introduced by P. J. Slater. In a
liar’s dominating set it is assumed that any one protective device in its neighbor-
hood of the intruder vertex might misreport the location of an intruder vertex in
its closed neighborhood. In this paper, we determine the liar’s domination set for
Sierpiński-like graphs.
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1. Introduction
Domination in graphs is a widely researched topic because of its applications in

many fields. There are different variations of domination existing in literature that
motivates one to explore its applications in any graph or network. In the year 2009
Slater introduced liar’s domination. This concept was introduced in such a way
that a network is modeled as a graph and all its vertices are the possible locations
for the intruder to enter and a dominating set as a set of protection devices placed
at a vertex v so that the intruder and its exact location can be detected in its closed
neighbourhood even if a protection device is allowed to lie or becomes faulty.
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Consider the graph G = (V,E), for u ∈ V (G) we denote the open and closed
neighbourhoods of v as N(v) = {u|uv ∈ E(G)} and N [v] = N(v)∪{v} respectively.
A vertex u is said to be dominated by v if u ∈ N [v]. A set D ⊆ V is a dominating
set if each vertex v ∈ V is dominated by a vertex in D or |N [v] ∩ D| ≥ 1 for all
v ∈ V . A set D ⊆ V is a double dominating set if each vertex v ∈ V is dominated
by atleast two vertices in D or |N [v] ∩ D| ≥ 2 for all v ∈ V . A set D ⊆ V is a
k-tuple dominating set if each vertex v ∈ V is dominated by atleast k vertices in D
or |N [v] ∩D| ≥ k for all v ∈ V . P. J. Slater introduced liar’s domination with the
following characterization: A set L ∈ V (G) is a liar’s dominating set if and only
if it satisfies these two conditions (i) |N [v] ∩ L| ≥ 2 and (ii) for any two distinct
vertices u, v, |(N [u] ∪N [v]) ∩ L| ≥ 3 [9].

Slater [9] has showed that the liar’s dominating set problem is NP-hard for
general graphs and has specified a lower bound for trees. Roden and Slater [8]
proved that the problem is NP-hard even for bipartite graphs. Panda and Paul
[5,6] have proved that the problem is NP-hard for split graphs and chordal graphs
and later they suggested a linear time algorithm for proper interval graphs. Liar
dominating set for Circulant networks was given by Paul Manuel [4]. B. S. Panda
et al. [7] studied the problem for bounded degree graphs and p-claw free graphs.
Alimadadi et al. [1] have given the characterization of graphs and trees such that
the liar’s domination number is | V | and | V | −1 respectively. In this paper we
determine the liar’s domination number for Sierpiński cycle graphs and Sierpiński
complete graphs.

2. Sierpiński Graphs
Consider the Sierpiński graph S(n,G) to be a finite undirected graph with the

set of vertices {1, 2, . . . , k} where k is an integer, with vertex set {1, 2, . . . , k}n and
edge set {u, v} is defined if and only if there exists an h ∈ {1, 2, . . . , n} such that:

� ut = vt for t = 1, 2, . . . , h− 1;

� uh 6= vh;

� ut = vh and vt = uh for t = h+ 1, . . . , n.

Here vertex (u1, u2, ..., un) is represented as (u1u2 . . . un) and in Figures as u1u2 . . . un.
The vertices (1. . . 1), (2. . . 2),. . . ,(k. . . k) are called extreme vertices of S(n,G). Let
n ≥ 2, for i ∈ {1, . . . , k} Si(n − 1, G) be the subgraph of S(n,G) induced by the
vertices of the form (iv2 . . . vn). Note that Si(n−1, G) is isomorphic to S(n−1, G)
[2].

Remark 2.1. S(1, G) is isomorphic to the graph G and we can construct S(n +
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1, G) by copying |V (G)| times S(n,G)and adding an edge between the vertices ijj...j
and jii...i which is called as the linking edge in S(n+ 1, G) [2].

Sierpiński graphs have played an important role in the growing literature of
research. The variants of these graphs are numerous and have applications in dif-
ferent fields of mathematics. Klavžar and Milutinović [3] proved that the Sierpiński
graphs S(n,K3) are isomorphic to the Tower of Hanoi graphs on 3 pegs. Many au-
thors have discussed, investigated and given many results regarding the chromatic
number, vertex cover number, clique number, domination number and many more.

3. Sierpiński Cycle Graphs
In this section we consider G to be isomorphic to C4.

Theorem 3.1. [9] For a cycle Cn we have γL(Cn) = d3n
4
e.

By the above result for n = 1, the result is obvious.
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Figure 1: Sierpiński Cycle Graphs S(1, C4), S(2, C4), S(3, C4)

Theorem 3.2. Let G be a Sierpiński cycle graph S(n,C4), n ≥ 2 then γLS(n,C4) =
4[γLS(n− 1, C4)]− 4.
Proof. Let us prove the result by the method of induction. For n = 2, the vertices
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are labeled as shown in Figure 1(b). Since the corner vertices ii, i = 1, 2, 3, 4
and its diagonally opposite vertices are of degree two, among (i1, i2, i3, i4); i =
1, 2, 3, 4 any three of the vertices should be in liar’s dominating set. Therefore
L = {11, 12, 14, 21, 22, 23, 32, 33, 34, 41, 43, 44} is a minimum liar’s dominating set.
For n = 3, we know that S(3, C4) is constructed from 4 copies of S(2, C4) namely
Si(2, C4), i = 1, 2, 3, 4. We can obtain the liar’s dominating set for Si(2, C4) from
S(2, C4). By construction, the extreme vertex (i i + 1 i + 1) of Si(2, C4) is
joined by an edge with the extreme vertex (i + 1 i i), i = 1, 2, 3, 4(i mod 4)
and in S(2, C4) all the extreme vertices are in L. In S(3, C4) we can either have
(i i+ 1 i+ 1) or (i+ 1 i i). Without loss of generality suppose (i i+ 1 i+
1) ∈ L and (i + 1 i i) /∈ L, then also the closed neighbourhood of the vertices
(i+ 1 i i) and its diagonally opposite vertex have atleast 3 vertices in L. Thus
γLS(3, C4) = 4[γLS(2, C4)]− 4. Let us assume that the result is true for S(n,C4),
n < k. Let n = k. Since S(k, C4) is obtained from 4 copies of S(k−1, C4) by joining
the edge (i i+1 i+1 . . . i+1) with (i+1 i i . . . i), i = 1, 2, 3, 4(i mod 4). Also
since minimum liar’s dominating set of S(k−1, C4) includes all the corner vertices,
by induction hypothesis in a similar manner γLS(k, C4) = 4[γLS(k − 1, C4)]− 4.
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Figure 2: Sierpiński Cycle Graph S ′(2, C4)

The graph S ′(2, C4) shown in Figure 2 is obtained by joining the inner vertices
13, 31, 24, 42 of S(2, C4) with edges called cross edges namely (13, 31), (24, 42).
Similarly S ′(3, C4) is obtained by taking four copies of S ′(2, C4) along with linking
edges in S(3, C4) and also the vertices (133, 311) and (244, 422) are joined with
edges. In general S ′(n,C4) is obtained in a similar manner from S ′(n−1, C4) which
include linking edges and the cross edges (244...4, 422...2) and (133...3, 311...1).

Theorem 3.3. Let G be a Sierpiński cycle graph S ′(2, C4) then γLS
′(2, C4) = 10.

Proof. In view of Theorem 3.2, γLS(2, C4) = 12 where L should have atleast
three vertices from each Si(1, C4) of S(2, C4) and since d(i i + 2) = 3 for i =
1, 2, 3, 4(i mod 4) let us take L = {12, 14, 21, 23, 32, 34, 41, 43, 13, 31, 24, 42} as a
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liar’s dominating set. In order to get minimum, either (24 and 31) or (13 and 42)
can be removed from L. Without loss of generality let (13 and 42) ∈ L. Then also
|(N [31] ∪N [33]) ∩ L| = 3 and |(N [24] ∪N [22]) ∩ L| = 3. Thus γLS

′(2, C4) = 10.
Note: There are number of minimum liar’s dominating sets for S ′(2, C4). In
which by symmetry the minimum liar’s dominating set that includes all its extreme
vertices is {11, 12, 13, 22, 23, 32, 33, 42, 43, 44}.
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Figure 3: S ′
H(2, C4)

α-graph shown in Figure 3 is obtained from S ′(2, C4) by attaching pendant edge
at each of the extreme vertices namely ii, i = 1, 2, 3, 4 mod 4. The end vertex
(pendant vertex) in each of the pendant edge are labeled as p1, p2, p3 and p4.

Remark 3.4. We prove that the minimum liar’s dominating set of S ′(2, C4) in
α-graph is same as that of S ′(2, C4). The only case for which we have to verify is
for the minimum liar’s dominating set which include the corner vertices (i.e) for
L = {11, 12, 13, 22, 23, 32, 33, 42, 43, 44}. Now we prove that instead of ii ∈ L we
cannot include pi ∈ L. If p1 ∈ L and 11 /∈ L then |(N [12] ∪N [13]) ∩ L| = 2. And
if p2 ∈ L and 22 /∈ L we have |N [21] ∩ L| = 1. Thus if any of the pi’s are included
then minimum liar’s dominating set whose cardinality is 10 cannot be obtained.
Theorem 3.5. Let G be a Sierpiński cycle graph S ′(n,C4) then γLS

′(n,C4) =
4[γLS

′(n− 1, C4)].
Proof. In view of Theorem 3.3, the result is true for n = 2. For n = 3, consider
S ′
1(2, C4) since S ′(3, C4) consists of 4 copies of S ′(2, C4) namely S ′

i(2, C4), i =
1, 2, 3, 4. The graph induced by 〈S ′

1(2, C4), 211, 311, 411〉 is an α \ p1-graph. In
view of Remark 3.4, the minimum liar’s dominating set for this α \ p1-graph lies in
S ′
1(2, C4). Similar cases are dealt for S ′

i(2, C4), i = 2, 3, 4. Therefore γLS
′(3, C4) =
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4[γLS
′(2, C4)]. Let us assume that the result is true for S ′(n,C4), n < k. Let n = k,

since S ′(k, C4) is constructed from 4 copies of S ′(k−1, C4) by induction hypothesis
we have γLS

′(k, C4) = 4[γLS
′(k − 1, C4)].
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Figure 4: Sierpiński Complete Graph S(2, K4)

4. Sierpiński Complete Graph

The Sierpiński complete graph S(2, K4) is formed by 4 copies of K4 by adding
linking edges (12, 21), (23, 32), (34, 43), (14, 41) between them. We observe that the
minimum liar’s dominating set of S(n,K4) is the same as that of the minimum
liar’s dominating set of S(n,C4). S(1, K4) ∼= K4 and by [8] γL(Kn) = 3. Consider
n = 2, each Si(1, C4) should have 3 vertices in L, otherwise |(N [11]∪N [13])∩L| < 3.
Similarly for the case Si(1, K4). Thus in view of Theorem 3.2 we have the following
result.

Theorem 4.1. Let G be a Sierpinski complete graph S(n,K4) then γLS(n,K4) =
4[γLS(n− 1, K4)]− 4.
Let S ′(n,K4) be obtained from 4 copies of S ′(n− 1, K4) together with the linking
edges and cross edges.
Theorem 4.2. Let G be a Sierpiński complete graph S ′(2, K4) then γLS

′(2, K4) =
9.
Proof. Since d(ii) = 3, L should have atleast two and atmost three vertices from
each S ′

i(1, K4), i = 1, 2, 3, 4. Thus 8 ≤ γLS
′(2, K4) ≤ 12. Now we prove that

γLS
′(2, K4) > 8. Suppose γLS

′(2, K4) = 8 then two vertices from S ′
1(1, K4) will be

in L. It can be either (11, 12) or (11, 13) or (11, 14) or (12, 13) or (12, 14) or (13,
14). In order to satisfy (ii) condition of minimum liar’s dominating set the adjacent
vertices of S ′

1(1, K4) should be in L namely 21, 31 and 41. Thus now |L| = 5.
Case 1: 11 /∈ L
Without loss of generality let us take 12, 13 ∈ L along with 21, 31, 41. Now we can
take exactly one vertex from each S ′

i(1, K4), i = 2, 3, 4. In S ′
2(1, K4) it can be either
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Figure 5: Bold vertices in each case represent the liar’s dominating set

22 or 23 or 24. Since 23 and 24 are adjacent vertices of S ′
3(1, K4) and S ′

4(1, K4)
respectively, let 23 ∈ L. Then 42 should be in L. Also because the adjacent vertex
of S ′

3(1, K4) should be in L, 43 ∈ L. Thus |L| > 8.
Case 2: 11 ∈ L
Without loss of generality let us take 11, 12 along with 21, 31, 41 in L. Again
either 22 or 23 or 24 ∈ L. Suppose 23 ∈ L then 32, 42 should be in L. Now each
S ′
i(1, K4) has exactly two vertices. If it is so then the adjacent vertices of S ′

i(1, K4)
should be in L. Thus 13 and 43 the adjacent vertices of S ′

3(1, K4) ∈ L. In this case
|L| = 10 > 8.
Hence γLS

′(2, K4) > 8 in both the cases. See Figure 5(a) in which γLS
′(2, K4) = 9.

Remark 4.3.

1. In view of case (2) in Theorem 4.2, we observe that if ii ∈ L then |L| ≥ 10.
If ii ∈ L and |N(ii) ∩ L| = 2 then in S ′

i(1, K4) all the adjacent vertices of
S ′
j(1, K4) does not belong to L. Also if ii ∈ L and |N(ii)∩L| = 1 in S ′

i(1, K4)
then all the adjacent vertices of S ′

j(1, K4) belong to L. Moreover in S ′(2, K4)
exactly two S ′

i(1, K4) contain three vertices and other two has two vertices in
L. Now let us consider the cases in which S ′(2, K4) has all corner vertices in
L, it can be either Figure 5(b) or 5(c).

2. Consider S ′(3, K4) which can be constructed from Figure 5(b) or 5(c) or both.
S ′(3, K4) obtained so consists of a path P4 in G[L] namely (111, 114, 141, 144)
or (111, 113, 131, 133) then we can remove a vertex which will be corner vertex
in S ′

i(2, K4) of S ′(3, K4) other than iii, i = 1, 2, 3, 4 since the adjacent vertex
of S ′

i(2, K4) namely the corner vertex of S ′
j(2, K4), j 6= i are in L. By doing

so, we can remove maximum of 4 vertices in S ′(3, K4) which is obtained by
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considering Figure 5(b) and 5(c) which is equal to obtaining minimum liar’s
dominating set through 5(a). Thus there are 36 vertices in S ′(3, K4) and
paths P4 in G[L] are reduced to P3.

In view of Remark 4.3 we have the following result.

Theorem 4.4. Let G be a Sierpiński complete graph S ′(n,K4), n ≥ 2 then
γLS

′(n,K4) = 4[γLS
′(n− 1, K4)].

Proof. Let us prove the result by the method of induction. Consider n = 3. In
view of Theorem 4.2, γLS

′(2, K4) = 9. Since S ′(3, K4) is made up of 4 copies of
S ′(2, K4), the minimum liar’s dominating set in each of S ′

i(2, K4) is same as that
of S ′(2, K4). Thus γLS

′(3, K4) = 4γLS
′(2, K4). Suppose in S ′

i(2, K4) the vertices
selected in liar’s dominating set are by Remark 4.3, (i.e) all the corner vertices are
in L then γLS

′(3, K4) = 4(10)−4 = 36. Since S ′(3, K4) consists of only P3 in G[L],
γLS

′(4, K4) = 4[γLS
′(3, K4)]. Let us assume that the result is true for n < k. Let

n = k. By induction hypothesis, γLS
′(n,K4) = 4[γLS

′(n− 1, K4)].

5. Conclusion
Liar’s domination is applied to protect a network even when one protection

device becomes faulty or is allowed to lie. This paper provides the liar’s domination
number for Sierpiński-cycle graphs S(n,C4), and S ′(n,C4) as well as Sierpiński-
complete graphs S(n,K4) and S ′(n,K4). The further work can be extended to
families of Sierpiński-graphs S(n,G) namely G isomorphic to other cycle, complete
graph, path, star graphs etc.
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