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abstract: In this paper we construct a q-deformed Hilbert space and define anni-
hilation and creation operators to generate deformed states. We show that these
states are useful to throw some insight in the theory of Quantum Optics.
1 Introduction:

Coherent states associated with various dynamical symmetry groups are im-
portant in many problems of quantum physics. Glauber’s coherent states[17] of
simple harmonic oscillator and coherent states of various Lie algebras[18], due to
Perelomov, are useful in the study of quantum optics. There are three basic ways
one can generate coherent states which refer to vectors in a finite or infinite di-
mensional Hilbert space. In the first approach, Glauber defined coherent states
as the right-hand eigenstates of the non-Hermitian boson annihilation operator of
the radiation field. In the second approach, the coherent states are generated from
vacuum by the action of the so called unitary displacement operator, that is, they
are displacement operator states. This is also known as the group theoretic ap-
proach to generate coherent states. In the third approach,the coherent states can
be defined as states that minimize Heisenberg uncertainty relation, or, simply as
minimum uncertainty states.

We adopt the first approach to generate coherent vectors of a backwardshift
acting on a deformed Hilbert space.This gives a generalisation of coherent states,
as an eigenstate of photon annihilation operator, which are studied in various
contexts of quantum optics.

To deal with the fluctuating fields we introduce a distribution for the complex
field amplitude in classical coherence theory. By integrating over the strength of
the field we then obtain the phase distribution. The description of the phase in
quantum mechanical terms has been influenced by the difficulty of ascribing an
operator to it in the quantum sense. To define a Hermitian phase operator in
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the quantum mechanical description of phase goes back to the work of Dirac [1],
who attempted a defination of a phase operator with the help of polar decompo-
sition of the annihilation operator in radiation field. But a polar decomposition
of the one-mode field complex amplitude operator does not give a unitary oper-
ator exponential of the phase. Thereafter, Susskind and Glogower[2], Carruthers
and Nieto[3], Pegg and Barnett[4], Shapiro and co-workers[5] have studied further
in this topic. Susskind and Glogower modified Dirac’s phase operator though it is
one-sided unitary operator. Nevertheless, their phase operator has been extensively
used in quantum optics. Shapiro and co-workers introduced phase measurement
statistics through quantum estimation theory[6]. Pegg and Barnett carried out a
polar decomposition of the annihilation operator in a truncated Hilbert space of
dimension s+ 1, and defined a Hermitian phase operator in this finite-dimensional
space. Now, given a state in the finite-dimensional Hilbert space one first computes
the expectation value with the restricted state to the s+ 1-dimensional space. It is
natural now to take the limit s to infinity and recover an Hermitian phase operator
on the full Hilbert space. However, in this limit the PB phase operator does not
converge to an Hermitian phase operator, but the distribution does converge to
the SG phase distribution. Thus it appears to be computationally advantageous
to describe the quantum-mechanical phase via a phase distribution rather than
through a phase operator. This view was manifested in the work of Shapiro and
co-workers. Agarwal and co-workers[7] adopted this point of view in investigating
the quantum-mechanical phase properties of the nonlinear optical phenomena.
2 Preliminaries and Notations

We consider the set

Hq = {f : f(z) =
∑

anz
nwhere

∑
[n]! |an| 2 <∞},

where [n] =
1− qn

1− q
, 0 < q < 1.

For f, g ∈ Hq, f(z) =
∞∑
n=0

anz
n, g(z) =

∞∑
n=0

bnz
n we define addition and

scalar multiplication as follows:

(f + g)(z) = f(z) + g(z) =
∞∑
n=0

(an + bn)zn (1)

and

(λ o f)(z) = λ o f(z) =
∞∑
n=0

λ anz
n. (2)
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It is easily seen that Hq forms a vector space with respect to usual point-
wise scalar multiplication and pointwise addition by (1) and (2). We observe that

eq(z) =
∞∑
n=0

zn

[n]!
belongs to Hq.

Now we define the inner product of two functions f(z) =
∑

anz
n and g(z) =∑

bnz
n belonging to Hq as

(f , g) =
∑

[n]! ān bn. (3)

Corresponding norm is given by

‖f‖ 2 = (f , f) =
∑

[n]! |an| 2 < ∞ .

With this norm derived from the inner product it can be shown that Hq is a
complete normed space.Hence Hq forms a Hilbert space.
3 Orthonormal Set

Proposition-1. The set { zn√
[n]!

, n = 0, 1, 2, 3 . . .} forms a complete orthonormal

set.

Proof. If fn =
zn√
[n]!

, n = 0, 1, 2, 3 . . . , then,

‖ fn ‖ = (fn , fn) 1/2 = 1.

and (fn , fm) = 0. Hence { fn } forms an orthonormal set.
Also it is complete,for if f(z) =

∑
anz

n ∈ Hq, then

(fn , f) = [n]! an.
1√
[n]!

=
√

[n]! an.

Hence ∑
| (fn , f) | 2 =

∑
[n]! | an | 2 = ‖ f ‖ 2.

By Parseval’s theorem, { fn } is complete.
4 Reproducing Kernel

Hq being a functional Hilbert space, the linear functional f → f(z) on Hq is
bounded for every z ∈ IC. Consequently, there exists, for each z ∈ IC, an element Kz

of Hq such that f(z) = (Kz , f ) for all f ∈ Hq. The function K(w, z) = Kz(w)
is called the kernel function or the reproducing kernel of Hq.
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Consider the Fourier expansion of Kz with respect to the orthonormal basis
{fn}:

Kz =
∑
n

( fn , Kz ) fn =
∑

f̄n(z) fn.

Hence

K(w, z) = Kz(w) = (Kw , Kz ) =
∑

fn(w) f̄n(z)

=
∑ wn√

[n]!
.
z̄n√
[n]!

=
∑ (z̄w)n

[n]!
= eq(z̄w)

Thus K(w, z) = eq (z̄w) is the reproducing kernel for Hq.
5 Eigenvectors
We consider the following actions on Hq:

Tfn =
√

[n] fn−1
T ∗fn =

√
[n+ 1] fn+1

(4)

T is the backward shift and its adjoint T ∗ is the forward shift operator on Hq.
5.1 Backwardshift

Now we shall find the solution of the following eigenvalue equation:

Tfα = α fα. (5)

fα(z) =
∞∑
n=0

an z
n =

∞∑
n=0

an
√

[n]! fn(z). (6)

or

fα =
∞∑
n=0

an
√

[n]! fn.

T fα =
∞∑
n=0

an
√

[n]!Tfn =
∞∑
n=1

an
√

[n]!
√

[n] fn−1

=
∞∑
n=0

an+1

√
[n+ 1]!

√
[n+ 1] fn.

(7)

α fα(z) = α
∞∑
n=0

an z
n = α

∞∑
n=0

an
√

[n]! fn(z). (8)
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or

α fα = α
∞∑
n=0

an
√

[n]! fn.

From (5), (6), (7) and (8) we observe that an satisfies the following difference
equation:

an+1

√
[n+ 1]

√
[n+ 1] = α an. (9)

That is,

an+1 =
α an

[n+ 1]
. (10)

Hence,

a1 =
α a0
[1]

, a2 =
α a1
[2]

=
α2 a0
[2]!

, a3 =
α a2
[3]

=
α3 a0
[3]!

, . . . .

Thus,

an =
αn a0
[n]!

.

Hence,

fα =
∑

an
√

[n]! fn = a0
∑ αn√

[n]!
fn.

We choose a0 so that fα is normalized:

1 = ( fα , fα ) =
∑

[n]! | an |2 =
∑

[n]!
| a0 |2 |α |2n

([n]!)2

= | a0 |2.
∑ (|α |2)n

[n]!
= | a0 |2 eq ( |α |2 ).

Thus, aside from a trivial phase

an = eq(|α|2)
−1

2 .
αn

[n]!
.

So, the eigenvector of T is

fα = eq(|α|2)
−1

2
∞∑
n=0

αn√
[n]!

fn. (11)
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We shall call fα a coherent vector in Hq.

5.2 Square of Backwardshift

Here we shall find the solution of the following eigenvalue equation:

T 2fα = α2fα. (12)

T 2fα = T
∞∑
n=0

an+1

√
[n+ 1]!

√
[n+ 1] fn

=
∞∑
n=1

an+1

√
[n+ 1]!

√
[n+ 1]

√
[n] fn−1

=
∞∑
n=0

an+2

√
[n+ 2]!

√
[n+ 2]

√
[n+ 1] fn.

(13)

α2 fα =
∞∑
n=0

α2 an
√

[n]! fn. (14)

From (12), (13) and (14) we see that an satisfies the following difference equa-
tion:

an+2

√
[n+ 2]!

√
[n+ 2]

√
[n+ 1] = α2 an

√
[n]!.

Thus,

an+2 =
α2 an

[n+ 2][n+ 1]
. (15)

Hence,

a2 =
α2 a0
[2]!

, a4 =
α2 a2
[4][3]

=
α4 a0
[4]!

, a6 =
α2 a4
[6][5]

=
α6 a0
[6]!

, . . . .

and

a3 =
α2 a1
[3][2]

=
α2 a1
[3]!

, a5 =
α2 a3
[5][4]

=
α4 a1
[5]!

. . . .

Thus,
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fα = a0 f0 + a1 f1 + a2.
√

[2]! f2 + a3.
√

[3]! f3 + . . .

= ( a0 f0 + a2
√

[2]! f2 + a4
√

[4]! f4 + . . . )

+ ( a1 f1 + a3
√

[3]! f3 + a5
√

[5]! f5 + . . . )

= a0 [ f0 +
α2√
[2]!

f2 +
α4√
[4]!

f4 + . . . ]

+ a1 [ f1 +
α2√
[3]!

f3 +
α4√
[5]!

f5 + . . . ]

= a0 [
gα + g−α

2N
] +

a1
α

[
gα − g−α

2N
]

= (
a0
2N

+
a1

2αN
) gα + (

a0
2N
− a1

2αN
) g−α

= K gα + K ′ g−α

where gα and g−α are normalized coherent vectors. Also we have taken K =

a0
2N

+
a1

2αN
and K ′ =

a0
2N
− a1

2αN
with N = eq(|α|2)

−1

2 .

We choose a0 and a1 so that fα is normalized:

1 = (fα, fα) = |K|2 + |K ′|2 + eq(−|α|2)eq(|α|2)−1[2ReKK̄ ′]

where we have used the facts

(gα, gα) = 1
(g−α, g−α) = 1

(gα, g−α) = eq(−|α|2)eq(|α|2)−1

6 Hilbert Space Properties of Coherent Vectors
Coherent vectors are not orthogonal, for

(fα, fα′) = eq(|α|2)
−1

2 .eq(|α
′|2)
−1

2 .
∞∑
n=0

[n]!
ᾱn

[n]!

α′n

[n]!

= eq(|α|2)
−1

2 .eq(|α
′|2)
−1

2 .eq(ᾱα
′).

(16)

Nevertheless, the coherent vectors are complete, in fact, overcomplete -they
form a resolution of the identity [21]

I =
1

2π

∫
α∈IC

dµ(α)|fα >< fα|. (17)
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where

dµ(α) = eq(|α|2)eq(−|α|2)dq|α|2dθ (18)

where α = reiθ.
To prove this we define the operator

|fα >< fα| : Hq → Hq (19)

by

|fα >< fα|f = (fα, f)fα (20)

with f(z) =
∞∑
0

bnz
n. Now,

(fα, f) = eq(|α|2)
−1

2
∞∑
n=0

[n]!
ᾱn

[n]!
bn.

Then,

(fα, f)fα = eq(|α|2)−1
∞∑

m,n=0

αm√
[m]!

ᾱnbnfm.

Hence,

1

2π

∫
α∈IC

dµ(α)|fα >< fα|f =
∞∑

m,n=0

fm√
[m]!

bn
1

2π

∫ ∞
0

dqr
2.e−r

2

q rm+n

×
∫ 2π

0
dθ.ei(m−n)θ

=
∞∑
n=0

fn√
[n]!

bn

∫ ∞
0

dqr
2.e−r

2

q .r2n

=
∞∑
n=0

fn√
[n]!

bn

∫ ∞
0

dqx.e
−x
q .xn

=
∞∑
n=0

√
[n]!bnfn

= f.

(21)

Where we have taken x = r2 and utilized the fact
∫∞
0
dqx.e

−x
q .xn = [n]! [21].

7 Phase Operator
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Before going to define the phase operator we observe that

TT ∗ = [N + 1], T ∗T = [N ] (22)

where the operator N is such that

Nfn = nfn. (23)

Also we can verify that

NT − TN = −T,NT ∗ − T ∗N = T ∗ (24)

and
TT ∗ − T ∗T = qN . (25)

We can also show that qN commutes with both T ∗T and TT ∗.
Now, analogous to the idea of Carruthers and Nieto [3], we initially proposed

the phase operator to be
P = (qN + T ∗T )−1/2T (26)

where N is given by (23).
Now because of the relation

qn + [n] = [n+ 1] (27)

our phase operator(26) does not produce anything new but the phase distribution
produced by Susskind-Glogower phase operator.

To circumvent this situation we propose our phase operator to be

P = (qN+1 + T ∗T )−1/2T (28)

where N is given by (23).
The operator P (28) is not unitary but is one-sided unitary as we can easily

verify
PP ∗ = I, P ∗P 6= I. (29)

8 Phase Distribution
In this section we describe the phase distribution in the deformed Hilbert space.

To do this we introduce the phase vector and obtain its distributions in details.
8.1 Phase Vector

To obtain the phase vector we consider first the Susskind-Glogower type phase
operator P = (qN+1 + T ∗T )−1/2T as discussed above(28).
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Now the phase vector is obtained by solving the eigenvalue equation

Pfβ = βfβ (30)

where fβ(z) =
∞∑
n=0

an z
n =

∞∑
n=0

an
√

[n]! fn(z).That is,

fβ =
∞∑
n=0

an
√

[n]! fn. (31)

Then

Pfβ =
∞∑
n=0

an
√

[n]! (qN+1 + T ∗T )−1/2Tfn

=
∞∑
n=1

an
√

[n]! (qN+1 + T ∗T )−1/2
√

[n]fn−1

=
∞∑
n=1

an
√

[n]!
√

[n](qn + [n− 1])−1/2fn−1

=
∞∑
n=0

an+1

√
[n+ 1]!

√
[n+ 1](qn+1 + [n])−1/2fn

(32)

and

βfβ = β
∞∑
n=0

an
√

[n]!fn. (33)

From (30), (31), (32) and (33) we observe that an satisfies the following differ-
ence equation:

an+1

√
[n+ 1]!

√
[n+ 1](qn+1 + [n])−1/2 = βan

√
[n]!. (34)

That is,

an+1 =
βan(qn+1 + [n])1/2

[n+ 1]
. (35)

Hence,

a1 =
β(q + [0])1/2a0

[1]
.

a2 =
βa1(q

2 + [1])1/2

[2]
=

β2a0
√

(q + [0])(q2 + [1])

[2]!
.

a3 =
βa2(q

3 + [2])1/2

[3]
=

β3a0
√

(q + [0])(q2 + [1])(q3 + [2])

[3]!
.
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and so on. Thus,

an =
βna0

√
(q + [0])(q2 + [1])(q3 + [2]) . . . (qn + [n− 1])

[n]!
.

Hence,

fβ =
∞∑
n=0

an
√

[n]!fn

= a0

∞∑
n=0

βn

√
(q + [0])(q2 + [1])(q3 + [2]) . . . (qn + [n− 1])

[n]!
fn.

where β = |β|eiθ is a complex number. These vectors are normalizable in a strict
sense only for |β| < 1.

Now, if we take a0 = 1 and |β| = 1 we have

fβ =
∞∑
n=0

einθ

√
(q + [0])(q2 + [1])(q3 + [2]) . . . (qn + [n− 1])

[n]!
fn. (36)

Henceforth, we shall denote this vector as

fθ =
∞∑
n=0

einθ

√
(q + [0])(q2 + [1])(q3 + [2]) . . . (qn + [n− 1])

[n]!
fn, (37)

0 ≤ θ ≤ 2π and call fθ a phase vector in Hq.
8.2 Completeness of Phase Vectors

The phase vectors fθ are neither normalizable nor orthogonal. The completeness
relation

I =
1

2π

∫
X

∫ 2π

0

dν(x, θ)|fθ >< fθ| (38)

where
dν(x, θ) = dµ(x)dθ (39)

may be proved as follows:
Here we consider the set X consisting of the points x = 0, 1, 2, . . . and µ(x) is

the measure on X which equals

µn ≡
[n]!

(q + [0])(q2 + [1]) . . . (qn + [n− 1])
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at the point x = n and θ is the Lebesgue measure on the circle.

Define the operator

|fθ >< fθ| : Hq → Hq (40)

by

|fθ >< fθ|f = (fθ, f)fθ (41)

with f(z) =
∑∞

n=0 anz
n Now,

(fθ, f)

=
∞∑
n=0

[n]!
e−inθ√

[n]!

√
(q + [0])(q2 + [1])(q3 + [2]) . . . (qn + [n− 1])

[n]!
an

=
∞∑
n=0

e−inθ
√

(q + [0])(q2 + [1])(q3 + [2]) . . . (qn + [n− 1])an.

(42)

Then,

(fθ, f)fθ

=
∞∑
n=0

∞∑
m=0

an e
i(m−n)θ

√
(q + [0])(q2 + [1]) . . . (qm + [m− 1])

[m]!

×
√

(q + [0])(q2 + [1]) . . . (qn + [n− 1])fm.

(43)

Using

∫ 2π

0

dθei(m−n)θ = 2πδmn (44)
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we have

1

2π

∫
X

∫ 2π

0

dν(x, θ)|fθ >< fθ|f

=

∫
X

dµ(x)
∞∑
n=0

∞∑
m=0

an fm

√
(q + [0])(q2 + [1]) . . . (qm + [m− 1])

[m]!

×
√

(q + [0])(q2 + [1]) . . . (qn + [n− 1])
1

2π

∫ 2π

0

ei(m−n)θdθ

=
∞∑
n=0

anfn

∫
X

(q + [0])(q2 + [1]) . . . (qn + [n− 1])√
[n]!

dµ(x)

=
∞∑
n=0

anfn
(q + [0])(q2 + [1]) . . . (qn + [n− 1])√

[n]!

× [n]!

(q + [0])(q2 + [1]) . . . (qn + [n− 1])

=
∞∑
n=0

√
[n]!anfn

= f.

(45)

Thus,(38) follows.
8.3 Distribution

We use the vectors fθ to associate, to a given density operator ρ, a phase
distribution as follows:

P (θ) = 1
2π

(fθ, ρfθ)

= 1
2π

∑∞
m,n=0

√
(q+[0])...(qm+[m−1])

[m]!
.
√

(q+[0])...(qn+[n−1])
[n]!

.ei(n−m).(fm, ρfn)

(46)

The P (θ) as defined in (46) is positive, owing to the positivity of ρ, and is
normalized ∫

X

∫ 2π

0

P (θ)dν(x, θ) = 1 (47)

where

dν(x, θ) = dµ(x)dθ (48)



36 J. of Ramanujan Society of Math. and Math. Sc.

for,∫
X

∫ 2π

0
P (θ)dν(x, θ) =

∫
X
dµ(x)

∑∞
m,n=0

√
(q+[0])...(qm+[m−1])

[m]!
.
√

(q+[0])...(qn+[n−1])
[n]!

.
1
2π

∫ 2π

0
ei(m−n)θdθ.(fm, ρfn)

=
∫
X
dµ(x)

∑∞
n=0

(q+[0])...(qn+[n−1])
[n]!

.(fn, ρfn)

=
∑∞

n=0(fn, ρfn)
= 1.

(49)
In particular, the phase distribution over the window 0 ≤ θ ≤ 2π for any vector
f is then defined by

P (θ) = 1
2π

(fθ, |f >< f |fθ)
= 1

2π
|(fθ, f)|2. (50)

8.4 Examples
We now consider some specific vectors in the Hilbert space Hq and compute

their corresponding phase distributions.
8.4.1 Incoherent Vectors

For the incoherent vectors we take the density operator to be

ρ =
∞∑
n=0

pn|fn >< fn|, (51)

with
pn ≥ 0 and

∑∞
n=0 pn = 1.

Now we calculate the phase distribution P (θ) as

P (θ) = 1
2π

(fθ, ρfθ)
= 1

2π

∑∞
n=0 pn(fθ, |fn >< fn|fθ)

= 1
2π

∑∞
n=0 pn|(fθ, fn)|2

= 1
2π

∑∞
n=0 pn.

(q+[0])...(qn+[n−1])
[n]!

(52)

8.4.2 Coherent Vectors
For the coherent vectors fα(11),

fα = eq(|α|2)
−1

2
∞∑
n=0

αn√
[n]!

fn. (53)

we take the density operator to be

ρ = |fα >< fα|, α = |α|eiθ0 (54)
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and calculate the phase distribution P (θ) as

P (θ) = 1
2π

(fθ, ρfθ)
= 1

2π
(fθ, |fα >< fα|fθ)

= 1
2π
|(fθ, fα)|2

= 1
2π
|
∑∞

n=0 e
in(θ0−θ). |α|

n√
[n]!
.eq(|α|2)−

1
2 .
√

(q+[0])...(qn+[n−1])
[n]!

|2
(55)

9 Conclusion
The basic difference of this paper with the previous works is its functional

analysis approach.Our observation that annihilation operator is a backwardshift has
been reflected in our work. With the proposed phase operator we describe a phase
distribution to calculate phase distribution for specific vectors in the deformed
space.
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