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Abstract: In this paper, by changing the independent and dependent variables in
the suitable ordinary differential equations of second and third order and comparing
the resulting ordinary differential equations with standard ordinary hypergeometric
differential equations of Gauss and Clausen, we obtain the hypergeometric forms
of following functions:

sin−1(x)√
(1− x2)

, [sin−1(x)]2 and sin−1(x).
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1. Introduction and Preliminaries
In our investigations, we shall use the following standard notations:

N := {1, 2, 3, · · · } ;N0 := N
⋃
{0} ;Z−0 := Z−

⋃
{0} = {0,−1,−2,−3, · · · } .

The symbols C,R,N,Z,R+ and R− denote the sets of complex numbers, real num-
bers, natural numbers, integers, positive and negative real numbers respectively.
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Pochhammer symbol:
The Pochhammer symbol (or the shifted factorial) (λ)ν (λ, ν ∈ C) [9, p. 22 eq(1),
p. 32 Q. N.(8) and Q. N.(9)], see also [11, p. 23, eq(22) and eq(23)], is defined by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=



1 (ν = 0; λ ∈ C\{0})
n−1∏
j=0

(λ+ j) (ν = n ∈ N; λ ∈ C)

(−1)kn!
(n−k)! (λ = −n; ν = k; n, k ∈ N0; 0 5 k 5 n)

0 (λ = −n; ν = k; n, k ∈ N0; k > n)
(−1)k
(1−λ)k

(ν = −k; k ∈ N; λ ∈ C\Z),

it being understood conventionally that (0)0 = 1 and assumed tacitly that the
Gamma quotient exists.

Generalized hypergeometric function of one variable
A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z], is

accomplished by introducing any arbitrary number of numerator and denominator
parameters. Thus, the resulting series

pFq

 (αp);
z

(βq);

 = pFq

 α1, α2, . . . , αp;
z

β1, β2, . . . , βq;

 =
∞∑
n=0

(α1)n(α2)n . . . (αp)n
(β1)n(β2)n . . . (βq)n

zn

n!
,

(1.1)
is known as the generalized hypergeometric series, or simply, the generalized hy-
pergeometric function. Here p and q are positive integers or zero and we assume
that the variable z, the numerator parameters α1, α2, . . . , αp and the denominator
parameters β1, β2, . . . , βq take on complex values, provided that

βj 6= 0,−1,−2, . . . ; j = 1, 2, . . . , q.

Supposing that none of the numerator and denominator parameters is zero or a
negative integer, we note that the pFq series defined by equation (1.1):

(i) converges for |z| <∞, if p ≤ q,

(ii) converges for |z| < 1, if p = q + 1,

(iii) diverges for all z, z 6= 0, if p > q + 1,

(iv) converges absolutely for |z| = 1, if p = q + 1, and <(ω) > 0,
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(v) converges conditionally for |z| = 1(z 6= 1), if p = q + 1 and −1 < <(ω) 5 0,

(vi) diverges for |z| = 1, if p = q + 1 and <(ω) 5 −1,

where by convention, a product over an empty set is interpreted as 1 and

ω :=

q∑
j=1

βj −
p∑
j=1

αj, (1.2)

<(ω) being the real part of complex number ω.

(I) When x =
√
t, then

dx

dt
=

1

2
√
t
, (1.3)

dy

dx
=
dy

dt
× dt

dx
= 2
√
t
dy

dt
, (1.4)

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dt

(
2
√
t
dy

dt

)
dt

dx

after simplification, we get

d2y

dx2
= 4t

d2y

dt2
+ 2

dy

dt
, (1.5)

d3y

dx3
=

d

dx

(
d2y

dx2

)
=

d

dt

(
4t
d2y

dt2
+ 2

dy

dt

)
dt

dx

after simplification, we get

d3y

dx3
= 8t

3
2
d3y

dt3
+ 12
√
t
d2y

dt2
. (1.6)

(II) When y = z(
√
t), where z is the function of t then

dy

dt
=
√
t
dz

dt
+

z

2
√
t
, (1.7)

d2y

dt2
=

d

dt

(
dy

dt

)
=

d

dt

(√
t
dz

dt
+

z

2
√
t

)



82 South East Asian J. of Mathematics and Mathematical Sciences

after simplification, we get

d2y

dt2
=
√
t
d2z

dt2
+

1√
t

dz

dt
− z

4t
3
2

. (1.8)

(III) When y = zt, where z is the function of t then

dy

dt
= z + t

dz

dt
, (1.9)

d2y

dt2
= 2

dz

dt
+ t

d2z

dt2
, (1.10)

d3y

dt3
= 3

d2z

dt2
+ t

d3z

dt3
. (1.11)

(IV) We know that

z = 2F1

 a, b;
t

c;

 , (1.12)

is one of the series solution of the following Gauss’ ordinary hypergeometric ho-
mogeneous linear differential equation of second order with variable coefficients

t(1− t)d
2z

dt2
+ [c− (a+ b+ 1)t]

dz

dt
− abz = 0 . (1.13)

(V) We know that

z = 3F2

 α, β, γ;
t

λ, µ;

 , (1.14)

is one of the series solution of the following Clausen’s ordinary hypergeometric
homogeneous linear differential equation of third order with variable coefficients

t2(1− t)d
3z

dt3
+ [(1 + λ+ µ)− (3 + α + β + γ)t]t

d2z

dt2
+

+[λµ− (1 + α + β + γ + αβ + αγ + βγ)t]
dz

dt
− αβγz = 0 . (1.15)

The present article is organized as follows. In section 3, we have derived the hy-
pergeometric forms of some functions involving arcsine function, using differential
equation approach. For hypergeometric forms of other mathematical functions and
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functions of mathematical physics, one can refer the literature [1], [2], [3], [4], [5],
[6], [7], [8], [10] and [12], where the proof of hypergeometric forms of related func-
tions are not given. So we are interested to give the proof of hypergeometric forms
of some arcsine function using differential equation approach.

2. Some Hypergeometric Forms
When |x| < 1, then following hypergeometric forms hold true:

sin−1(x)√
(1− x2)

= x 2F1

 1, 1;
x2

3
2
;

 . (2.1)

[sin−1(x)]2 = x2 3F2

 1, 1, 1;
x2

2, 3
2
;

 . (2.2)

sin−1(x) = x 2F1

 1
2
, 1

2
;
x2

3
2
;

 . (2.3)

3. Proof of Hypergeometric Forms

Proof of hypergeometric form (2.1):
Consider the following function

y =
sin−1(x)√
(1− x2)

or
√

(1− x2) y = sin−1(x). (3.1)

Differentiate the equation (3.1) w.r.t. x and use product rule, after simplification
we get

(1− x2)dy
dx
− xy = 1. (3.2)

Again differentiate the equation (3.2) w.r.t. x and apply product rule, after sim-
plification we have

(1− x2)d
2y

dx2
− 3x

dy

dx
− y = 0. (3.3)

Put x =
√
t, then use values of equations (1.4) and (1.5) in above differential

equation (3.3), after simplification we get

t(1− t)d
2y

dt2
+

{
1

2
− 2t

}
dy

dt
− 1

4
y = 0 . (3.4)
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Now substitute y = z(
√
t) and put the values of equations (1.7) and (1.8) in above

differential equation (3.4), after simplification we obtain

t(1− t)d
2z

dt2
+

{
3

2
− 3t

}
dz

dt
− z = 0 . (3.5)

Now compare the coefficients of above differential equation (3.5) with Gauss’ stan-
dard differential equation (1.13), we get

c =
3

2
, a+ b+ 1 = 3 and ab = 1 .

Now solve the above algebraic equations simultaneously, we get

a = 1, b = 1 .

Therefore the solution of above differential equation (3.5) is given by

z = 2F1

 1, 1;
t

3
2
;

 ,
y =
√
t 2F1

 1, 1;
t

3
2
;

 ,
sin−1(x)√
(1− x2)

= x 2F1

 1, 1;
x2

3
2
;

 .
This completes the proof of hypergeometric form (2.1).

Proof of hypergeometric form (2.2):
Consider the following function

y = [sin−1(x)]2. (3.6)

Differentiate the equation (3.6) w.r.t. x, we get√
(1− x2)dy

dx
= 2[sin−1(x)]. (3.7)

Again differentiate the equation (3.7) w.r.t. x and use product rule, after simplifi-
cation we have

(1− x2)d
2y

dx2
− xdy

dx
= 2 . (3.8)
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Now again differentiate the equation (3.8) w.r.t. x and apply product rule, after
simplification we obtain

(1− x2)d
3y

dx3
− 3x

d2y

dx2
− dy

dx
= 0 . (3.9)

Put x =
√
t, then use the values of equations (1.4), (1.5) and (1.6) in above

differential equation (3.9), after simplification we get

t(1− t)d
3y

dt3
+

{
3

2
− 3t

}
d2y

dt2
− dy

dt
= 0 . (3.10)

Now substitute y = tz and put the values of equations (1.9), (1.10) and (1.11) in
above differential equation (3.10), after simplification we have

t2(1− t)d
3z

dt3
+

{
9

2
− 6t

}
t
d2z

dt2
+ {3− 7t} dz

dt
− z = 0 . (3.11)

Now compare the coefficients of above differential equation (3.11) with Clausen’s
standard differential equation (1.15), we get

1+λ+µ =
9

2
, 3+α+β+γ = 6, λµ = 3, 1+α+β+γ+αβ+αγ+βγ = 7 and αβγ = 1.

Now solve the above algebraic equations simultaneously, we get

λ = 2, µ =
3

2
, α = 1, β = 1, γ = 1 .

Therefore the solution of above differential equation (3.11) is given by

z = 3F2

 1, 1, 1;
t

2, 3
2
;

 ,

y = t 3F2

 1, 1, 1;
t

2, 3
2
;

 ,
[sin−1(x)]2 = x2 3F2

 1, 1, 1;
x2

2, 3
2
;

 .
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This completes the proof of hypergeometric form (2.2).

Proof of hypergeometric form (2.3):
Consider the following function

y = sin−1(x) . (3.12)

Differentiate the equation (3.12) w.r.t. x, we get

dy

dx
=

1√
(1− x2)

or
√

(1− x2) dy
dx

= 1 . (3.13)

Again differentiate the equation (3.13) w.r.t. x and use product rule, after simpli-
fication we have

(1− x2)d
2y

dx2
− xdy

dx
= 0 . (3.14)

Put x =
√
t, then use values of equations (1.4) and (1.5) in above differential

equation (3.14), after simplification we obtain

t(1− t)d
2y

dt2
+

{
1

2
− t
}
dy

dt
= 0 . (3.15)

Now substitute y = z(
√
t) and put the values of equations (1.7) and (1.8) in above

differential equation (3.15), after simplification we have

t(1− t)d
2z

dt2
+

{
3

2
− 2t

}
dz

dt
− 1

4
z = 0 . (3.16)

Now compare the coefficients of above differential equation (3.16) with Gauss’
standard differential equation (1.13), we get

c =
3

2
, a+ b+ 1 = 2 and ab =

1

4
.

Now solve the above algebraic equations simultaneously, we get

a =
1

2
, b =

1

2
.
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Therefore the solution of above differential equation (3.16) is given by

z = 2F1

 1
2
, 1

2
;
t

3
2
;

 ,
y =
√
t 2F1

 1
2
, 1

2
;
t

3
2
;

 ,
sin−1(x) = x 2F1

 1
2
, 1

2
;
x2

3
2
;

 .
This completes the proof of hypergeometric form (2.3).

4. Conclusion
In our present investigation, we derived the hypergeometric forms of some func-

tions involving arcsine function by using differential equation approach. Moreover,
the results derived in this paper are expected to have useful applications in wide
range of problems of Mathematics, Statistics and Physical sciences. Similarly, we
can derive the hypergeometric forms of other functions in an analogous manner.

5. Acknowledgement
The authors are highly thankful to the anonymous very sincere referee for pro-

viding actual and satisfactory differential equation approach used in the derivation
of the hypergeometric forms given in section 2.

References

[1] Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions
with Formulas, Graphs and Mathematical Tables, Reprint of the 1972 Edi-
tion, Dover Publications, Inc., New York, 1992.

[2] Andrews, G. E., Askey, R. and Roy, R., Special Functions, Cambridge Uni-
versity Press, Cambridge, UK, 1999.

[3] Andrews, L. C., Special Functions for Engineers and Applied Mathemati-
cians, Macmillan Publishing Company, New York, 1985.

[4] Andrews, L. C., Special Functions of Mathematics for Engineers, Reprint of
the 1992 Second Edition, SPIE Optical Engineering Press, Bellingham, W.
A., Oxford University Press, Oxford, 1998.



88 South East Asian J. of Mathematics and Mathematical Sciences
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