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1. Introduction, Notations, Definitions and Known Results
In past years, generalized forms of variational inequalities, variational inclu-

sions and variational-like inclusions, have been expansively studied and extended
in different directions to study the practical problems arising in optimization, eco-
nomics, finance, applied science etc. See, for example [1, 3-6, 10, 12-19, 24] and
references therein. As we all know that, develop an adept iterative algorithm for
approximation solution of variational inclusions is most interesting aspect of varia-
tional inclusion theory. It is well known that projection method and Wiener-Hopf
equation can not be improved to solve nonlinear variational inequalities and vari-
ational inclusions. Then resolvent operator technique is strategic and useful for
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approximation solvability of variational inclusions. Lot of studies and research has
been done on several techniques for computing the solution of the variational in-
clusion and variational-like inclusion in the setting of different spaces, see [1, 3-8,
11-19, 21, 22, 24] and references therein.
Fang and Huang [16] have extended the concept of resolvent operators to the
new H-accretive operators, which was associated with the m-accretive operators.
Ahamd and Ansari [5] have considered generalized variational inclusions (GVI)
and they also considered generalized resolvent equation with H-accretive operator
called H-resolvent equation (H-RE) and suggested the algorithm for unique solu-
tion of GVI and H-RE and studied the convergence of iterative sequences generated
by the proposed algorithm.
In this paper, we consider extended variational-like inclusion problem (for short
EVLIP) which contains many known variational inclusions existing in literature.
In connection with EVLIP we consider a generalized resolvent equation problem
with H-φ-η-accretive operator called generalized H-resolvent equation problem (for
short H-REP). To compute the approximate solution of H-REP, we introduce an
algorithm. Convergence of sequences procreated by algorithm are also studied.

Now, we present some basic notations, definitions and known results of func-
tional analysis relevant to our paper. Throughout the paper unless otherwise spec-
ified, we assume that X is a real Banach space endowed with a norm ‖.‖ and
topological dual X∗. d is a metric induced by the norm ‖.‖, CB(X) is the family
of all non-empty closed and bounded subsets of X, 2X is family of all non-empty
subsets of X, and D(., .) is the Hausdorff metric on CB(X) defined by

D(E,F ) = max{sup
x∈E

d(x, F ), sup
y∈F

d(E, y)},

where d(x, F ) = inf
y∈F

d(x, y) and d(E, y) = inf
x∈E

d(x, y).

Definition 1.1. [9] Let X be a real Banach space then generalized duality mapping
Jq : X → 2X

∗
is defined by

Jq(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1},∀x ∈ X,

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping.
It is known that, Jq(x) = ‖x‖q−1J2(x) for x 6= 0 and Jq is a single-valued if X is
strictly convex. If X is real Hilbert space, J2 becomes the identity mapping on X.

Definition 1.2. [2] A Banach space X is said to be uniformly smooth if for any
given ε > 0, there exists δ > 0 such that

‖x+ y‖+ ‖x− y‖
2

− 1 ≤ ε‖y‖
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holds.
The function

ρX(t) = sup{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ = 1, ‖y‖ = t}.

is called the modulus of smoothness of the space X.

Remark 1.3. The space X is uniformly convex if and only if ρX(ε) > 0 for all

ε > 0, and it is called uniformly smooth if and only if lim
t→0

ρX(t)

t
= 0.

Definition 1.4. [2] The space X is called q-uniformly smooth, if there exist a
constant C > 0 such that

ρX(t) ≤ Ctq, q > 1.

Note that Jq is single valued if X is uniformly smooth. The following inequality
in q-uniformly smooth Banach spaces has been proved by Xu [25].

Lemma 1.5. [25] Let X be a real uniformly smooth Banach space. Then X is
q-uniformly smooth if and only if there exists a constant cq > 0 such that for all
x, y ∈ X,

‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q.

Definition 1.6. [3] Let A,B : X → X and η,H : X×X → X be the single valued
mappings.

(i) A is said to be η-accretive, if 〈Ax− Ay, Jq(η(x, y))〉 ≥ 0,∀x, y ∈ X;

(ii) A is said to be strictly η-accretive, if A is η-accretive and equality holds if and
only if x = y;

(iii) H(A, .) is said to be α-strongly η-accretive with respect to A, if there ex-
ist a constant α > 0 such that 〈H(Ax, u) − H(Ay, u), Jq(η(x, y))〉 ≥ α‖x −
y‖q, ∀x, y, u ∈ X;

(iv) H(., B) is said to be β-relaxed η-accretive with respect to B, if there exist
a constant β > 0 such that 〈H(u,Bx) − H(u,By), Jq(η(x, y))〉 ≥ (−β)‖x −
y‖q,∀x, y, u ∈ X;

(v) H(., .) is said to r1-Lipschitz continuous with respect to A, if there exist a
constant r1 > 0 such that ‖H(Ax, u)−H(Ay, u)‖ ≤ r1‖x− y‖, ∀x, y, u ∈ X.
In a similar way, we can define the Lipschitz continuity of the mapping H(., .)
with respect to B.
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(vi) η is said to be τ -Lipschitz continuous, if there exist a constant τ > 0 such
that ‖η(x, y)‖ ≤ τ‖x− y‖,∀x, y ∈ X.

Definition 1.7. [3] Let N,P : X ×X ×X → X and η : X ×X → X be the single
valued mappings. Let M : X ×X → 2X be multi-valued mapping.

(i) M is said to be η-accretive, if 〈u − v, Jq(η(x, y))〉 ≥ 0,∀x, y ∈ X, u ∈
M(x, z), v ∈M(y, z), for each fixed z ∈ X;

(ii) M is said to be strictly η-accretive, if M is η-accretive and equality holds if
and only if x = y;

(iii) N is said to be t-relaxed η-accretive in the first argument, if there exist a
constant t > 0 such that 〈N(x, u, v) − N(y, u, v), Jq(η(x, y))〉 ≥ −t‖x −
y‖q,∀x, y, u, v ∈ X;

(iv) N is said to be ξ-Lipschitz continuous in the first argument, if there exists a
constant ξ > 0 such that ‖N(x, u, v)−N(y, u, v)‖ ≤ ξ‖x− y‖,∀x, y, u, v ∈ X.
Similarly, we can define the lipschitz continuity of N in the second and third
argument.

(v) P is said to be ζ-Lipschitz continuous in the first argument, if there exists a
constant ζ > 0 such that ‖P (x, u, v)−P (y, u, v)‖ ≤ ζ‖x− y‖,∀x, y, u, v ∈ X.
Similarly, we can define the lipschitz continuity of P in the second and third
argument.

Definition 1.8. [16] The operator H : X → X is said to be

(i) accretive if 〈H(x)−H(y), Jq(x− y)〉 ≥ 0,∀x, y ∈ X

(ii) strongly accretive if there exists a constant r > 0 such that 〈H(x)−H(y), Jq(x−
y)〉 ≥ r‖x− y‖q, ∀x, y ∈ X

Definition 1.9. [3] Let φ,A,B : X → X and H, η : X × X → X be the single-
valued mappings. Let M : X ×X → 2X be a multi-valued mapping. M is said to
be H(., .)− φ− η-accretive operator with respect to mappings A and B, if for each
fixed z ∈ X, φ ◦M(., z) is η-accretive in the first argument and (H(A,B) + φ ◦
M(., z))(X) = X.

Theorem 1.10. [3] Let H(A,B) be α-strongly η-accretive with respect to A, β-
relaxed η-accretive with respect to B, α > β. Let M be an H(., .)− φ− η-accretive
operator with respect to mappings A and B. Then the operator (H(A,B) + φ ◦
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M(., z))−1 is single-valued for each fixed z ∈ X.

Definition 1.11 [3] Let H(A,B) be α-strongly η-accretive with respect to A, β-
relaxed η-accretive with respect to B, α > β. Let M be an H(., .)− φ− η-accretive
operator with respect to mappings A and B. Then for each fixed z ∈ X, the
resolvent operator R

H(.,.)−φ−η
M(.,z) : X → X is defined by

R
H(.,.)−φ−η
M(.,z) (u) = (H(A,B) + φ ◦M(., z))−1(u),∀u ∈ X.

Theorem 1.12. [3] Let H(A,B) be α-strongly η-accretive with respect to A, β-
relaxed η-accretive with respect to B, α > β and η is τ -Lipschitz continuous. Let
M : X ×X → 2X is a H(., .) − φ − η-accretive operator with respect to mappings

A and B. Then the resolvent operator R
H(.,.)−φ−η
M(.,z) : X → X is τq−1

α−β -Lipschitz
continuous i.e.,

‖RH(.,.)−φ−η
M(.,z) (u)−RH(.,.)−φ−η

M(.,z) (v)‖ ≤ τ q−1

α− β
‖u−v‖,∀u, v ∈ X and each fixed z ∈ X.

2. Extended Variational-Like Inclusion Problem
Let G, J,K, L,R, S, T : X → CB(X) be multi-valued mappings. A,B, φ : X →

X, H, η : X × X → X and N,P : X × X × X → X be single valued mappings.
Suppose M : X×X → 2X be a multi-valued mapping such that M is H(., .)−φ−η−
accretive operator.
We consider the following problem of finding x ∈ X, u ∈ S(x), v ∈ T (x), w ∈
R(x), z ∈ G(x), j ∈ J(x), k ∈ K(x), and l ∈ L(x) and

0 ∈ N(u, v, w)− P (j, k, l) +M(x, z) (2.1)

Problem (2.1) is called extended variational-like inclusion problem.
Below are some special cases of our problem:

(i) If P ≡ R ≡ 0 and N(., ., .) = N(., .) then our problem reduces to the problem
considered by Ahmad et al. [3].

(ii) If P ≡ R ≡ 0 and N(., ., .) = N(., .), X is real Hilbert space and M(., z)
is maximal monotone operator then problem similar to (3.1) was introduced
and studied by Huang et al. [20].

(iii) If P ≡ T ≡ R ≡ G ≡ 0, S is single-valued and identity mapping and
N(., ., .) = N(.),M(., .) = M(.) then our problem reduces to the problem
considered by Bi et al. [11], that is find u ∈ X such that 0 ∈ N(u) +M(u).
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It is easy to see that (2.1) includes many more known variational inclusions con-
sidered and studied in the literature.

3. Generalized H-Resolvent Equation Problem
In this section, we propose the generalized H-resolvent equation problem for the

case when H(., .) = H(.) along with some suitable assumption. we consider the
following generalized H-resolvent equation problem to find s, x ∈ X, u ∈ S(x), v ∈
T (x), w ∈ R(x), z ∈ G(x), j ∈ J(x), k ∈ K(x), and l ∈ L(x) such that

N(u, v, w)− P (j, k, l) + φ−1JH−φ−ηM(.,z) (s) = 0 (3.1)

where JH−φ−ηM(.,z) = I − H(RH−φ−η
M(.,z) ), I is the identity operator, RH−φ−η

M(.,z) is the H-

resolvent operator. The equation (3.1) is called generalized H-resolvent equation.

Lemma 3.1. Let X be a q-uniformly smooth Banach space. G, J,K,L,R, S, T :
X → CB(X) be multi-valued mappings, H : X → X be single valued mapping
and φ : X → X be a mapping satisfying φ(x + y) = φ(x) + φ(y) and ker(φ) = 0,
where ker(φ) = {x ∈ X : φ(x) = 0}. Let η : X × X → X be single valued
mappings and N,P : X × X × X → X be also single valued mappings. Let
M : X ×X → 2X be a multi-valued mapping such that M is H − φ− η− accretive
operator. Then (x, u, v, w, z, j, k, l) where x ∈ X, u ∈ S(x), v ∈ T (x), w ∈ R(x), z ∈
G(x), j ∈ J(x), k ∈ K(x), and l ∈ L(x), is a solution of problem (3.1) if and only
if (x, u, v, w, z, j, k, l) satisfies

x = RH−φ−η
M(.,z) [H(x)− φ ◦N(u, v, w) + φ ◦ P (j, k, l)]

Proof. Let (x, u, v, w, z, j, k, l) where x ∈ X, u ∈ S(x), v ∈ T (x), w ∈ R(x), z ∈
G(x), j ∈ J(x), k ∈ K(x), and l ∈ L(x) satisfies the above equation, i.e.,

x = RH−φ−η
M(.,z) [H(x)− φ ◦N(u, v, w) + φ ◦ P (j, k, l)]

Using the definition of resolvent operator, we have

x = (H(.) + φ ◦M(., z))−1[H(x)− φ ◦N(u, v, w) + φ ◦ P (j, k, l)]

⇔ H(x)− φ ◦N(u, v, w) + φ ◦ P (j, k, l) ∈ H(x) + φ ◦M(x, z)

⇔ 0 ∈ φ ◦N(u, v, w)− φ ◦ P (j, k, l) + φ ◦M(x, z)

⇔ 0 ∈ φ(N(u, v, w)− P (j, k, l)) +M(x, z))

⇔ φ−1(0) ∈ N(u, v, w)− P (j, k, l) +M(x, z)

⇔ 0 ∈ N(u, v, w)− P (j, k, l) +M(x, z).
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This completes the proof.
Now we present an equivalence between (2.1) and (3.1).

Proposition 3.2. [5] The (2.1) has a solution (x, u, v, w, z, j, k, l) with x ∈ X, u ∈
S(x), v ∈ T (x), w ∈ R(x), z ∈ G(x), j ∈ J(x), k ∈ K(x), and l ∈ L(x) if and only
if (3.1) has a solution (s, x, u, v, w, z, j, k, l) with s, x ∈ X, u ∈ S(x), v ∈ T (x), w ∈
R(x), z ∈ G(x), j ∈ J(x), k ∈ K(x), and l ∈ L(x), where

x = RH−φ−η
M(.,z) (s) (3.2)

and
s = H(x)− φ ◦ (N(u, v, w)− P (j, k, l)) (3.3)

Proof. Let (x, u, v, w, z, j, k, l) be the solution of (2.1) then by lemma 3.1 it is a
solution of following equation

x = RH−φ−η
M(.,z) [H(x)− φ ◦ (N(u, v, w)− P (j, k, l))] (3.4)

Let s = H(x)− φ ◦ (N(u, v, w)− P (j, k, l)), then from (3.4), we have

x = RH−φ−η
M(.,z) (s).

By using the fact that JH−φ−ηM(.,z) = I −H(RH−φ−η
M(.,z) ), we obtain

s = H(RH−φ−η
M(.,z) (s))− φ ◦ (N(u, v, w)− P (j, k, l))

⇔ s−H(RH−φ−η
M(.,z) (s)) = −φ ◦ (N(u, v, w)− P (j, k, l))

⇔ [I −H(RH−φ−η
M(.,z) )](s) = −φ ◦ (N(u, v, w)− P (j, k, l))

⇔ JH−φ−ηM(.,z) (s) = −φ ◦ (N(u, v, w)− P (j, k, l))

Hence N(u, v, w)− P (j, k, l) + φ−1JH−φ−ηM(.,z) (s) = 0
Based on proposition 3.2, we suggest the following iterative method to compute
the approximate solution of (3.1).

Algorithm 3.3. For any given s0, x0 ∈ X, u0 ∈ S(x0), v0 ∈ T (x0), w0 ∈ R(x0),
z0 ∈ G(x0), j0 ∈ J(x0), k0 ∈ K(x0), and l0 ∈ L(x0), compute the sequences {xn},
{un}, {vn}, {wn}, {zn}, {jn}, {kn} and {ln} by the following iterative schemes

xn+1 = RH−φ−η
M(.,z) (sn+1) (3.5)

un ∈ S(xn), ‖un − un+1‖ ≤ D(S(xn), S(xn+1)) + εn+1‖xn − xn+1‖ (3.6)
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vn ∈ T (xn), ‖vn − vn+1‖ ≤ D(T (xn), T (xn+1)) + εn+1‖xn − xn+1‖ (3.7)

wn ∈ R(xn), ‖wn − wn+1‖ ≤ D(R(xn), R(xn+1)) + εn+1‖xn − xn+1‖ (3.8)

zn ∈ G(xn), ‖zn − zn+1‖ ≤ D(G(xn), G(xn+1)) + εn+1‖xn − xn+1‖ (3.9)

jn ∈ J(xn), ‖jn − jn+1‖ ≤ D(J(xn), J(xn+1)) + εn+1‖xn − xn+1‖ (3.10)

kn ∈ K(xn), ‖kn − kn+1‖ ≤ D(K(xn), K(xn+1)) + εn+1‖xn − xn+1‖ (3.11)

ln ∈ L(xn), ‖ln − ln+1‖ ≤ D(L(xn), L(xn+1)) + εn+1‖xn − xn+1‖ (3.12)

sn+1 = H(xn)− φ ◦ (N(un, vn, wn)− P (jn, kn, ln)) (3.13)

n = 0, 1, 2, 3, . . .
Now we study the existence of the solution of (3.1) and the convergence of iterative
sequences generated by the above algorithm to the exact solution of (3.1).

Theorem 3.4. Let X be a real q-uniformly smooth Banach space and H : X → X
be a strongly accretive and Lipschitz continuous operator with constant r and γ,
respectively. Let φ◦N and φ◦P be both Lipschitz continuous in all three arguments
with constants ξ1, ξ2, ξ3 and ζ1, ζ2, ζ3 respectively, also let G, J, K, L, R, S, T be
D-Lipschitz continuous with constants λG, λJ , λK , λL, λR, λS and λT , respectively.
Suppose that M : X ×X → 2X is H − φ− η-accretive multivalued map such that

0 <
1

r
[γq− (q−cq){ξ1(λS +εn)+ξ2(λT +εn)+ξ3(λR+εn)}q− (q−cq){ζ1(λJ +εn)

+ ζ2(λK + εn) + ζ3(λL + εn)}q]
1
q < 1 (3.14)

holds. Then there exists a unique solution (s, x, u, v, w, z, j, k, l) with s, x ∈ X, u ∈
S(x), v ∈ T (x), w ∈ R(x), z ∈ G(x), j ∈ J(x), k ∈ K(x), and l ∈ L(x), and the
iterative sequences {sn}, {xn}, {un}, {vn}, {wn}, {zn}, {jn}, {kn} and {ln} generated
by Algorithm 3.3 converge to s,x,u,v,w,z,j,k,l strongly in X, respectively.
Proof.

‖sn+1 − sn‖ = ‖H(xn)−H(xn−1)− φ ◦ [(N(un, vn, wn)−N(un−1, vn−1, wn−1))

− (P (jn, kn, ln)− P (jn−1, kn−1, ln−1))]‖ (3.15)
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By Lemma 1.5, we have

‖H(xn)−H(xn−1)−φ ◦ (N(un, vn, wn)−N(un−1, vn−1, wn−1))−φ ◦ (P (jn, kn, ln)

− P (jn−1, kn−1, ln−1))‖q

≤ ‖H(xn)−H(xn−1)‖q−q〈φ◦(N(un, vn, wn)−N(un−1, vn−1, wn−1))−φ◦(P (jn, kn, ln)

− P (jn−1, kn−1, ln−1)), Jq(H(xn)−H(xn−1))〉+ cq‖φ ◦ (N(un, vn, wn)

−N(un−1, vn−1, wn−1))− φ ◦ (P (jn, kn, ln)− P (jn−1, kn−1, ln−1))‖q (3.16)

Again by Lemma 1.5,

‖φ◦(N(un, vn, wn)−N(un−1, vn−1, wn−1))−φ◦(P (jn, kn, ln)−P (jn−1, kn−1, ln−1))‖q

≤ ‖φ ◦ (N(un, vn, wn)−N(un−1, vn−1, wn−1))‖q − (q − cq)‖φ ◦ (P (jn, kn, ln)

− P (jn−1, kn−1, ln−1))‖q (3.17)

Now,

‖φ ◦ (N(un, vn, wn)−N(un−1, vn−1, wn−1))‖
≤ ‖φ◦(N(un, vn, wn)−N(un−1, vn, wn))+φ◦(N(un−1, vn, wn)−N(un−1, vn−1, wn))

+ φ ◦ (N(un−1, vn−1, wn)−N(un−1, vn−1, wn−1))‖
≤ ξ1‖un − un−1‖+ ξ2‖vn − vn−1‖+ ξ3‖wn − wn−1‖ ≤ {ξ1(λS + εn) + ξ2(λT + εn)

+ ξ3(λR + εn)}‖xn − xn−1‖

So,

‖φ ◦ (N(un, vn, wn)−N(un−1, vn−1, wn−1))‖q ≤ {ξ1(λS + εn) + ξ2(λT + εn)

+ ξ3(λR + εn)}q‖xn − xn−1‖q (3.18)

Similarly,

‖φ ◦ (P (jn, kn, ln)− P (jn−1, kn−1, ln−1))‖q ≤ {ζ1(λJ + εn) + ζ2(λK + εn)

+ ζ3(λL + εn)}q‖xn − xn−1‖q (3.19)

Using (3.18) and (3.19), (3.17) becomes

‖φ◦(N(un, vn, wn)−N(un−1, vn−1, wn−1))−φ◦(P (jn, kn, ln)−P (jn−1, kn−1, ln−1))‖q

≤ [{ξ1(λS + εn) + ξ2(λT + εn) + ξ3(λR + εn)}q − (q− cq){ζ1(λJ + εn) + ζ2(λK + εn)

+ ζ3(λL + εn)}q]‖xn − xn−1‖q
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Therefore (3.16) becomes

‖H(xn)−H(xn−1)−φ ◦ (N(un, vn, wn)−N(un−1, vn−1, wn−1))−φ ◦ (P (jn, kn, ln)

− P (jn−1, kn−1, ln−1))‖q

≤ γq‖xn − xn−1‖q − (q − cq)[{ξ1(λS + εn) + ξ2(λT + εn) + ξ3(λR + εn)}q

− (q − cq){ζ1(λJ + εn) + ζ2(λK + εn) + ζ3(λL + εn)}q]q‖xn − xn−1‖q

So from (3.15), we have

‖sn+1 − sn‖ ≤ [γq − (q − cq)[{ξ1(λS + εn) + ξ2(λT + εn) + ξ3(λR + εn)}q

− (q − cq){ζ1(λJ + εn) + ζ2(λK + εn) + ζ3(λL + εn)}q]q]
1
q ‖xn − xn−1‖ (3.20)

By (3.5), we obtain

‖xn − xn−1‖ = ‖xn − xn−1 + xn − xn−1 −RH−φ−η
M(.,z) (sn) +RH−φ−η

M(.,z) (sn−1)‖

≤ 2‖xn − xn−1‖ − ‖RH−φ−η
M(.,z) (sn)−RH−φ−η

M(.,z) (sn−1)‖

≤ 2‖xn − xn−1‖ −
1

r
‖sn − sn−1‖

Where RH−φ−η
M(.,z) is 1

r
-Lipschitz continuous.

Therefore,

‖xn − xn−1‖ ≤
1

r
‖sn − sn−1‖ (3.21)

By combining (3.20) and (3.21), we get

‖sn+1 − sn‖ ≤ b‖sn − sn−1‖ (3.22)

where

b =
1

r
[γq−(q−cq)[{ξ1(λS +εn)+ξ2(λT +εn)+ξ3(λR+εn)}q−(q−cq){ζ1(λJ +εn)

+ ζ2(λK + εn) + ζ3(λL + εn)}q]q]
1
q (3.23)

From (3.14), it follows that 0 ≤ b < 1. Consequently, from (3.22), we see that
the sequence {sn} is cauchy sequence in a Banach space X. So there exist s ∈ X
such that {sn} → s as n → ∞. From (3.21), we know that the sequence {xn} is
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a cauchy sequence in X, so there exist x ∈ X such that {xn} → x. Also from
Algorithm 3.3, we have

‖un − un+1‖ ≤ (λS + εn)‖xn − xn+1‖
‖vn − vn+1‖ ≤ (λT + εn)‖xn − xn+1‖
‖wn − wn+1‖ ≤ (λR + εn)‖xn − xn+1‖
‖zn − zn+1‖ ≤ (λG + εn)‖xn − xn+1‖
‖jn − jn+1‖ ≤ (λJ + εn)‖xn − xn+1‖
‖kn − kn+1‖ ≤ (λK + εn)‖xn − xn+1‖
‖ln − ln+1‖ ≤ (λL + εn)‖xn − xn+1‖.

and hence {un}, {vn}, {wn}, {zn}, {jn}, {kn} and {ln} are also cauchy sequences in
X, so that there exist u, v, w, z, j, k, l in X such that {un} → u, {vn} → v, {wn} →
w, {zn} → z, {jn} → j, {kn} → k and {ln} → l as n → ∞. Now using the
continuity of operators R, S, T,G, J,K, L,H, φ◦N, φ◦P, η and M and by Algorithm
3.3, we have

x = RH−φ−η
M(.,z) [H(x)− φ ◦N(u, v, w) + φ ◦ P (j, k, l)].

Now, we shall show that u ∈ S(x)
d(u, S(x)) ≤ ‖u− un‖+ d(u, S(x)) ≤ ‖u− un‖+D(S(xn), S(x))
≤ ‖u− un‖+ λS‖xn − x‖ → 0 as n→∞.
⇒ d(u, S(x)) = 0, since S(x) ∈ CB(X) [23], it follows that u ∈ S(x).
Similarly we can prove that v ∈ T (x), w ∈ R(x), z ∈ G(x), j ∈ J(x), k ∈ K(x), and
l ∈ L(x). Let (s∗, x∗, u∗, v∗, w∗, z∗, j∗, k∗, l∗) be another solution of (H-REP). Then
by Lemma 3.1, we have

x∗ = RH−φ−η
M(.,z) [H(x∗)− φ ◦N(u∗, v∗, w∗) + φ ◦ P (j∗, k∗, l∗)]

From above two equations and by using the same argument given above we get

‖x− x∗‖ ≤ b‖x− x∗‖,

where b is defined by (3.23). Since 0 ≤ b < 1, we get x = x∗, then by algorithm 3.3
(s∗, x∗, u∗, v∗, w∗, z∗, j∗, k∗, l∗) is unique solution of (H-REP). This completes the
proof.
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