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1. Introduction

For the last few decades, many researchers attracted towards the study of
fractional calculus motivated by it’s wide application both in pure and applied
mathematics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. For studying about the
dynamical systems described by non linear differential and integral equations, the
perturbation techniques are very useful. The perturbed differential equations are
categorized into various types. Quadratic perturbations of nonlinear fractional
differential equations, which is an important type of these perturbations (Hybrid
Differential Equations) have achieved a great deal of interest and attention of sev-
eral researchers. Dhange and Lakshmikantham [14, 15] and Dhange and Jadhav
[16] discussed the existence and uniqueness theorems of the solution to the ordinary
first order hybrid differential equations with perturbation of first and second kind
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respectively. Much work has done in this theory and we refer the readers to the
articles [17, 18, 19, 20, 21, 22].

Fractional Calculus is a rich field and we can find several definitions for frac-
tional integrals and fractional derivatives. One who interested in the study of frac-
tional calculus may confuse to select operators. One way to overcome this problem
is to consider more general definitions. Recently Sousa and Oliveira [23] proposed a
new general fractional derivative, which is named as 1)—Hilfer fractional derivative.
They derived around 22 types of fractional derivatives and integrals from ¢ —Hilfer
operator. Many works has done on the fractional equations involving 1 —Hilfer
fractional operator [23, 24, 25, 26, 27, 28].

In this paper we discuss the existences of hybrid fractional differential equations
of first and second type involving v —Hilfer fractional derivative, which are given

by

O+ f(ta(t) (1)
0+ F(0,3(0) 0

{HDa,ﬁ;w O — o(t,2(t), ae tel=][0,T)

and
HDSB(t) — f(tx(t)] = g(t,x(t), ae. t € J = [to,to + a] @
L (to) — f(to,x(te))] =0 €R

where AD*%¥(.) is the v-Hilfer fractional derivative with 0 < a < 1,0 < 8 < 1,
a<y=a+f-af <land f € Ci_,u(J x R,R|{0}) and g € C1_,,4(J x R, R).
J = [to, to+a] is a bounded interval in R for some ¢ty and a € R. I = [y, to+a],with
to=0and a="1T.

This paper is organized as follows: Some basic definitions and lemmas are
introduced in section 2. It also includes some results required to prove our main
result. In section 3 we give the existence result for y—Hilfer Fractional Hybrid
differential equation of first type based on Dhange fixed point theorem. In section
4 we give the existence result for 1»—Hilfer Fractional Hybrid differential equation
of second type based on fixed point theorem is given. We finished the section with
an example and plotted graphs for different functions.

2. Preliminaries
Let [a,b], (0 < a < b < o0) be finite interval on the half axis R* and let C|[a, 0]
be the space of continuous function f on [a, b] with the norm. Define,

It = max [£(2)] )

z€|
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The weighted space Cy_,.p[a, b] of continuous f on (a, b] is defined by
Cronipla, 8] = {f : (a,b] = R; (¥(t) — ¥(a)) " f(t) € Cla, b}, (4)
0 < v < 1 with the norm

1f ey swla, 0] = 11 (t) — (@) " f()llewy = xfg@f;l(?ﬁ(t) —(a) TfB)]. (5)

The weighted space C7.[a, ] of continuous f on (a,b] is defined by
Sl b = {f : (a,b] = R; f(t) € C"Ha, B]; f™(2) € Cpla, b1}, (6)

0 <~ < 1 with the norm
n—1
Ifllen aer = Y I ® e + 1™ oy an- (7)
v
k=0

For the weighed function Cy_..y[a, b],
(i) The map t — g(¢, x) is measurable for each z € R;
(ii) The map x — g(t,x) is continuous for each ¢ € [a, b];
(ili) For each g € Ci_+.p[a,b], g(t,z(t)) is ¢)—integrable.

Definition 1. [1] Let (a,b), (—oo < a < b < 00) be a finite interval (or infinite) of
the real line R and let o > 0. Also let 1 (t) be an increasing and positive monotone
function on (a,b], having a continuous derivative 1)'(t) on (a,b). The left-sided
fractional integral of a function f with respect to a function 1 on [a,b] is defined
by:

o —Ltls — () L f(s)ds
I f(t)—r(a)/a@/)()(@/)(t) ¥(s))* 7 f(s)ds. (8)

The right-sided fractional integral is defined in an analogous form.

Definition 2. [23] Letn — 1 < a < n withn € N, let I = [a,b] be an interval
such that —oo < a < b < oo and let f,1) € C™[a,b] be two functions such that ¢ is
increasing and ' (t) # 0, for allt € 1. The left-sided v— Hilfer fractional derivative
HID)ng(-) of a function f of order a and type 0 < B <1, is defined by

a,B; n—a); 1 d " —-B)(n—a);
R ] Y I ) )
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The right-sided 1»— Hilfer fractional derivative is defined in an analogous form.

Lemma 1. 23] If f € C"[a,b],0 <a <1 and 0 < 5 <1, then

12 e (o) = (o) - Y- IR g o)
k=1

Lemma 2. [23] If f € C'[a,b],0 < a <1 and 0 < 3 < 1, then

DIV F(8) = f(1). (11)
Lemma 3. [6] Let a > 0 and 6 > 0. If f(t) = (¢(t) —1(a))’~t, then
a; F(6) a+d—1
L f(t) = m(@/}(t) —(a))* L, (12)

Lemma 4. Let ¢p € C'([a,b],R) be a function such that v is increasing and
Y'(t) # 0Vt € [a,b]. If v = a+ (1l —«), where 0 < a < 1 and 0 < § <
1, then 1Y — Riemann-Liouville fractional integral operator Igf’() s bounded from
Crpla, 0] to Cryyla, b].

['(v)

[Olﬂ/fh w < M——"
H a+ HCPWM b = F(7+oz)

(¥(t) = 9(a))®,

where M is the bound of a bounded function (¢(-) — ¥ (a))'=7h(-).

Theorem 1. [15, 16] Let S be a non empty, closed, convex and bounded subset of
the Banach algebra X, and let A: X — X and B : X — X be two operators such
that,

(a) A is Lipschitzian with a Lipschitz constant o;

)
(b) B is completely continuous;
(¢c) x=AxBr = z €S forallyeS;
(d) M((r) <r, where M = ||B(S)|| = sup||B(z)|| : x € S;

then the operator equation Ax Bx = x has a solution in S.

Theorem 2. [15, 16] Let S be a closed convex and bounded subset of the Banach
space X and let A: X — X and B : S — X be two operators such that,

(a) A is a nonlinear contraction;
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(b) B is continuous and compact;

(c) x=Ax+ Bx forallye S = z€S;
Then the operator equation Ax + By = x has a solution in S.

3. v—Hilfer Fractional Hybrid Differential Equation of the First Type
We take X = C1_,.,(]0,T]), T > 0 through out this section.
we have the following lemma.

Lemma 5. Any function satisfies IV P (1) will also satisfy the integral equation

(1)
) () = () 1y [_2(0)
= sttty PO | )
/ W (s)(W(t) —6(s))° g, 2(s))ds,
—f<t,x<t>>{ PO s [ 000 = o) g(s.ato)as].

(13)
t€10,T7.

In addition if the function r — f(O oy 1s injective, and I&Zﬁg(t, x(t)) is an absolutely
continuous function, then the converse is true.
Proof. From lemma (1), the proof is clear [23, 24].

Theorem 3. Assume the following.

(Hy) The function x — oy s increasing in R, for allt € 1.

(t
Hy) There exists a constant Ly > 0 such that |f(t,x) — f(t,y)| < L¢|lx —y|, for
f f
allt € I and xz,y € R.

(H;) K(¥(T) — Qﬁ(O))Q“FOE%(_aa)) + ¥y (w) |x0| < 1, then the v— Hilfer Hybrid

Fractional differential equation has a solution deﬁned on I, where K 1is the

bound of a bounded function (V(-) — ¥ (a))™g(-).

Then IVP (1) has a mild solution on I.
Proof. We define a subset S of X by S ={x € X : [|z|| < N},

where,
_ -1 _ «
£ [(w(T) =IOk )xo T~ ((wm () )]

T—y(0)7—! T)—y(0)
1- L, (%xo) 1l (w( =u() )

N =
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and FO = Sllp”f(t, 0)||Cl—n,;w[07T]'
tel

It is clear that S satisfies the hypotheses of Theorem(1).
Also IV P(1) is equivalent to the ¢»—Hilfer Hybrid volterra Integral equation:

Ft, () | = 00D mﬁ / () @(E) — (5)* " g(s, 2(s))ds |

')
(15)
te[0,7].
Define two operators A: X — X and B : S — X by:

Ax(t) = f(t,z(t)), t e 1. (16)
att) = OO [ 61 0t0) = w0s)* ol a(ods. (1)

Then equation (15) is transformed into the operator equation as
x(t) = Az(t)Bx(t), t € I. (18)

We shall show that the operators A,B satisfy all the conditions of Theorem(1).
Claim I:
Let x,y € X, then by Hypothesis (Hs)

[Ax(t) = Ay(t)] = |f(t,2(t) = f(Ey(0)] < Lyla(t) —y(0)] < Lylle —yl, vt € L.

Taking supremum over ¢, we obtain

Az — Aylle,_,uxrrion < Lellz =y,

where z,y € X.
Claim II:
We show that B is continuous in S. Let z, be a sequence in S converging to a
point z € S, Then by Lebesgue Dominated Convergence Theorem:
lim Bz, (t)

n—o0

I (DR s
~ lim ro+ e [ V00 =) (s, (s))ds

n—500 I'(v)

n—oo

_ @t -y ﬁ / V() (t) = ¥(s)*" lim g(s, a(s))ds.
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Hence
lim Bz, (t) = Bz(t), Vt € I.

n—oo

Claim III:
B is a Compact Operator on S.
First, we show that B(S) is a uniformly bounded set in X. Let = € S, then by

hypothesis (H3), Vt € 1.
|Ba(t)]
© i [ ) @) — () gl 2(s)lds,

(¥(t) —(0)
al(a) 7’

[zo| + K(9(t) = 4(0))*T(1 - o)

2l (1 — )
al'(a)

|zo| + K ((T') = ¥(0))

Thus

(1h(t) —p(0))7
['(v)

This shows that B is uniformly bounded on S.
Next we show that B(S) is an equicontinuous set on X.
Let t1,ty € I, then for any x € S,

ol + K((T) — (0)** Y v e x

Bzl <
Bl < )

|Bx(t,) — Ba(ts)| = ——x

1
I(a)
() g (s, 2(s))ds — / () (W(t) — () g s, 2(5))ds|

/ s — () g(s, x(s))|ds,

(@)
L (9(t) —o(ta))”
F(a) o ’

IA
N’ﬁ

Hence for € > 0, there exist a § > 0 such that, whenever |t; — t5] < §, then
|B(z(t1)) — B(x(t2))| < €,V t1,to € I and V x € X. This shows that B(S) is an
equicontinuous set in X. Then by the Arzeld-Ascoli theorem, B is a continuous
and compact operator on S.
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Claim IV:
The hypothesis (c) of theorem (1) is satisfied.
Let x € X and y € S be arbitrary such that x = Ax By, then:

|z(8)] = [Ax(t IIBy )I

<|f(t.2(t) |\ et s [0 - o) g a(s)ds|
<[f(t, =) = f(£,0)] +

a0 | POk (oo - vle)* ot als)as].
(et + ) [P O o) - wiop T

Thus

_ -1 =
_ B [(MOR) o+ K () — w0 s

2 (t)] < W(T)—p(0))1 200-a) )
1 — Lf (Tﬂ,’o) + KW(T) - w(())) al'(a)
Taking supremum over ¢t € I,
_ -1 )
R [(%) o + K ((T) — (0))* Fa(%(co)}
]| < I

— v—1 —o

— Ly (M ) + K (0(T) — 0(0)) i)

Thus = € S and hypothesis (¢) of Theorem(1) is satisfied. Finally we have,
M = [|B(S)|| = sup||Bz|| : z € §

< K(Q/J(T) _ ¢(0))2ar(1 — Oé) ¢<T) — @Z)(O))’yil

oT(@) | T()

|I0|'

and so

2Ll —0)  O(T) —4(0)
al'(a) I'(7)
Thus all conditions of Theorem(1) are satisfied and hence the operator equation

Az Bz = z has a solution in S. As a result equation(1) has a solution defined on
I. This completes the proof.

aM < K((T) = 4(0)) || < 1.
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4. yp—Hilfer Fractional Hybrid Differential Equation of second type
Consider the y—Hilfer Fractional Hybrid Differential Equation of the form:

{HD%’ﬁ;w[x(t) — ftz()] = g(t,2(t), ae.t € J = [to,to +al, 1)

L, " la(to) — f(to,2(to))] =0 €R.

Lemma 6. Any function satisfies IV P (2) will also satisfy the integral equation

z(t) =
ft,z(t)) + W) _I‘(wv()t()))y_ Itlo:j(x(to) — f(to, z(t)))+
ﬁ / () (W) — ()" g5, 2(5))ds,
(22)
= sttt + POTEO gy [0 - vl ot et
(23)

t e [to,to—l—a].

In addition if the function x — x — f(0,x) is injective, and Igfpg(t,x(t)) is an
absolutely continuous function, then the converse is true.
Proof. From lemma (1), the proof is clear [23, 24].

Theorem 4. Assume the following

(A1) There exists constants My > Ly > 0 such that

|f(t,x) — f(t,y)] < (]\fo—‘;ﬂm forallt € J and x,y € R;

(A2) There exists v > 0 such that

a)— -1 —a o
r>Lpt+Fo+ ’(WH oy o |+ S (Ut + a) = $(t)*,

where Fy = sup,c; | f(t,0)];

(A3) K is the bound of a bounded function (¢(-) — (a))*™7g(-).

Then equation (21) has a mild solution on J.
Proof. Let X = Cy_,.4([to, to + a]),T > 0 and define the set S C X by S = {x €
X |lall < 7
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We prove the existence of a mild solution to problem (21) by discussing the
solution to the integral equation (23) which is equivalent to the operator equation,

Ax(t) + Br(t) = x(t), t € J. (24)
where,

Ax(t) = f(t.2(1)

Ba(t) = POy [t - v ets.olo)as

Now we prove our Theorem by proving that the conditions of Theorem(2) are
satisfied.
Step I:

Using the hypothesis (A1) we get:

|Ax(t) — Ay(@)| =[S, 2(t)) — f(t,y(@))],
Lyla(t) —y()]
T My +[z(t) —y ()]
Lyllz =yl
T My A+l -yl

Thus the operator A is a nonlinear contraction with the function ¢ defined by
Lyer

¢(T) = Mff-‘rT'

Step II:

Similarly by Theorem(3), we can prove that B is continuous and compact.
Step I1I:

Let z € X be fixed and y € S be arbitrary such that * = Az + By, then we
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get:

|z(t)]

<|Az(t)| + [By(1)|

<|f(t2(t)] + ‘(1/1(13) - Ei()to))% )

4 ﬁ / () (1) — (s))* (s, 2(s)) ds,

((t) — @b(to))”*la
['(v)

1 ¢ / a—1
+ e / () () — (s))* (s, 2(s)) ds,

(U(to +a) — w(to))w_la n KI'(1—a)
I'(v) al'(a)

<IF(t2(t)) — FLO) + [F(t,0)] + \

SLf—FFO—i—‘

<r.

which proves that ||z|| < 7. Thus z € S.
Thus the conditions of Theorem (2) are satisfied; then the operator equation
Ax(t) + Bx(t) = =z(t) has a solution in S which proves the existence of a mild
solution to problem (21) in J.
We finish the section with the following example.

Example 1. Consider the p—Hilfer fractional Hybrid differential equation

— sin@O\ _ ta(t)
Doy (‘“”‘ 24 [ (0) )‘ T e

L7 (x(0) = £(0,2(0))) = 1, t € [0,7].

We get that,

() — y(t)]

2+ [a(t) —y (@) + [y (@)’
|z(t) — y()]

T 24 () —y®)]

[f @ x(t) — f(Ey(0)] <

(¢(to + a) — ¥(t0))**,

51

and where |g(t, z(t))| < t, we get that all hypotheses of theorem (4) are satisfied

with

szl,MfZQ,T:ﬂ',FO:O.
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We conclude that

(1(to 4 a) — p(ty))7 ! KI'(1 - «)

Ly+ Fo+ ) o+ T@W(to +a) — ¥(ty))** =

1
1+ =4+ 7%/1 < 19.
e

For different x(t) and a the solutions corresponding to the problem are plotted
below. In each case red colour indicated the solution of the above problem.

«(t)

(a) x(t) =13 (b) z(t) =1+t

a=0.1
a=0.3

]

T T T T T T T
00 05 10 15 20 25 3o
t

(c) z(t) = sint

Corresponding to the above example with f(t) = ZT";C((Q" and g(t) = If"—% we
plotted some graphs with different x(¢) and (t).
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50 —_— a=0.1
— a=03 15
40 — a=05
0 a=0.7 10
a=0.9
R 0 o5
% 1w z
X 0.0
0 e
-10 05
-20
-1.0
_30 T
0.0 0.5 10 15 20 25 30 0.0 05 10 15 20 15 30

0.0 05 10 15 20 25 30
t

(c) z(t) = sint,(t) = In(t + 1)

5. Conclusions

In this paper we proved the existences of two types of Hybrid fractional dif-
ferential equation involving v —Hilfer fractional Derivative, which is a generalised
fractional derivative using different fixed point theorems and concluded the paper
with an example. we plotted some graphs for different values of ¢ (t) and x(t)
corresponding to the example.
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