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Abstract: Shock exerts on the system is a common phenomenon in reliability the-
ory. These shocks will create damage to the system due to its impact. The system
receives shocks in two mutually exclusive ways, internally (circuit problem, a heavy
supply of voltage, etc.) and externally (shocks by the circumstances). Adequate
replacement of the system due to the damages is not realistic since it involves cost.
A stochastic model is constructed with three different cases of shocks and the time
to replacement of a system is obtained, when the cumulative damages cross its
obligatory threshold. The numerical illustration has been made to the mean and
variance of time to replacement and the realistic conclusion is presented.
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1. Introduction
A shocks creating damages to the system placed in the environment is a com-

mon phenomenal in reliability theory. The system receives shocks in many different
categories and it is classified into two mutual exclusive shocks (i) Internal power
supply or voltage problem. (ii) Shocks due to circumstances. These shocks will
create damage to the system due to its impact. The time at which the cumu-
lative damages crosses the obligatory threshold, cannot be predicted. Defining a
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permissive threshold (less than obligatory threshold) fills the gap to expect the
replacement of a system. If the cumulative damages cross permissive threshold,
it gives alertness about the replacement, where the system may or may not be
replaced, whereas the cumulative damages crosses the obligatory threshold, the
system is replaced. In this context author [2] has studied many reliability models
with various assumptions on damages. Authors in [1], [3] and [4] have studied the
concept of manpower planning and the shock model approach. Considering the
shock model approach, the replacement of a system is carried out whenever the
cumulative damages crosses its obligatory threshold and the system may or may
not be replaced if the cumulative damages crosses permissive threshold.

In this paper, the mean and variance of time to replacement of a system is
determined for the three different cases of shocks. In case-I: it is assumed that
the time between two consecutive shocks forms a sequence of independent and
identically distributed random variables. There are some minute shocks that will
never create damage to the system. In case-II: it is assumed that the system
receives n+ r shocks. Of these, n shocks will create the damages with probability
0 < p < 1 to the system. Some system receives more shocks internally than the
shocks due to the external circumstances. In case-III: it is assumed that the shocks
received by the system has been classified into two mutually exclusive types.
For these three cases, the mean and variance of time to replacement have been
determined when the cumulative damages cross its obligatory threshold and the
system may or may not be replaced if the cumulative damages cross the permissive
threshold. The results are numerically illustrated and the findings in the illustration
coincide with the realistic observation.

2. Model Description:

Consider the system in which its functioning gets affected due to the impact
of the shocks. Let Bi, (i = 1, 2, 3, ...) be a stochastic process which represents the
damage due to the ith shock with exponential distribution function Gi(.) of pa-
rameter α > 0. Let Ai be the stochastic process that represents the time between
i − 1th and ith shock. Let the probability 0 < q < 1 represents the system is not
replaced after the cumulative damages crosses the permissive threshold. The ran-
domly indexed partial sum Sl represents the cumulative damages to the system by
the first l shocks. Let N(t) is the stochastic process that represents the number
of shocks exerted to the system up to the time t. Let R is a random variable
that represents time to replacement of the system, with distribution function L(.),
density function l(.) with Laplace transform l(.). Random variable Y represents
the permissive threshold for the cumulative damages that follows an exponential
distribution with parameter γ1 > 0. Let Z be an exponential obligatory threshold
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for the cumulative damages with parameter γ2 > 0. It is assumed that damages
created to the system, inter-shock times and the thresholds are stochastically in-
dependent.

3. Analytical Results
The analytical results for the mean and variance of time to replacement has

been derived for the three different cases of inter-shock times.
Case - I.

In Reliability, there exits some system which receives shocks in a periodic man-
ner. Hence, in this case, it is assumed that time between the two consecutive shocks
forms a sequence of independent and identically distributed exponential random
variables with parameter λ > 0. According to the policy, the replacement occurs
before the time t is equivalent to the cumulative damages crosses its obligatory
threshold and the system is replaced or the cumulative damages cross a permissive
threshold and the system is not replaced and the cumulative damages cross the
obligatory threshold before the time t. Hence the distribution function of time to
replacement is determined as

P (R < t) = P (SN(t) > Y )(1 − q) + P (SN(t) > Y )(q)P (SN(t) > Z)

Using the law of total probability, the distribution function of time to replacement
is given by

L(t) = 1 − e−λt(1−g(γ1)) − qe−λt(1−g(γ2)) + qe−λt(2−g(γ1)−g(γ2))

By differentiating with respect to t, Laplace transform for the probability density
function of time to replacement is determined. Now, differentiating the Laplace
transform of time to replacement with respect to s, the mean time to replacement
is determined at s = 0.

E(R) =
(α + γ1)

λγ1
+
q(α + γ2)

λγ2
− q(α + γ1)(α + γ2)

λ(2(α + γ1)(α + γ2) − α(α + γ1) − α(α + γ2))

The second moment of time to replacement is determined by differentiating twice
the Laplace transform of time to replacement with respect to s and s = 0. From
these results, the variance of time to replacement is determined and it is given by

V (R) =
2(α+ γ1)

2

(λγ1)2
+

2q(α+ γ2)
2

(λγ2)2
− 2q((α+ γ1)(α+ γ2))

2

(λ(2(α+ γ1)(α+ γ2)− α(α+ γ1)− α(α+ γ2)))2

−
(

(α + γ1)

λγ1
+
q(α + γ2)

λγ2
− q(α + γ1)(α + γ2)

λ(2(α + γ1)(α + γ2) − α(α + γ1) − α(α + γ2))

)2
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Case - II.
Now the analytical results for the mean and variance of time to replacement are

determined by assuming that the system receives n+ r shocks. Of these, n shocks
will create the damages with probability 0 < p < 1 to the system. By proceeding
as in case - I, differentiating the Laplace transform of time to replacement with
respect to s, the mean and variance of time to replacement are determined

E(R) =
(α + γ1)

pλγ1
+
q(α + γ2)

pλγ2
− q(α + γ1)(α + γ2)

λ(2p(α + γ1)(α + γ2) − α(α + γ1) − α(α + γ2))

V (R) =
2(α+ γ1)

2

(pλγ1)2
+

2q(α+ γ2)
2

(pλγ2)2
− 2q((α+ γ1)(α+ γ2))

2

(λ(2p(α+ γ1)(α+ γ2)− α(α+ γ1)− α(α+ γ2)))2

−
(

(α + γ1)

pλγ1
+
q(α + γ2)

pλγ2
− q(α + γ1)(α + γ2)

λ(2p(α + γ1)(α + γ2) − α(α + γ1) − α(α + γ2))

)2

Case - III.
In this case, the Poisson process N(t) that represents the number of shocks

exerted to the system is considered as the sum of two (Internal and External)
independent Poisson process with parameters λ1 > 0 and λ2 > 0. Now, the
probability density function of time to replacement is derived by taking derivative
for the distribution function with respect to t. Taking Laplace transform for the
probability density function of time to replacement and differentiating the Laplace
transform, the moments of time to replacement are determined.

E(R) =
(α+ γ1)

(λ1 + λ2)γ1
+

q(α+ γ2)

(λ1 + λ2)γ2
− q(α+ γ1)(α+ γ2)

(λ1 + λ2)(2(α+ γ1)(α+ γ2)− α(α+ γ1)− α(α+ γ2))

The variance of time to replacement is derived by using the first two moments of
time to replacement. It is given by

V (R) =
2(α + γ1)

2

((λ1 + λ2)γ1)2
+

2q(α + γ2)
2

((λ1 + λ2)γ2)2

− 2q((α + γ1)(α + γ2))
2

((λ1 + λ2)(2(α + γ1)(α + γ2) − α(α + γ1) − α(α + γ2)))2

−
(

(α+ γ1)

(λ1 + λ2)γ1
+

q(α+ γ2)

(λ1 + λ2)γ2
− q(α+ γ1)(α+ γ2)

(λ1 + λ2)(2(α+ γ1)(α+ γ2)− α(α+ γ1)− α(α+ γ2))

)2



Time to Replacement of a System with Permissive ... 27

4. Numerical Illusion

The following tables are the numerical values of the mean and variance of time
to replacement for the three cases. By fixing the thresholds (the limits for the
system could get from the circumstances with SI units of power) C1 = 200 and
C2 = 300 and varying the other parameters λ (in days) and α (damages created
to the system due to SI units of power), numerical values of mean and variance of
time to replacement (in days) are studied.

Case-I

1/λ 1/α q E(R) V(R)
0.033 0.017 0.4 36.366 1065.4
0.040 0.017 0.4 30.002 725.11
0.050 0.017 0.4 24.002 464.07
0.066 0.017 0.4 18.183 266.34
0.10 0.017 0.4 12.001 116.02
0.028 0.020 0.4 42.861 1479.9
0.028 0.025 0.4 42.862 1479.9
0.028 0.033 0.4 42.865 1480.0
0.028 0.050 0.4 42.867 1480.3
0.028 0.100 0.4 42.877 1480.9
0.028 0.017 0.5 44.646 1514.9
0.028 0.017 0.6 46.432 1543.9
0.028 0.017 0.7 48.218 1565.9
0.028 0.017 0.8 50.004 1581.9
0.028 0.017 0.9 51.789 1591.4
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Case-II

p q 1/λ 1/α E(R) V(R)
0.1 0.4 0.033 0.017 363.66 106536
0.1 0.4 0.040 0.017 300.02 72511.1
0.1 0.4 0.050 0.017 240.02 46407.1
0.1 0.4 0.066 0.017 181.88 26634
0.1 0.4 0.10 0.017 120.01 11601
0.1 0.4 0.028 0.020 428.61 147985.8
0.1 0.4 0.028 0.025 428.62 147992.5
0.1 0.4 0.028 0.033 428.64 148003.2
0.1 0.4 0.028 0.050 428.67 148025.9
0.1 0.4 0.028 0.100 428.77 148092.7
0.2 0.4 0.028 0.017 214.32 36995.4
0.3 0.4 0.028 0.017 142.87 16442.4
0.4 0.4 0.028 0.017 107.15 9248.9
0.5 0.4 0.028 0.017 85.721 5919.3
0.6 0.4 0.028 0.017 71.434 4110.6
0.1 0.5 0.028 0.017 446.46 151489.6
0.1 0.6 0.028 0.017 464.32 154359.6
0.1 0.7 0.028 0.017 482.18 156591.7
0.1 0.8 0.028 0.017 500.04 158186.1
0.1 0.9 0.028 0.017 517.89 159142.6
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Case-III

1/λ1 1/λ2 1/α q E(R) V(R)
0.033 0.033 0.017 0.4 18.183 266.34
0.040 0.033 0.017 0.4 16.440 217.71
0.050 0.033 0.017 0.4 14.459 168.41
0.066 0.033 0.017 0.4 12.122 118.37
0.10 0.033 0.017 0.4 9.0233 65.588
0.028 0.040 0.017 0.4 17.648 250.90
0.028 0.050 0.017 0.4 15.386 190.69
0.028 0.066 0.017 0.4 12.767 131.30
0.028 0.10 0.017 0.4 9.375 70.812
0.028 0.20 0.017 0.4 5.2636 22.318
0.028 0.033 0.020 0.4 19.673 311.80
0.028 0.033 0.025 0.4 19.674 311.81
0.028 0.033 0.033 0.4 19.675 311.84
0.028 0.033 0.050 0.4 19.677 311.88
0.028 0.033 0.100 0.4 19.681 312.03
0.028 0.033 0.017 0.5 20.493 319.18
0.028 0.033 0.017 0.6 21.313 325.23
0.028 0.033 0.017 0.7 22.133 329.93
0.028 0.033 0.017 0.8 22.952 333.29
0.028 0.033 0.017 0.9 23.772 335.31

5. Numerical Results
In all the three cases, if the probability of not replacing the system (q > 0) in-

creases, it elongates the time of replacement. Hence, the mean time to replacement
increases. In Case II, if the probability of shocks producing damages to the system
(p > 0) increases, then the system receives more damages. Hence, the cumulative
damages takes less time to cross the breakdown threshold. Thus, the mean time
to replacement of a system decreases. For the Cases I and II, if the average inter
shocks time increases, then the epoch of occurrences of shocks decreases. Thus, the
occurrences of shocks increases, that creates more damages to the system. Hence,
the mean time to replacement declines. In Case - III, if the average inter exter-
nal shocks and inter internal shocks increases, then the epoch of the occurrence
of shocks (external and internal shocks) decreases. Thus, the number of shocks
exerted to the system increases which creates more damages to the system. This
reduces the mean time to replacement.
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In Cases I, II and III, if the average damages due to the shocks increases, then
the damages exerted to the system decreases. Hence, the cumulative damages takes
more time to cross the breakdown threshold. Thus, the mean time to replacement
of a system increases. Comparing all the three cases, Case II gives more time to
replacement of a system. Perceiving the results for the three cases from the tables,
the numerical results coincides with the realistic surveillance.

6. Conclusion:
The general observation of hike in damages leads to the reduction of time to

replacement and the time between the shock (inter-shock times) elongates, the
replacement time of a system extended. This observation coincides with realistic
scrutiny. The concept of considering the independence in the inter-shock times and
the damages can be dropped in the future to study the dependence nature of shock
and its damages.
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