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Abstract: In this work we proposed a three species ecological model with a prey,
predator and competitor. Distributed type of delay is incorporated in the interac-
tion of prey and competitor species is taken for investigation. The system dynamics
is studied at its interior equilibrium point with exponential type of delay kernel.
The effect of Time delay on the dynamical behavior of the system is studied using
Numerical simulation. It is observed that Hopf bifurcation exist for the system for
different kernel strengths.
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1. Introduction
Mathematical modeling in Ecology gains importance in recent decades. The

stability analysis of ecosystems is quite intersecting and complex in nature. Differ-
ential equations are widely used in the stability analysis. Braun [8] and Simon’s [9]
explain the applications of differential equations in this area. Lokta [1] and Volterra
[2] studied the different models in population ecology. Kapur [3, 4] discussed the
models in biology, medicine, epidemiology, ecology etc. May [5], Freedman [6],
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Paul colinvaux [7] contributed a lot to this field. Time delays are natural in ecolog-
ical phenomenon. The stability analysis of time delay models are widely explained
by Cushing, J. M [10], Sreehari Rao [11], Gopalaswamy. K [12]. Time delay in
interactions in three species models with a prey, predator and competitor models
are discussed by paparao [13 - 15]. In spite of that we proposed three species
ecological model with distributed type delay model to investigate instability ten-
dencies using different delay kernel strengths. The model is described by system of
integro-differential equations and system dynamics is studied at co-existing state.
Numerical simulation is carried out in support of stability analysis using MAT LAB
simulation.

2. Mathematical Model
A three species ecological model with a prey (N1) predator (N2) and competitor

(N3) are considered for investigation. Here N2 is praying on N1. Apart from this
all prey, predator species are competing with third species (competitor N3). Death
rates are also considered for three species. A time delay is introduced in the
interaction of prey and competitor. Keeping the above aspects in view, the model
is characterized by the following system of integro- differential equations.

dN1

dt
= a1 N1 − α11N

2
1 − α12N1 N2 − α13N1

∫ t

−∞
k1(t− u) N3(u) du− d1 N1,

dN2

dt
= a2 N2 − α22N

2
2 − α22N2 N1 − α23N2 N3 − d2 N2,

dN3

dt
= a3 N3 − α33N

2
3 − α31N3

∫ t

−∞
k2(t− u) N1(u) du− α32N2 N3 − d3 N3,

(2.1)

where the parameters in the above model is described as follows
Ni : Population strengths of three species, ai: Growth rates of three species, αij
interspecies competition rate αij, (i 6= j) Intra species competition rate: di: Death
rates of three species, kernel weights k1(t − u) and k2(t − u). Assume that all
parameters are positive and Put t−u = z, we get the following system of equations

dN1

dt
= a1 N1 − α11N

2
1 − α12N1 N2 − α13N1

∫ ∞
0

k1(z) N3(t− z)dz − d1 N1,

dN2

dt
= a2 N2 − α22N

2
2 − α21N2 N1 − α23N2 N3 − d2 N2,

dN3

dt
= a3 N3 − α33N

2
3 − α31N3

∫ ∞
0

k2(z) N1(t− z)dz − α32N2 N1 − d3 N3

(2.2)
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Choose the kernels k1 and k2 such that∫ ∞
0

k1(z)dz = 1,

∫ ∞
0

k2(z)dz = 1,

∫ ∞
0

zk1(z)dz <∞,
∫ ∞

0

k1(z)dz <<∞, (2.3)

3. Equilibrium States
The co-existing state is obtained by solving system of equations (2.1) is given

by E: Co-existing state:
N̄1 = (a1−d1)(α22α33−α23α32)−α12(((a2−d2)α33−(a3−d3)α23)+α13((a2−d2)α32−(a3−d3)α22)

α11(α22α33−α23α32)+α12(α21α33+α31α23)−α13(α21α32+α31α22)

N̄2 = ((a2−d2)(α11α33+(a1−d1)α21α33+(a1−d1)α31α23)−((a3−d3)α11α23+(a3−d3)α21α13+(a2−d2)α13α31))
α11(α22α33−α23α32)+α12(α21α33+α31α23)−α13(α21α32+α31α22)

N̄3 = ((a3−d3)α11α22+(a3−d3)α21α12+(a2−d2)α12α31)−((a2−d2)α11α32+(a1−d1)α21α32+(a1−d1)α31α22)
α11(α22α33−α23α32)+α12(α21α33+α31α23)−α13(α21α32+α31α22)

(3.1)

This equilibrium state exist only when, N̄1 > 0, N̄2 > 0, N̄3 > 0.

4. Stability of the Equilibrium Point

Theorem 4.1. The co-existing state (N̄1, N̄2, N̄3) is locally asymptotically stable
if α11α33 − α13α31k1(λ) k2(λ) > 0.
Proof. Let the variational matrix is given by

J =

 −α11N̄1 α12N̄1 −α13N̄1 k1(λ)
α21N̄2 −α22N̄2 −α23N̄2

−α31N̄3 k2(λ) −α32N̄3 −α33N̄3

 (4.1)

with The characteristic equation

λ3 + b1 λ
2 + b2 λ+ b3 = 0 (4.2)

where b1 = (α11N̄1 + α22N̄2 + α33N̄3)

b2 = (α11α22 + α12α21)N̄1N̄2 + (α11α33 − α13α31k1(λ)k2(λ))N̄1N̄3

+ (α22α33 − α23α32)N̄2N̄3

b3 = N̄1N̄2N̄3(α11α22α33 + α12α21α33 − α13α22α31k1(λ)k2(λ)
− α11α23α32 + α12α23α31k2(λ) + α13α21α32k1(λ)) (4.3)

By Routh-Hurwitz criteria, the system is stable if b1 > 0, (b1 b2−b3) and b3 (b1 b2−
b3) > 0 b1 = (α11 N̄1 + α22 N̄2 + α33 N̄3) > 0
By algebraic calculations
(b1 b2−b3) = (α2

11 α22+α11α12α21)N̄1
2
N̄2+(α2

11 α33−α11α13 α31k1(λ)k2(λ))N̄1
2
N̄3+
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(α2
22α33 + α22α23α32)N̄2

2
N̄3 + (α2

22α11 + α22α12α21)N̄2
2
N̄1 + (α11α

2
33 − α33α13α31

k1(λ)k2(λ))N̄3
2
N̄1 + (α22α

2
33 +α33α23α32)N̄2N̄3

2
+ N̄1N̄2N̄3(2α11α22α33 +α12α23α31

k2(λ)+α13α21α32k1(λ) (b1 b2− b3) > 0 if α11 α33−α13α31 k1(λ)k2(λ) > 0 (4.4)
Also b3(b1 b2 − b3) > 0 if α11 α33 − α13α31 k1(λ)k2(λ) > 0
Hence the co-existing state (N̄1, N̄2, N̄3) is locally asymptotically stable if α11α33−
α13α31k1(λ)k2(λ) > 0. Let us define the kernel as follows k1(z) = k2(z) = a e−az

for a > 0, then the Laplace transform of k1(z) and k2(z) are defined as
k1(λ) = k2(λ) =

∫∞
0
e−λt a e−atdt = a

a+λ
.

Then the system is locally asymptotically stable if α11 α33 > α13 α31

[
a

a+λ

]2

.

5. Global Stability

Theorem 5.1. The co-existing state (N̄1, N̄2, N̄3) is locally asymptotically stable.
Proof. Let the Lyapunov function be

V (N1, N2, N3) =
3∑
i=1

Ni − N̄i − N̄i log
(Ni

N̄i

)
+ 1

2
α13

∫ ∞
0

k1(z)

∫ t

t−z

[
N3 − N̄3]2du dz

+ 1
2
α31

∫∞
0

k2(z)
∫ t
t−z

[
N1−N̄1]2du dz (5.1)

The time derivative of ‘V’ along the solutions of equations (2.1) is

V ′(t) =
∑3

i=1
Ni−N̄i

Ni
N

′
i + 1

2
α13

∫∞
0

k1(z)
[
N3(t−z)−N̄3]2dz+ 1

2
α31

∫∞
0

k2(z)
[
N1−

N̄1]2dz− 1
2
α31

∫∞
0

k2(z)
[
N1(t− z)− N̄1]2dz (5.2)

From the equation (2.1) we have
V ′(t) = [N1−N̄1](a1−α11N1−α12N2−α13

∫∞
0

k1(z)N3(t−z)dz−d1)+[N2−N̄2](a2−
α22N2 +α21N1−α23N3–d2) + [N3− N̄3](a3−α32N3−−α31

∫∞
0

k2(z)N1(t− z)dz−
α32N2−d3) + 1

2
α31[N1− N̄1]2 + 1

2
α31[N3− N̄3]2− 1

2
α13

∫∞
0

k1(z)[N3(t− z)− N̄3]2dz
− 1

2
α31

∫∞
0

k2(z)[N1(t− z)− N̄1]2dz

By proper choice of a1, a2, a3 and using the inequality ab ≤ a2+b2

2

∫∞
0

k1(z)[N3(t−
z)−N̄3]2dz ≤

∫∞
0

k1(z)dz = 1 and
∫∞

0
k2(z)[N1(t−z)−N̄1]2dz ≤

∫∞
0

k2(z)dz = 1

= −α11(N1−N̄1)2−α22(N2−N̄2)2−α33(N3−N̄3)2− (α32+α23)
2

[
(N2−N̄2)2+(N3−N̄3)2

]
+

1
2α31[N1 − N̄1]2 + 1

2α31[N3 − N̄3]2 + (α21−α12)
2

[
(N2 − N̄2)2 + (N1 − N̄1)2

]
− 1

2(α31 + α13)

≤ −‖
(
α11+ 1

2α31+ 1
2α21− 1

2α12

)
‖(N1−N̄1]2)‖−‖

(
α22− 1

2α12+ 1
2α21− 1

2α32− 1
2α23

)
‖(N2−

N̄2]2)‖−‖
(
α33+1

2α13−1
2α32−1

2α23

)
‖(N3−N̄3)2)‖−1

2‖(α31+α13)‖ V 1(t) ≤ −µ
∑3

i=1

[
Ni−

N̄i
2
]
< 0

where, µ = min
(
α11 + α22 + α33 + 1

2
α13 + 1

2
α31 + 1

2
α21 − 1

2
α12 − 1

2

(
α31 + α13)

)
Therefore the system is globally stable at co-existing state E1

(
N̄1, N̄2, N̄3

)



Hopf Bifurcation Analysis in Three Species Ecological Model 181

6. Numerical Example
Graphs Description: Fig A: Time series plot Fig B: Phase portrait
Example 6.1: Let a1 = 1.5, a2 = 2.65, a3 = 3.45, α11 = 0.1, α12 = 0.5, α13 = 0.01,
α21 = 0.5, α22 = 0.2, α23 = 0.4, α31 = 0.2, α32 = 0.2, α33 = 0.2, N1 = 10, N2 = 15,
N3 = 15, d1 = 0.05, d2 = 0.05 and d3 = 0.05. The solution curves for system
(2.2) are shown below for the above parameters The systems of equations (2.2) are
simulated using MATLAB using ode45 for the delay kernels k1(z) = k2(z) = a e−az

for a > 0 with the parameters shown in Example 1 with different kernel values are
plotted below.
Case (1): for λ = 0.005, a = 1

Figure 1: Figure 6.1.1(A) Figure 2: Figure 6.1.1(B)

The system is unstable due to unbounded oscillations in three species population
for λ = 0.005, a = 1. For fixed value of λ = 0.005 and the value of a is increased
from 1 to 100, the system still exhibits unstable nature. For fixed λ = 0.005 and
a = 0.01 the system is stable and converge to an equilibrium point E(5, 2, 12).
The plots are shown below

Figure 3: Figure 6.1.2(A) Figure 4: Figure 6.1.2(B)
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The system is stable for λ = 0.005 and the range of afrom [0.01, 0.023]. So the
delay argument for fixed λ = 0.005 and afrom [0.01, 0.023], the system dynamics
becomes stable and for a greater than 0.023 for this fixed λ = 0.005, the system
becomes unstable. Hence the system exhibit hopf bifurcation for λ = 0.005 and
a > 0.023.

Figure 5: Figure 6.2.1(A) Figure 6: Figure 6.2.1(B)

The system is unstable due to unbounded oscillations in three species population
for λ = 0.05, a = 1. For fixed value of λ = 0.05 and the value of a is increased from
1 to 100, the system still exhibits unstable nature. Forλ = 0.05 and a = 0.05 the
system is asymptotically stable to the fixed equilibrium point E(6, 2, 13) and the
time series plot and phase plane is given below.

Figure 7: Figure 6.2.2(A) Figure 8: Figure 6.2.2(B)

The system is stable for λ = 0.05 and the range of afrom [0.01, 0.23]. So the
delay argument for fixed λ = 0.05 and afrom [0.01, 0.23], the system dynamics
becomes stable and for a greater than 0.23 for this fixed λ = 0.05, the system
becomes unstable. Hence the system exhibit hopf bifurcation for λ = 0.05 and
a > 0.23.
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Figure 9: Figure 6.3.1(A) Figure 10: Figure 6.3.1(B)

The system is unstable due to unbounded oscillations in three species population
for fixed λ = 0.5, a = 5. For λ = 0.5, a = 2 the system is stable and quenching to
the equilibrium point E(6, 1, 11). The plots are shown below

Figure 11: Figure 6.3.2(A) Figure 12: Figure 6.3.2(B)

The system is stable for λ = 0.5 and the range of afrom [0.1, 2.3]. So the delay
argument for fixed λ = 0.5 and afrom[0.1, 2.3], the system dynamics becomes stable
and for a greater than 2.3 for this fixed λ = 0.5, the system becomes unstable.
Hence the system exhibit hopf bifurcation for λ = 0.5 and a > 2.3.

7. Conclusion
An Ecological model is proposed with a prey, predator and a competitor species

with death rates. A time delay (distributed type) was introduced in the interaction
of prey and competitor species. Exponential type delay kernel is chosen for inves-
tigation. The system is locally stable if at co-existing state. A suitable Lyapunov’s
function is identified in pursuit of global stability. Numerical simulation is carried
out by choosing suitable parameters with exponential delay kernel. For different
values of kernel strengths (λ and a) for the same parameters taken in example
6.1. The dynamics of the system is change from stable to unstable vice-versa. So
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the delay arguments play a key role in switch over stability analysis of the system
which leads to hopf bifurcation. The Hopf bifurcation parameters is identified for
this model for (i)λ = 0.005 and a >= 0.02(ii)λ = 0.05 and a > 0.23 (iii) λ = 0.5
and a > 2.3. Hence the delay arguments can change the stable equilibrium to
unstable or vice-versa.
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