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Abstract: The symmetric division deg index is one of the 148 discrete Adri-
atic indices introduced several years ago. This index has already been proved a
valuable index in the QSAR(Quantitative Structure Activity Relationship) and
QSPR(Quantitative Structure Property Relationship) studies. In this paper, we
present some new upper bounds for symmetric division deg index of a given Graph.
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1. Introduction
Molecular descriptors, results of functions mapping molecule’s chemical infor-

mation into a number [5], have found applications in modeling many physicochem-
ical properties in QSAR and QSPR studies [1]. Among the 148 discrete Adriatic
indices studied in [6], whose predictive properties were evaluated against the bench-
mark datasets of the International Academy of Mathematical Chemistry [3], 20
indices were selected as significant predictors of physicochemical properties. One
of these useful discrete adriatic indices is the symmetric division deg index which

is defined as SDD(G) =
∑

xy∈E(G)

(
dx
dy

+ dy
dx)

)
, where dx and dy are the degrees of
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vertices x and y, respectively. Among all the existing molecular descriptors, SDD
index has the best correlating ability for predicting the total surface area of poly-
chlorobiphenys [6]. Vasilyev [7] provided the different types of lower and upper
bounds of symmetric division deg index in some classes of graphs and determined
the corresponding extremal graphs. In this paper, we present some new lower
bounds for symmetric division deg index of a given graph.

2. Preliminaries

Let G be a finite simple connected graph with vertes set V (G) and edge set
E(G). Let dx denote the degree of a vertex x in G. We denote by δ and ∆ the
maximum and minimum vertex degrees of G, respectively.

The Zagreb indices are among the oldest topological indices introduced by Gut-
man and Trinajstic in 1972. These indices have since been used to study molec-
ular complexity, chirality, ZE-isomerism and hetero-systems. They are defined
as M1(G) =

∑
xy∈E(G)

(dx + dy) and M2(G) =
∑

xy∈E(G)

(dxdy). A modification Zagreb

indices was proposed by Nikolic et al. [2] in 2003. The first and second modified Za-
greb indices of G are defined as M∗

1 (G) =
∑

x∈V (G)

1
d2x

and M∗
2 (G) =

∑
xy∈E(G)

1
dxdy

. The

multiplicative version of Zagreb indices were introduced by Todeschini and Con-
sonni [5] in 2010. They are defined as π1(G) =

∏
x∈V (G)

d2
x and π2(G) =

∏
xy∈E(G)

dxdy.

In 1975, Randić [4] proposed a structure descriptor, based on the end -vertex
degrees of edges in a graph, called branching index that later became the well-
known Randić connectivity index. The Randić index of G is defined as R(G) =∑
xy∈E(G)

1√
dxdy

. It gave rise to a number of generalizations. The most common one

arises by varying the exponent α in the edge contribution (dxdy)
α. The α-Randić

index is then defined as Rα(G) =
∑

xy∈E(G)

(dxdy)
α. The F -index and multiplicative

F -index of a connected graph G are respectively, defined as F (G) =
∑

xy∈E(G)

(d2
x +

d2
y) and F ∗(G) =

∏
xy∈E(G)

(d2
x + d2

y). The α-F -index of G is defined as Fα(G) =∑
xy∈E(G)

(d2
x + d2

y)
α.

3. Bounds for SDD

Theorem 3.1. Let G ba a graph with m edges. Then SDD(G) ≤ 4(m∆−ISI(G))δ
∆2

with equality if and only if G is regular.

Proof. We know that dxdy = 1
2

[
(dx +dy)

2− (d2
x +d2

y)
]

By dividing this expression



Upper Bounds for Symmetric Division Deg Index of Graphs 159

throughout by dx + dy, we obtain

dxdy
dx + dy

=
1

2

[
(dx + dy)−

(d2
x + d2

y)

(dx + dy)

]
. (1)

Taking summation over all edges in G on both sides, we obtain

∑
xy∈E(G)

dxdy
dx + dy

=
1

2

∑
xy∈E(G)

[
(dx + dy)−

(d2
x + d2

y)

(dx + dy)

]
≤ 1

2

∑
xy∈E(G)

[
2∆−

(d2
x + d2

y)

2δ
(
δ2

dxdy
)
]

= m∆− ∆2

4δ

∑
xy∈E(G)

(d2
x + d2

y)

dxdy
.

Hence SDD(G) ≤ (m∆−ISI(G))4δ
∆2 . Equality holds if and only if dx = dy = δ = ∆,

for each edge xy ∈ E(G), this implies G is regular.

Theorem 3.2. Let G ba a graph with s pendent vertices and minimal non-pendant

vertex degree δ1. Then SDD(G) ≤ 2∆2(m−s)+s(1+∆2)δ1
δ21

with equality if and only if G

is regular (or) G is (1,∆)-semiregular.
Proof. From the definition of SDD, we have

SDD(G) =
∑

xy∈E(G), dx,dy 6=1

d2
x + d2

y

dxdy
+

∑
xy∈E(G), dx=1

1 + d2
y

dy

≤ (m− s)2∆2

δ2
1

+ s
1 + ∆2

δ1

=
2∆2(m− s) + s(1 + ∆2)δ1

δ2
1

.

Equality holds above if and only if dx = dy = δ1, for each non-pendent vertex
x ∈ V (G), this implies G is (1,∆)-semiregular if s ≥ 0 and G is regular if s = 0.

Corollary 3.3. Let G ba a graph without pendent vertices. Then SDD(G) ≤ 2∆2m
δ2

with equality if and only if G is regular.
Proof. By setting s = 0 and δ1 = δ in above theorem, we get the required result.

Theorem 3.4. Let G be a graph with m edges. Then SDD(G) ≤
(
δ+∆√
δ∆

)2

− 2m
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with equality if and only if G is regular.
Proof. From the definition of SDD, we have

SDD(G) + 2m =
∑

xy∈E(G)

(d2
x + d2

y

dxdy
+ 2
)

=
∑

xy∈E(G)

(d2
x + d2

y + 2dxdy

dxdy

)
=

∑
xy∈E(G)

((dx + dy)√
dxdy

)2

. (2)

For each edge xy ∈ E(G), we have

((dx + dy)√
dxdy

)2

=
(√dx

dy
−
√
dy
dx

)2

+ 4

≤
(√∆

δ
−
√
δ

∆

)2

+ 4 =
(∆ + δ√

δ∆

)2

.

Hence (dx+dy)√
dxdy

≤ ∆+δ√
δ∆
. Equality if and only if dx

dy
= ∆

δ
for each edge xy ∈ E(G) with

dx ≥ dy, which implies that dx = ∆ and dy = δ, this holds if and only if G is regular
(or) biregular. Thus (2) implies that SDD(G) + 2m ≤ m∆+δ√

δ∆
.

Hence SDD(G) ≤ m∆+δ√
δ∆
− 2m with equality if and only if G is regular.

Theorem 3.5. For any graph G, SDD(G) ≤ 2∆2√m
δ

M∗
2 (G). Equality holds if and

only if G is regular (or) biregular.
Proof. From the definition of SDD, we have(

SDD(G)
)2

=
( ∑
xy∈E(G)

d2
x + d2

y

dxdy

)2

=
( ∑
xy∈E(G)

d2
x + d2

y√
dxdy

1√
dxdy

)2

.

By Cauchy-Schwarz inequality, we have(
SDD(G)

)2

≤
∑

xy∈E(G)

(d2
x + d2

y√
dxdy

)2 ∑
xy∈E(G)

( 1√
dxdy

)2

= m
4∆4

δ2

∑
xy∈E(G)

( 1√
dxdy

)2

= m
4∆4

δ2
(M∗

2 (G))2.

Hence SDD(G) ≤ 2∆2√m
δ

M∗
2 (G).
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By Cauchy-Schwarz inequality, the equality holds if and only if there exists

a constant k such that for every edge xy ∈ E(G),
d2x+d2y√
dxdy

= k√
dxdy

, this implies

d2
x + d2

y = k. If xy, yz ∈ E(G), then d2
x + d2

y = d2
y + d2

z, this implies that dy = dz.

Consequently, for each vertex x ∈ V (G), every neighbor of x has the same
degree. This holds if and only if G is regular (or) biregular.

Theorem 3.6. Let G be (n,m) graph. Then SDD(G) ≤ 2mn2+χ3(G)−2nχc(G)
δ2

with
equality holds if and only if G is regular (or) biregular.
Proof. From the definition of SDD, we have

SDD(G) =
∑

xy∈E(G)

d2
x + d2

y

dxdy

≤ 1

δ2

∑
xy∈E(G)

(
(n− ε(x))2 + (n− ε(y))2

)
=

1

δ2

∑
xy∈E(G)

(
(n2 + ε(x)2 − 2nε(x)) + (n2 + ε(y)2 − 2nε(y))

)
=

1

δ2

∑
xy∈E(G)

(
2n2 + (ε(x)2 + ε(y)2)− 2n(ε(x) + ε(y))

)
=

2n2m

δ2
+

1

δ2

∑
xy∈E(G)

(
ε(x)2 + ε(y)2

)
− 2n

δ2

∑
xy∈E(G)

(
ε(x) + ε(y))

)
=

2n2m

δ2
+

1

δ2
χ3(G)− 2n

δ2
χc(G).

Lemma 3.7. Suppose ai and bi, 1 ≤ i ≤ n are positive real numbers, then∣∣∣∣∣n
n∑
i=1

aibi −
n∑
i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ β(n)(A− a)(B − b),

where a, b, A and B are real constants, that for each i, 1 ≤ i ≤ n,a ≤ ai ≤ A and
b ≤ bi ≤ B. Further, β(n) = n

⌈
n
2

⌉
(1− 1

n

⌈
n
2

⌉
).

Theorem 3.8. Let G be (n,m) graph. The SDD(G) ≤ F (G)M∗
2 (G)

m
− 2β(m)(∆2−δ2)2

δ2∆2m

with equality holds if and only if G is regular, where β(m) = m
⌈
m
2

⌉ (
1− 1

m

⌈
m
2

⌉ )
.

Proof. By setting ai = 1
dxdy

,bi = d2
x + d2

y,a = 1
δ2
,A = 1

∆2 , b = 2δ2 and B = 2∆2, in



162 South East Asian J. of Mathematics and Mathematical Sciences

Lemma 3.7, we obtain∣∣∣∣∣∣m
∑

xy∈E(G)

(d2
x + d2

y)

dxdy
−

∑
xy∈E(G)

1

dxdy

∑
xy∈E(G)

(d2
x + d2

y)

∣∣∣∣∣∣ ≤ β(m)
( 1

∆2
− 1

δ2

)
(2∆2 − 2δ2).

This implies, mSDD(G) − M∗
2 (G)F (G) ≤ 2β(m)

(
δ2−∆2

δ2∆2

)
(∆2 − δ2). Hence

SDD(G) ≤ M∗
2 (G)F (G)

m
− 2β(m) (∆2−δ2)2

mδ2∆2 with equality if and only if δ = ∆. Thus G
is regular.

4. Conclusion
symmetric division deg index is recently devolved topological index which is

used in chemistry. In this article, we have found some new upper bounds for above
index for a given connected graph.
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