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Abstract
In this article we give an overview of the recent developments in the area of

fractional integrals and fractional derivatives. A new definition is given by this au-
thor in terms of Mellin convolutions of ratios and products in the case of real scalar
variables and M-convolutions of ratios and products in the case of matrix variables,
where one of the functions is a type-1 beta type so that all the definitions available
in the literature for fractional integrals can be brought under one definition. Once
the fractional integrals are defined, fractional derivatives can be defined as certain
fractional integrals so that the results coming from fractional derivatives can de-
scribe global activities compared to integer order derivatives which can describe
only local activities at a point. When fractional derivatives are defined as certain
fractional integrals then these derivatives cover not only given points of interest
but also their neighborhoods so that fractional derivatives become more useful in
practical applications. An ideal situation may be a local activity but in reality the
real-life situation may be in the neighborhood of the ideal case. The new definition
is also extended to real matrix-variate case as well as to complex matrix-variate
case. Thus, for the first time, fractional calculus of functions of complex variables
is also given through the new definition.

Keywords: Fractional integrals, fractional derivatives, scalar and matrix variate
cases, complex-variate cases, Mellin convolutions, M-convolutions of products and
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1. Introduction.

Even though fractional calculus is as old as integer order calculus itself, the area
of fractional calculus was dormant all these years except for the last two decades.
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Now it is a fast growing area with the investigations of new applications in vari-
ous different fields from physical and engineering sciences, to biological and social
sciences. The renewed interest came mostly because the solutions coming from
fractional differential equations are found to describe practical situations much
better compared to the solutions coming from integer order differential equations.
The reason can be explained as follows: Integer order derivatives are local activities
or they deal with a given point or instantaneous rate of change at a given point
whereas an integral covers an interval in the real scalar variable case. Fractional
derivatives are certain integrals and thus cover an interval covering the point which
the integer order derivative is concerned with, plus its neighborhoods. Thus, natu-
rally, the solutions coming from fractional order differential equations are found to
be more suitable to describe practical situations. This is the main reason for the
renewed interest in fractional calculus.

In the area of fractional calculus there are several definitions for fractional
integrals, thereby for fractional derivatives, given by various authors from time to
time. As a result, there are several types of notations to describe various fractional
integrals and fractional derivatives. Thus, anyone looking at the area will find it a
full jungle there and difficult to sort out things. Recently this author (Mathai, 2013,
2014) has given a geometrical interpretation for fractional integrals as fractions
of certain total integrals. Earlier, the author had given the interpretation as a
fraction of a total probability when fractional integrals were given interpretations
in terms of statistical distribution theory. Consider a function f(x1) of one scalar
variable x1 and suppose that this is integrated out over a simplex which is a part
of the n-dimensional cube (b − a) × (b − a) × ... × (b − a). Consider the plane
x1 = x2 = ... = xn and the simplex to the left or integrate over a ≤ t ≤ x. This
will lead to left-sided or first kind fractional integrals. Consider the simplex to the
right of the plane or integrate over x ≤ t ≤ b. Then we end up with the right-sided
or second kind fractional integral, see also Mathai (2014). These left-sided and
right-sided fractional integrals will contain a factor of the type 1

Γ(n)
(1− x1

x
)n−1f(x1)

for the left-sided integral, where f(x1) is the arbitrary function of the one variable
x1, and a factor of the type 1

Γ(n)
(1 − x

x1
)n−1f(x1), n = 1, 2, ... for the right-sided

integral. If the integer n is replaced by an arbitrary α with <(α) > 0 then we
get the crucial factor in all the definitions of fractional integrals of order α. But,
observe that the factor of the type (1 − 1

x
t)α−1, x > 0 or the form (1 − x

t
)α−1 is a

part of type-1 beta form. Also the structure
∫ x
a

(1− t
x
)α−1f(t)dt is the structure of

a Mellin convolution of a ratio, which is of the form
∫
v
v
u2
f1( v

u
)f2(v)dv. Similarly,

the integral
∫ b
x
(1− x

t
)α−1f(t)dt has the structure

∫
v

1
v
f1(u

v
)f2(v)dv which is in fact

the structure of a Mellin convolution of a product. From these observations, this
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author has noted the following Mellin convolutions of a product and ratio.

2. Mellin Convolutions of Ratios and Products

These Mellin convolutions in the real scalar case are directly connected to sta-
tistical distributions and it is also easy to explain in terms of statistical densities
of products and ratios. Hence consider two statistically independently distributed
positive real scalar random variables x1 > 0, x2 > 0 with the densities f1(x1) and
f2(x2) respectively. Consider the product u2 = x1x2. Let v = x2. Then the Ja-
cobian is v−1. The joint density of x1 and x2 is the product f1(x1)f2(x2) due to
statistical independence. Let the joint density of u2 and v be denoted by g(u2, v)
and the marginal density of u2 be denoted by g2(u2). Then the density g2(u2) is
given by

g2(u2) =

∫
v

1

v
f1(

u

v
)f2(v)dv. (2.1)

Suppose that we take f1(x1) as a type-1 beta density with the parameters (γ+1, α),
that is,

f1(x1) =
Γ(γ + 1 + α)

Γ(γ + 1)Γ(α)
xγ1(1− x1)α−1

for <(α) > 0,<(γ) > −1, 0 ≤ x1 ≤ 1 and zero elsewhere. Let f2(x2) = f(x2) be an
arbitrary density. Then (2.1) becomes the following:

g2(u2) =
Γ(γ + 1 + α)

Γ(γ + 1)Γ(α)
uγ

∫
v>u2

v−γ−α

× (v − u2)α−1f(v)dv

=
Γ(γ + 1 + α)

Γ(γ + 1)
K−α2,u2,γ

f where

K−α2,u2,γ
=

uγ2
Γ(α)

∫
v>u2

v−γ−α(v − u2)α−1f(v)dv. (2.2)

This K−α2,u2,γ
f is known as Kober fractional integral of the second kind, or right-

sided, of order α and with parameter γ. Note that g2(u2) is a statistical density
when f1 and f2 are densities. If they are not densities then g2(u2) will be the Mellin
convolution of a product of the functions f1(x1)f2(x2) or Mellin convolution of the
product x1x2.
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Now let us look at the ratio u1 = x2
x1
, v = x2. Then the Jacobian is − v

u21
. If we

had taken v = x1 then x2 = u1v and the Jacobian is v. We have taken it in the
first way so that the first function f1 will change into a convenient format. Then
the density of u1, going through the same steps as above, can be seen to be the
following:

g1(u1) =

∫
v

v

u2
1

f(
v

u1

)f2(v)dv. (2.3)

Let f1 be a type-1 beta density with the parameters (γ, α) or

f1(x1) =
Γ(γ + α)

Γ(γ)Γ(α)
xγ−1

1 (1− x1)α−1

for 0 ≤ x1 ≤ 1,<(α) > 0,<(γ) > 0 and zero elsewhere. Let f2 = f(x2) be an
arbitrary density. Then (2.3) becomes the following:

g1(u1) =
Γ(γ + α)

Γ(γ)

u−γ−α1

Γ(α)

∫
v<u1

vγ

× (u1 − v)α−1f(v)dv

=
Γ(γ + α)

Γ(γ)
K−α1,u1,γ

f where

K−α1,u1,γ
f =

u−γ−α1

Γ(α)

∫
v<u1

vγ(u1 − v)α−1f(v)dv. (2.4)

Here K−α1,u1,γ
f is called Kober fractional integral of the first kind, or left-sided, of

order α and with parameter γ.

Thus from (2.2) and (2.4) it may be observed that Kober fractional integral
operators of the first and second kind can be given direct interpretations in terms
of statistical densities of ratio and product respectively. If f1 and f2 are not statis-
tical densities then (2.2) and (2.4) become Mellin convolutions of product and ratio
respectively. Motivated by (2.2) and (2.4), this author has given a general defini-
tion for fractional integrals of the second and first kinds as Mellin convolutions of
product and ratio in the real scalar variable case.

3. A General Definition for Fractional Integrals in the Real Scalar Case

Let us consider fractional integral of the second kind first. Let

f1(x1) =
1

Γ(α)
φ1(x1)(1− x1)α−1 (3.1)
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for 0 ≤ x1 ≤ 1,<(α) > 0 and zero elsewhere, where φ1(x1) is some specified
function, and let

f2(x2) = φ2(x2)f(x2) (3.2)

where f(x2) is an arbitrary function and φ2(x2) is a specified function. Then take
u2 = x1x2 and compute g2(u2) as in (2.2). Then g2(u2) will be of the following
form, again denoted by g2:

g2(u2) =

∫
v

1

v
φ1(

u

v
)(1− u

v
)α−1φ2(v)f(v)dv. (3.3)

Suppose that

φ1(x1) =
Γ(γ + 1 + α)

Γ(γ + 1)Γ(α)
xγ1

for <(γ) > −1,<(α) > 0, and φ2 = 1. Then (3.3) reduces to a constant multiple
of the Kober fractional integral operator of the second kind of order α, denoted
by this author as K−α2,u2,γ

f , as given in (2.2). Suppose that φ1 = 1, φ(x2) = x−α2

then (3.3) becomes Weyl fractional integral operator of the second kind of order α,
denoted by this author as W−α

2,u1
f , and given by

W−α
2,u2

f =
1

Γ(α)

∫
v>u2

(v − u2)α−1f(v)dv, (3.4)

for <(α) > 0. If v is bounded above by a constant b then (3.4) becomes Riemann-
Liouville fractional integral operator of the second kind of order α, denoted by
this author as D−α2,(u2,b)

f . If we take φ1(x1) as a Gauss hypergeometric function
for 0 ≤ x1 ≤ 1 and zero elsewhere then we can obtain Saigo fractional integral
operator of the second kind, denoted by this author as S−α2,u2

f and its generalizations

by taking the argument in the hypergeometric functions as axδ11 or a(1 − x1)δ2 or
axδ31 (1− x1)δ4 where a > 0, δj > 0, j = 1, 2, 3, 4. Some of these generalizations are
given in Mathai and Haubold (2008), Mathai,Saxena and Haubold (2010). One
can also obtain a pathway generalized form of fractional integrals of the second
kind by replacing in (3.1) the factor (1− x1)α−1 by (1− bxδ)γ for δ > o, γ > 0, see
the details from Mathai (2013,2014).

Now, we will look into a general definition for fractional integrals of the first
kind or left-sided fractional integrals. Let f1 and f2 be as defined in (3.1) and (3.2)
respectively. Let u1 = x2

x1
, v = x2 so that the Jacobian is − v

u21
, x1 = v

u1
. Then

proceed as in the derivation of (2.4). We end up in a g1(u1) in the following form,
again denoted by g1(u1):
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g1(u1) =
1

Γ(α)

∫
v

v

u2
φ1(

v

u1

)(1− v

u1

)α−1φ2(v)f(v)dv (3.5)

for 0 ≤ x1 ≤ 1,<(α) > 0 and zero elsewhere. Let us look into some special cases.
Let

φ1(x1) =
Γ(α + γ)

Γ(γ)
xγ−1

1 ,<(γ) > −1,<(α) >
p− 1

2

and φ2 = 1. Then g1(u1) in (3.5) reduces to the Kober fractional integral of the
first kind of order α, denoted by this author as K−α1,u1,γ

f , as in (2.4). Let us look

into another special case. Let φ1(x1) = xα−1
1 and φ2(x2) = x−α2 then (3.5) reduces

to the Weyl fractional integral of the first kind of order α, denoted by this author
as W−α

1,u1
f , and given by

W−α
1,u1

f =
1

Γ(α)

∫
v<u1

(u1 − v)α−1f(v)dv (3.6)

for <(α) > 0. If v is bounded below at a, where a is a constant, then (3.6) reduces
to Riemann-Liouville fractional integral of the first kind of order α, denoted by
this author as D−α1,(a,u1)f or D−α1,u1

f for a = 0. If we write φ1(x1) in terms of a Gauss

hypergeometric function then (3.5) reduces to Saigo fractional integral operator of
the first kind of order α in the real scalar variable case. A pathway generalized
form for the first kind integral is also available by replacing the factor (1− x1)α−1

in (3.1) by (1− cxρ1)η, ρ > 0, η > 0, c > 0 and then specializing c, η.

4. Fractional Integrals for Real Matrix-variate Case

Fractional integrals of the first and second kind in the real scalar variable case
are extended to real matrix-variate case, to complex matrix-variate case, to several
real scalar variables case, to several real matrix-variates case and to several complex
matrix-variates case. Out of these, we will consider here the situation of one real
matrix variable case. Again, as in the real scalar variable case, it is easy to explain
products and ratios of matrices and M-convolutions of products and ratios in terms
of statistical densities.

In this section, all matrices appearing are p×p real positive definite unless stated
otherwise. We will use the following standard notations. |X| and tr(X) denote the
determinant and trace of X = (xij) respectively. X > O,X ≥ O,X < O,X ≤ O
denote positive definiteness, positive semidefiniteness, negative definiteness and
negative semidefiniteness respectively.

∫
A<X<B

f(X)dX denotes the real-valued
function f(X) of the matrix argument X is integrated out over all X such that
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X > O,X − A > O,B − X > O,A > o,B > O where A and B are constant
matrices. Here dX denotes the wedge product of all distinct differentials in X. Here
X is symmetric p×p and hence there are only p(p+1)/2 distinct real variables, and
then dX = ∧i≥jdxij = ∧i≤jdxij. When Y = (yij) is a general m × n matrix then
dY = ∧mi=1 ∧nj=1 dyij. Note that O < X < I means that X is positive definite and
that all eigenvalues of X are in the open interval (0, 1). We need a few Jacobians of
matrix transformations in this section and these will be given as lemmas without
proofs. For proofs and for other results on Jacobians, see Mathai (1997).

Lemma 4.1. Let A be m×m nonsingular constant matrix, B be n×n nonsingular
constant matrix and let X and Y be m×n matrices of distinct real scalar variables.
Then

Y = AX, |A| 6= 0⇒ dY = |A|ndX

Y = XB, |B| 6= 0⇒ dY = |B|mdX

Y = AXB, |A| 6= 0, |B| 6= 0⇒ dY = |A|n|B|mdX.

Lemma 4.2. Let X = X ′, a p × p symmetric matrix of distinct real variables,
except for symmetry. Let A be a p× p nonsingular constant matrix. Then

Y = AXA′, |A| 6= 0⇒ dY =

{
|A|p+1dX for X = X ′

|A|p−1dX for X ′ = −X.

Lemma 4.3. Let X be a nonsingular p × p matrix and let X−1 be its regular
inverse. Then

Y = X−1 ⇒ dY =

{
|X|−2pdX for a general X

|X|−(p+1)dX for X = X ′.

Lemma 4.4. Let X be a p × p real positive definite matrix with distinct real
variables, except for symmetry, and let T be a lower triangular matrix of distinct
elements and with positive diagonal elements. Then the transformation X = TT ′

is one to one and

dX = 2p{
p∏
j=1

tp+1−j
jj }dT.
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Now, let us consider products and ratios of p× p real positive definite matrices

X1 and X2. Let X
1
2
2 denote the positive definite square root of X2. Consider

the product U2 = X
1
2
2 X1X

1
2
2 , V = X2 or X1 = V −

1
2U2V

− 1
2 , and the ratio U1 =

X
1
2
2 X

−1
1 X

1
2
2 , V = X2 or X1 = V

1
2U−1

1 V
1
2 . These U2 and U1 are called symmetric

product and ratio respectively. From the above lemmas the Jacobians can be seen
to be the following:

dX1 ∧ dX2 = |V |−
p+1
2 dU2 ∧ dV

dX1 ∧ dX2 = |V |
p+1
2 |U1|−(p+1)dU1 ∧ dV,

ignoring the sign. Let X1 and X2 be statistically independently distributed real
p× p matrix-variate random variables with the real-valued scalar functions f1(X1)
and f2(X2) as densities respectively. Then due to independence the joint density
of X1 and X2 is the product f1(X1)f2(X2). Let the joint density of U2 and V be
denoted by g(U2, V ) and the marginal density of U2 as g2(U2). Then from standard
procedures we can see that the density of U2 has the following format:

g2(U2) =

∫
V

|V |−
p+1
2 f1(V −

1
2UV −

1
2 )f2(V )dV. (4.1)

If f1 and f2 are statistical densities then (4.1) gives a statistical density of the

product U2 = X
1
2
2 X1X

1
2
2 . In general, for arbitrary functions f1 and f2, including

densities, (4.1) is called M-convolution of a product. Thus, the concept of M-
convolutions defined in Mathai (1997) is given a proper interpretation in terms of
statistical densities here. Suppose that we consider f1 a real matrix-variate type-1
beta density of the following form:

f1(X1) =
Γp(γ + p+1

2
+ α)

Γp(γ + p+1
2

)Γp(α)
|X1|γ

× |I −X1|α−
p+1
2 , O < X1 < I (4.2)

for <(α) > p−1
2
,<(γ) > −1 and zero elsewhere, where Γp(α) is the real matrix-

variate gamma given by the following expression which has the following integral
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representation also:

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α− 1

2
)...Γ(α− p− 1

2
),<(α) >

p− 1

2

=

∫
X>O

|X|α−
p+1
2 e−tr(X)dX. (4.3)

Now, if (4.2) is substituted in (4.1) and if f2(X2) = f(X2) where f is an arbitrary
density then g2(U2) of (4.1) becomes the following, again denoted by g2(U2):

g2(U2) =
Γp(γ + p+1

2
+ α)

Γp(γ)

|U2|γ

Γp(α)

∫
V >U2

|V |−γ−α

× |V − U2|α−
p+1
2 f(V )dV,<(α) >

p− 1

2
. (4.4)

Note that for p = 1, (4.4) corresponds to Kober fractional integral of the second
kind and of order α and parameter γ. Hence this author has called (4.4) as Kober
fractional integral of order α and of the second kind with parameter γ in the real
matrix-variate case. A corresponding result is also established in Mathai (2013)
for the complex matrix-variate case, which will not be discussed here.

Now, let us consider the ratio of two matrix random variables in the real case.

In this case we take for convenience as U1 = X
1
2
2 X

−1
1 X

1
2
2 or X1 = V

1
2U−1

1 V
1
2 . Then

the density of U1, again denoted by g1(U1) will be the following:

g1(U1) =

∫
V

|V |
p+1
2 |U1|−(p+1)f1(V

1
2U−1

1 V
1
2 )f(V )dV. (4.5)

Let us consider some special cases. Let us assume that f1 is of the following form:

f1(X1) =
Γp(γ + α)

Γp(γ)Γp(α)
|X1|γ−

p+1
2

× |I −X1|α−
p+1
2 , O < X1 < I,<(α) >

p− 1

2
,<(γ) >

p− 1

2
. (4.6)

If we substitute (4.6) in (4.5) then we have the following form for the density g1(U1):
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g1(U1) =
Γp(γ + α)

Γp(γ)

|U2|−γ−α

Γp(α)

∫
V <U1

|V |γ

× |U1 − V |α−
p+1
2 f(V )dV

=
Γp(γ + α)

Γp(γ)
K−α1,U1,γ

f where (4.7)

K−α1,U1,γ
f =

|U1|−γ−α

Γp(α)

∫
V <U1

|V |γ|U1 − V |α−
p+1
2 f(V )dV. (4.8)

Here, (4.8) for p = 1 corresponds to Kober fractional integral of order α and of
the first kind and hence this author has called (4.8) as Kober fractional integral of
order α of the first kind with parameter γ in the real matrix-variate case.

5. General Definitions in the Real Matrix-variate Case

A general definition is given by this author (Mathai 2013,2014) for fractional
integrals of the first kind and second kind of order α in the light of the results in
Section 4 above. Let f1 and f2 be of the following forms:

f1(X1) =
1

Γp(α)
φ1(X1)|I −X1|α−

p+1
2 (5.1)

O < X1 < I,<(α) >
p− 1

2
, and zero elsewhere, and

f2(X2) = φ2(X2)f(X2) (5.2)

where φ1 and φ2 are specified functions and f(X2) is an arbitrary function. Note
that X1 and X2 are p× p real positive definite matrices. If X1 and X2 are matrix
random variables then they are assumed to be independently distributed and in
that case f1 and f2 are the corresponding densities, otherwise they are not assumed
to be densities. Again we look at M-convolutions of products and ratios. Let U2 =

X
1
2
2 X1X

1
2
2 , V = X2 and U1 = X

1
2
2 X

−1
1 X

1
2
2 , V = X2 be the symmetric product and

symmetric ratio of the matrices X1 and X2. The Jacobians are already evaluated
in Section 4. If we denote the M-convolution of product as g2(U2) and that of ratio
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as g1(U1), then they are the following for f1 and f2 as defined in (5.1) and (5.2).

g2(U2) =
1

Γp(α)

∫
V >U2

|V |−
p+1
2 φ1(V −

1
2U2V

− 1
2 )

× |I − V −
1
2U2V

1
2 |α−

p+1
2 φ2(V )f(V )dV (5.3)

g1(U1) =
1

Γp(α)

∫
V <U1

|V |
p+1
2 U

−(p+1)
1 φ1(V

1
2U−1

1 V
1
2 )

× |I − V
1
2U−1

1 V
1
2 |α−

p+1
2 φ2(V )f(V )dV (5.4)

for <(α) > p−1
2

.

Now, let us look at some special cases. First, we will consider Kober type frac-
tional integrals, which are directly connected to statistical distributions of product
and ratio of independently distributed real matrix random variables. Let

φ1(X1) =
Γp(γ + p+1

2
+ α)

Γp(γ + p+1
2

)
|X1|γ

and φ2 = 1. Then substituting these in (5.3) for the M-convolution of a product

U2 = X
1
2
2 X1X

1
2
2 , V = X2 it is easily seen that (5.3) reduces to the following form:

g2(U2) =
Γp(γ + p+1

2
+ α)

Γp(γ + p+1
2

)

Uγ
2

Γp(α)

∫
V >U2

|V |−γ−α

× |V − U2|α−
p+1
2 f(V )dV

=
Γp(γ + p+1

2
+ α)

Γp(γ + p+1
2

)
K−α2,U2,γ

f where

K−α2,U2,γ
f =

|U2|γ

Γp(α)

∫
V >U2

|V |−γ−α|V − U2|α−
p+1
2 f(V )dV (5.5)

for <(γ) > −1,<(α) > p−1
2

, where K−α2,U2,γ
f for p = 1 corresponds to Kober frac-

tional integral of order α of the second kind with parameter γ and hence this
author called (5.5) as Kober fractional integral of order α of the second kind with
parameter γ in the real matrix-variate case. A corresponding definition is given in
the complex matrix-variate case also, see Mathai (2013). Let us consider another
special case with φ1 = 1 and φ2(X2) = |X2|α. Then (5.3) reduces to the following
form:

g2(U2) =
1

Γp(α)

∫
V >U2

|V − U2|α−
p+1
2 f(V )dV (5.6)
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for <(α) > p−1
2

, which for p = 1 is the Weyl fractional integral of order α of the
second kind. Hence this author has called (5.6) as the Weyl fractional integral
of the second kind of order α in the real matrix-variate case and it is denoted
by him as W−α

2,U2
f . If V is bounded above by a constant positive definite p × p

matrix B then this author has called (5.6) as the Riemann-Liouville fractional
integral of the second kind of order α and upper matrix B in the real matrix-
variate case. This author has also defined Saigo fractional integral of the second
kind and its generalizations in the matrix-variate case by replacing φ1(X1) with
a general hypergeometric series in the matrix-variate case (expansion in terms of
zonal polynomials) with arguments AX1 and A(I − X1), where A is a positive
definite constant matrix, then specializing it as a 2F1, Gauss hypergeometric series
form. Expansions in terms of zonal polynomials and discussion of zonal polynomials
may be seen from Mathai, Provost and Hayakawa (1995).

Now, let us look at some special cases for fractional integrals of the first kind
in the real matrix-variate case. Let

φ1(X1) =
Γp(γ + α)

Γp(γ)
|X1|γ−

p+1
2 . (5.7)

Then substituting (5.7) in (5.4) we have the following result, again denoted by
g1(U1):

g1(U1) =
Γp(γ + α)

Γp(γ)

|U1|−γ−α

Γp(α)

∫
V <U1

|V |γ

× |U1 − V |α−
p+1
2 f(V )dV

=
Γp(γ + α)

Γp(γ)
K−α1,U1,γ

f where

K−α1,U1,γ
f =

|U1|−γ−α

Γp(α)

∫
V <U1

|V |γ|U1 − V |α−
p+1
2 f(V )dV (5.8)

for <(α) > p−1
2
,<(γ) > p−1

2
, where K−α1,U1,γ

f for p = 1 is Kober fractional integral
of the first kind of order α and parameter γ and hence this author has called (5.8)
as Kober fractional integral of the first kind of order α and parameter γ in the real
matrix-variate case. A corresponding quantity for the complex matrix-variate case
is also defined by this author, see Mathai (2013).

Let us consider another special case. Let

φ1(X1) = |X1|−α−
p+1
2 and φ2(X2) = |X2|α
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then (5.4) reduces to the following form, again denoted by g1(U1):

g1(U1) =
1

Γp(α)

∫
V <U1

|U1 − V |α−
p+1
2 f(V )dV. (5.9)

This (5.9) for p = 1 is Weyl fractional integral of the first kind of order α and hence
this author has called (5.9) as the Weyl fractional integral of the first kind of order
α in the real matrix-variate case. If V is bounded below by a constant p×p positive
definite matrix A then (5.9) is called the Riemann-Liouville fractional integral of
the first kind of order α in the real matrix-variate case with lower parameter matrix
A.

The above ideas are extended to fractional integrals of the first and second
kinds for many scalar variables and many matrix variables, both in the real and
complex cases. The real cases may be seen from Mathai and Haubold (2012, I-IV)
and the complex cases in Mathai (2013,2014).

6. Fractional Differential Operators

Different authors have used different definitions for fractional derivatives in the
real scalar variables case. In the Riemann-Liouville sense fractional derivatives are
defined as certain fractional integrals. This is found to be very useful in practical
applications. We will use the following notations. Derivatives of order α will be
denoted by the exponent +α and the corresponding integrals with −α indicating
integrals as antiderivatives. Let n be a positive integer, n = 1, 2, ... such that
n−<(α) > 0. The smallest such n is given by n = [<(α)] + 1 where [(·)] indicates
the integer part of the real number (·). For example, if α = 2.7 then [<(α)] = 2 so
that n = 2 + 1 = 3. If α = 1.5 + 3i, i =

√
−1 then [<(α)] = 1 then n = 1 + 1 = 2.

Then the fractional derivative of order α in the Riemann-Liouville sense will be
denoted symbolically as Dα = DnD−(n−α), that is, the (n − α)th order fractional
integral is taken first and then integer order derivative is applied n times. For
example, if Riemann-Liouville fractional integral of order n − α of the first kind
D
−(n−α)
1,(a,x) f is taken and then n-th order derivative with respect to the parameter

x is taken then we have Riemann-Liouville sense fractional derivative of the first
kind of order α, denoted by Dα

1,xf , and it is given by the following:

Dα
1,xf =

dn

dxn
{ 1

Γ(n− α)

∫
v<x

[x− v](n−α)−1f(v)dv}. (6.1)

This indicates that the (n−α)th order fractional integral is taken first and then it
is differentiated n times with respect to the parameter x of the fractional integral.
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Note that if it is the second kind Rieman-Liouville fractional integral then the
factor corresponding to [x − v] in (6.1) is [v − x] and hence when differentiated n
times a (−1)n will come out. Hence when defining the fractional derivative of the
second kind of order α, it is usually defined as

Dα
2,xf = (−1)n

dn

dxn
D
−(n−α)
2,x f.

Note that, symbolically, we have

Dα = DnD−(n−α) and Dα = D−(n−α)Dn.

In the second case above we have differentiated the arbitrary function f , n times
first and then the fractional integral of order n − α is taken. This will be called
fractional derivatives in the Caputo sense and the former as the fractional deriva-
tives in Riemann-Liouville sense. Hence for the real scalar variable case we have
used the following general notations. First kind derivative or integral is denoted by
1 and the second kind by 2, fractional integral of order α with exponent −α and
the derivative with +α. Weyl integral or derivative is denoted by W , Caputo by
C, Saigo by S, Kober by K etc and since Riemann-Liouville is the most popular
one, D is used for that. For example

Wα
1,xf =

{
DnW

−(n−α)
1,x f in Riemann-Liouville sense

W
−(n−α)
1,x Dnf in Caputo sense.

For the matrix-variate case also the same notations are used but here Dn has to be
defined. Recently, this author has given a definition of Dn which can operate on
real-valued scalar functions of real and complex matrix argument of the following
types: |X|−γ, |I + X|−γ, |A + X|−γ for A,X positive definite and p × p where A
is a constant matrix, <(γ) > p−1

2
; in the exponential types e±tr(X); power function

type |I−X|
α− p+1

2

Γp(α)
,<(α) > p−1

2
. But a differential operator which operates universally

on all functions is not yet obtained. For X = (xij) > O, that is, p × p and real
positive definite consider the differential operator ∂

∂X
= ( ∂

∂xij
) that is, the partial

differential operator of the corresponding elements. Consider the determinant of
this operator, that is | ∂

∂X
|. Consider the function f(Y ) = etr(XY ) where Y and X

are symmetric and Y is such that its non-diagonal elements are multiplied by 1
2

and
diagonal elements by 1. Then tr(Y X) will be the sum of products all corresponding
elements coming once. If the non-diagonal elements of Y are not multiplied by 1

2

then the xijyij, i 6= j will be coming twice and the diagonal elements only once.
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Note that the determinant operator operating on this exponential function will give
the following result:

| ∂
∂X
|etr(XY ) = |Y |etr(XY )

and then this operator operating repeatedly n times brings |Y |n outside. Consider
the following identity:

|X|−α ≡ 1

Γp(α)

∫
Y >O

|Y |α−
p+1
2 e−tr(Y X)dY,<(α) >

p− 1

2
. (a)

Operate on both sides with D̃n
X = (−1)n| ∂

∂X
|n. Then we have

D̃n
X |X|−α = D̃n

X

1

Γp(α)

∫
Y >O

|Y |α−
p+1
2 e−tr(Y X)dY

=
1

Γp(α)

∫
Y >O

|Y |α−
p+1
2 |Y |ne−tr(Y X)dY

= |X|−(α+n)

interpreting the right side integral by using the identity in (a). The above is one
such result. Similar results are obtained by this author recently. Since the area
of fractional derivatives in the matrix-variate case is not fully developed, further
discussion is omitted.
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