South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 1 (A) (2020), pp. 61-66

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

EULERIAN OF THE ZERO DIVISOR GRAPH $\Gamma[\mathbb{Z}_n]$

B. Surendranath Reddy, Rupali S. Jain and N. Laxmikanth

Department of Mathematics, Swami Ramanand Teerth Marathwada University, Nanded - 431606, Maharashtra, INDIA

 $\label{eq:comparison} E-mail: surendra.phd@gmail.com, rupalisjain@gmail.com, \\ laxmikanth.nandala@gmail.com$

(Received: Mar. 08, 2020 Accepted: April. 21, 2020 Published: Apr. 30, 2020)

Abstract: The Zero divisor Graph of a commutative ring R, denoted by $\Gamma[R]$, is a graph whose vertices are non-zero zero divisors of R and two vertices are adjacent if their product is zero. We consider the zero divisor graph $\Gamma[\mathbb{Z}_n]$, for any natural number n and find out which graphs are Eulerian graphs.

Keywords and Phrases: Zero divisor graph, Euler tour, Euler graph.

2010 Mathematics Subject Classification: 05C12, 05C25, 05C50.

1. Introduction

The concept of the Zero divisor graph of a ring R was first introduced by I. Beck [3] in 1988 and later on Anderson and Livingston [2], Akbari and Mohammadian [1] continued the study of zero divisor graph by considering only the non-zero zero divisors. The concepts of the Euler graph found in [4]. In this paper we introduce the concepts of the Euler graph to the zero divisor graph $\Gamma[\mathbb{Z}_n]$ and identify which zero divisors graphs are Eulerian.

In this article, section 2, is about the preliminaries and notations related to zero divisor graph of a commutative ring R, in section 3, we derive the Euler graphs of a zero divisor graph $\Gamma[\mathbb{Z}_{p^n}]$, and in section 4, we discuss about Euler graphs of $\Gamma[\mathbb{Z}_n]$ for any natural number n.

2. Preliminaries and Notations

Definition 2.1. Zero divisor Graph [1,2],

Let R be a commutative ring with unity and Z[R] be the set of its zero divisors. Then the zero divisor graph of R denoted by $\Gamma[R]$, is the graph(undirected) with vertex set $Z^*[R] = Z[R] - \{0\}$, the non-zero zero divisors of R, such that two vertices $v, w \in Z^*[R]$ are adjacent if vw = 0.

Definition 2.2. Euler tour [4],

An Euler tour of a graph G is a tour which includes each edge of the graph G exactly once.

Definition 2.3. Euler tour [4],

A graph G is called Euler graph or Eulerain if it has an Euler tour.

Theorem 2.4. [4] A connected graph is Euler iff the degree of every vertex is even.

3. Eulerian of The zero divisor graph $\Gamma[\mathbb{Z}_{p^n}]$

In this section, we discuss the Eulerian of the zero divisor graph $\Gamma[\mathbb{Z}_{p^n}]$ where p is a prime number.

To start with, we consider the zero divisor graph $\Gamma[\mathbb{Z}_n]$ for $n=p^2$.

Theorem 3.1. The zero divisor graph $\Gamma[\mathbb{Z}_{p^2}]$ is a Euler graph if and only if p > 2.

Proof. Consider zero divisor graph $\Gamma[\mathbb{Z}_{n^2}]$.

The vertex set is $A = \{kp \mid k = 1, 2, 3, ..., p - 1\}$ and so |A| = (p - 1).

As product of any two vertices is zero, they are adjacent and so the corresponding graph is a complete graph on (p-1) vertices that is, $\Gamma[\mathbb{Z}_{p^2}] = K_{p-1}$.

As the graph is complete, the degree of each and every vertex of it is (p-1).

If p > 2 then every prime greater than 2 is odd and hence the degree of each vertex is even. Thus $\Gamma[\mathbb{Z}_{p^2}]$ is Eulerian.

For p=2 then the corresponding graph has no Euler path as it consists of only one vertex, thus $\Gamma[\mathbb{Z}_4]$ is not Eulerian.

Theorem 3.2. The zero divisor graph $\Gamma[\mathbb{Z}_{p^3}]$ is not an Euler graph, for any prime p.

Proof. Consider the zero divisor graph $\Gamma[\mathbb{Z}_{p^3}]$.

Here, we divide the elements (vertices) of $\Gamma[\mathbb{Z}_{p^3}]$ into two disjoint sets namely mul-

tiples of p and the multiples of p^2 which are given by

$$A = \{kp \mid k = 1, 2, 3,, p^2 - 1 \text{ and } k \nmid p\}$$

$$B = \{lp^2 \mid l = 1, 2, 3,, p - 1\}$$

with cardinality |A| = p(p-1) and |B| = (p-1).

As every element of A is adjacent only with the elements of B, the degree of each and every vertex of A is (p-1) which is even.

Also every element of B is adjacent with itself and with every element of A.

Therefore the degree of each and every vertex of B is given by |A| + |B| - 1 that is $(p^2 - 2)$ which is odd.

Hence $\Gamma[\mathbb{Z}_{p^3}]$ is not Eulerian.

If p = 2, then degree of each vertex of A is p - 1 which is odd. Therefore the zero divisor graph $\Gamma[\mathbb{Z}_{p^3}]$ is not an Euler graph.

With similar arguments, we prove the more general case in the following theorem.

Theorem 3.3. The zero divisor graph $\Gamma[\mathbb{Z}_{p^n}]$ is not Eulerian, for any prime p.

Proof. We divide the elements (vertices) of $\Gamma[\mathbb{Z}_{p^n}]$ into n-1 disjoint sets namely multiples of p, multiples of p^2 ... multiples of p^{n-1} , given by

$$A_1 = \{k_1 p \mid k_1 = 1, 2, 3, ..., p^{n-1} - 1 \text{ and } k_1 \nmid p\}$$

$$A_2 = \{k_2 p^2 \mid k_2 = 1, 2, 3, ..., p^{n-2} - 1 \text{ and } k_2 \nmid p^2\}$$

$$A_i = \{k_i p^i \mid k_i = 1, 2, 3, ..., p^{n-i} - 1 \text{ and } k_i \nmid p^i\}$$

with cardinality $|A_i| = (p^{n-i} - p^{n-i-1})$, for i = 1, 2,n - 1.

Also the smallest set is A_{n-1} of order p-1.

Now the degree of an element v_i in A_i is $p^i - 2$ which is odd $\forall i = \left[\frac{n}{2}\right]$ a greatest integer part function, since the elements of A_i are adjacent with itself and also with A_j for $j \geq \left[\frac{n}{2}\right]$.

We can make a similar argument for all other sets i.e., every element of A_i is adjacent with every element of A_{n-j} where $j \leq i$, therefore the degree of every vertex of A_i is $\sum_{j=1}^{i} (p^{n-j} - p^{n-j-1}) - 1 = (p^{n-1} - 2)$ which is odd.

Hence the zero divisor graph $\Gamma[\mathbb{Z}_{p^n}]$ is not Eulerian.

If p = 2, then the degree of an element v_1 in A_1 is p - 1, which is odd. Therefore, for any prime, the zero divisor graph $\Gamma[\mathbb{Z}_{p^n}]$ is not Eulerian.

4. Eulerian of the zero divisor graph $\Gamma[\mathbb{Z}_n]$

In this section we discuss the Eulerian of the zero divisor graph $\Gamma[\mathbb{Z}_n]$ where $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$.

To start with, we consider n = pq.

Theorem 4.1. The zero divisor graph $\Gamma[\mathbb{Z}_{pq}]$ is a Euler graph iff p and q are odd.

Proof. Consider the zero divisor graph $\Gamma[\mathbb{Z}_{pq}]$.

clearly $\Gamma[\mathbb{Z}_{pq}]$ is a complete bipartite graph, the vertex sets are given by

$$A = \{kp \mid k = 1, 2, 3,, p - 1 \text{ and } k \nmid q\}$$
$$B = \{lq \mid l = 1, 2, 3,, q - 1 \text{ and } k \nmid p\}$$

with cardinality |A| = (p-1) and |B| = (q-1).

If p and q are odd, then (p-1) and (q-1) are even implies the degree of every vertex of the graph is even and thus the respective graph is an Euler graph.

If p or q = 2, then clearly the graph is not Eulerian as the degree of the atleast one vertex is odd.

Theorem 4.2. The zero divisor graph $\Gamma[\mathbb{Z}_{p^{\alpha}q^{\beta}}]$ is not Eulerian for all $\alpha, \beta \neq 1$. **Proof.** Consider the zero divisor graph $\Gamma[\mathbb{Z}_{p^{\alpha}q^{\beta}}]$.

Here, we divide the vertices of $\Gamma[\mathbb{Z}_{p^{\alpha}q^{\beta}}]$ into disjoint sets namely multiples of p^{i} , multiples of q^{j} and multiples of $p^{i}q^{j}$ given by

$$\begin{split} A_{p^i} &= \{r_i p^i \,|\, r_i = 1, 2, 3,, p^i - 1 \text{ and } r_i \nmid p^i \} \\ A_{q^j} &= \{s_j q^j \,|\, s_j = 1, 2, 3,, q^j - 1 \text{ and } s_j \nmid q^j \} \\ A_{p^i q^j} &= \{t_{ij} p^i q^j \,|\, t_{ij} = 1, 2, 3,, p^i q^j - 1 \text{ and } t_{ij} \nmid p^i \text{ and } t_{ij} \nmid q^j \}. \end{split}$$

Then the order of the sets are $|A_{p^i}| = (p^i - 1)$, $|A_{q^j}| = (q^j - 1)$ and $|A_{p^iq^j}| = (p^i - 1)(q^j - 1)$.

Assume that both p and q are odd primes.

Since every element of the set A_{p^i} is adjacent with the elements of A_{p^j} , the degree of each and every vertex of the set A_{p^i} is $(q^j - 1)$.

Similarly the degree of each and every vertex of the set A_{p^j} is $(p^i - 1)$ and the degree of each and every vertex of the set $A_{p^iq^j}$ is $|A_{p^i}| + A_{p^j}| + |A_{p^iq^j}| - 1 = (p^i - 1) + (q^j - 1) + (p^i - 1)(q^j - 1) = (p^iq^j - 2)$, which is odd.

Thus the degree of the vertices of the corresponding sets is odd.

Hence the zero divisor graph $\Gamma[\mathbb{Z}_{p^{\alpha}q^{\beta}}]$ is not Eulerian.

If one of p or q = 2, then also the graph is not Eulerian as the degree of the atleast one vertex is $(p^i - 1)$ or $(q^j - 1)$ which is odd. Also the degree of the elements of A_p is (p - 1) as the elements of these set are adjacent only with the elements of the set $A_{p^{\alpha-1}q^{\beta}}$.

Theorem 4.3. The zero divisor graph $\Gamma[\mathbb{Z}_n]$ where $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$ is not Eulerian for $\alpha_i \geq 2$ where i = 1, 2, ..., k.

Proof. Consider a zero divisor graph $\Gamma[\mathbb{Z}_n]$ where $n = p_1^{\alpha_1} p_2^{\alpha_2} p_k^{\alpha_k}$.

Here, we divide the elements (vertices) of $\Gamma[\mathbb{Z}_n]$ into the corresponding disjoint sets of product of all possible powers of given primes like set of powers of p_i^i , set of product of powers of $p_i^r p_j^s$ and so on.

Among these sets, we consider the sets of the form

$$A_i = \{ m(p_1^{\alpha_1} p_2^{\alpha_2} ... p_i^{\alpha_{i-1}} p_i^{\alpha_{i+1}} p_k^{\alpha_k}) \} \text{ with } |A_i| = p_i^{\alpha_i} - 1.$$
 Now consider the set $A_{p_{i_i}^{\alpha}} = \{ t p_i^{\alpha_i} \mid t \nmid p_i^{\alpha_i} \}.$

Assume that all the primes are odd.

Since the elements of $A_{p_i^i}$ are adjacent only with the vertices of A_j , the degree of each and every vertex of the set $A_{p_i^i}$ is $p_i^{\alpha_i} - 1$ which is odd. Hence the zero divisor graph $\Gamma[\mathbb{Z}_n]$ where $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ is not Eulerian for $\alpha_i \geq 2$ where $i = 1, 2, \dots, k$. If one of $p_i = 2$, then also the graph is not Eulerian as the degree of the atleast one vertex is $p_i^{\alpha_i} - 1$, which is odd.

5. Conclusion

We conclude that the zero divisor graph $\Gamma[\mathbb{Z}_n]$ is Eulerain if and only if either $n=p^2$ or n=pq where p and q are distinct primes. Otherwise not a Eulerian.

References

- [1] S. Akbari, A. Mohammadian, On the Zero divisor graph of a commutative rings, J. Algebra, 2004, 274, 847-855.
- [2] D. F. Anderson and P. S. Livingston, The Zero divisor graph of Commutative ring, J. Algebra, 217(1999), no.2, 434-447.
- [3] I. Beck, Coloring of Commutative rings, J. Algebra, 116(1988), no.1, 208-226.
- [4] Eulerain graphs and Related Topics part 1, by Herbert FLEISCHNER.
- [5] R. C. Read, Euler graphs on labelled nodes, Canad. J. Math., 14 (1962), pp. 482-486.
- [6] R. W. Robinson, Enumeration of Euler graphs, Proof Techniques in Graph Theory, F. Harary, ed., Academic Press, N. Y., 1969, pp. 147-153.