BOUNDS ON $R Z$-INVARIANT OF GRAPHS

K. Pattabiraman and Manzoor Ahmad Bhat*
Department of Mathematics, Government Arts College(Autonomous), Kumbakonam - 612002, Tamil Nadu, INDIA
E-mail : pramank@gmail.com
*Department of Mathematics, Annamalai University, Annamalai Nagar, Annamalai Nagar - 608002, Tamil Nadu, INDIA

(Received: Mar. 01, 2020 Accepted: April. 25, 2020 Published: Apr. 30, 2020)
Abstract: The $R Z$-invariant of a simple connected graph G is defined as the sum of the terms $(\operatorname{Deg}(u)+\operatorname{Deg}(v)-2)^{2}$ over all edges $u v$ of G, where $\operatorname{Deg}(u)$ is the degree of a vertex u in G. In this paper, we obtain some new upper and lower bounds for the $R Z$-invariant in terms of other graph parameters.

Keywords and Phrases: Degree, Zagreb invariant, $R Z$-invariant.

2010 Mathematics Subject Classification: 05C12, 05C76.

1. Introduction

Topological index is a graph theoretical property that is preserved by isomorphism. The chemical information derived through topological index has been found useful in chemical documentation, isomer discrimination, structure property correlations. The interest in topological indices is mainly related to their use in nonempirical quantitative structure-property relationships and quantitative structuralactivity relationships. The first and second Zagreb invariant of a graph were first introduced by Gutman in [4] which are the oldest and most used topological indices [3, 1] defined as $M_{1}(G)=\sum_{v \in E(G)} \operatorname{Deg}(v)^{2}$ and $M_{2}(G)=\sum_{u v \in E(G)} \operatorname{Deg}(u) \operatorname{Deg}(v)$.

Analogues to Zagreb indices Milicević et al. [6] in 2004 reformulated the Zagreb invariant in terms of edge degrees instead of vertex degrees, where the degree of
an edge $\operatorname{Deg}(e)$ is defined as $\operatorname{Deg}(e)=\operatorname{Deg}(u)+\operatorname{Deg}(v)-2$. Thus the first $R Z$ invariant of a graph G is defined as $R Z(G)=\sum_{e \in E(G)} D e g(e)^{2}=\sum_{u v \in E(G)}(D e g(u)+$ $\operatorname{Deg}(v)-2)^{2}$. RZ-invariant, particularly its upper and lower bounds has attracted recently the attention of many mathematicians and computer scientists, see $[2,5,6$, 7]. In this paper, we obtain some new upper and lower bounds for the $R Z$-invariant in terms of other graph parameters.

2. Main Results

The inverse vertex degree of G, denoted by $I D(G)$, is defined as $I D(G)=$ $\sum_{x \in V(G)} \frac{1}{D e g(x)}$ and the inverse edge degree of G with non-isolated edges is defined as $I D_{e}(G)=\sum_{e \in E(G)} \frac{1}{\overline{D e g(e)}}$.

Theorem 2.1. Let G be a graph with s vertices and t edges. Then $R Z(G) \leq$ $2(\Delta(G)+\delta(G)-2) M_{1}(G)-4 t(\Delta(G) \delta(G)-1)$ with equality if and only if G is regular.
Proof. For any vertex $v \in V(G)$, we have $\delta(G) \leq \operatorname{Deg}(v) \leq \Delta(G)$. Similarly, for any edge $e_{i} \in E(G)$, we get $2(\delta(G)-1) \leq \operatorname{Deg}(\bar{e}) \leq \operatorname{Deg}(\bar{v}) \leq 2(\Delta(G)-1)$ with the edges are labeled and bounded by $\delta(\bar{G}) \leq \operatorname{Deg}\left(v_{i}\right) \leq \Delta(\bar{G})$ for $i=1,2 \ldots, s$. The edge degree is bounded by $e_{1}, e_{2}, \ldots, e_{t}$ such that $\operatorname{Deg}\left(e_{1}\right) \geq \operatorname{Deg}\left(e_{2}\right) \geq \ldots \geq$ $D e g\left(e_{t}\right)$. Hence

$$
\begin{aligned}
& \sum_{i=1}^{t} \operatorname{Deg}\left(e_{i}\right)^{2}=\sum_{i=1}^{t}\left(\operatorname{Deg}\left(e_{i}\right)\left(\operatorname{Deg}\left(e_{i}\right)-\operatorname{Deg}\left(e_{t}\right)\right)+\operatorname{Deg}\left(e_{i}\right) \operatorname{Deg}\left(e_{t}\right)\right) \\
& \leq \sum_{i=1}^{t}\left(\operatorname{Deg}\left(e_{1}\right)\left(\operatorname{Deg}\left(e_{i}\right)-\operatorname{Deg}\left(e_{t}\right)\right)+\operatorname{Deg}\left(e_{i}\right) \operatorname{Deg}\left(e_{t}\right)\right) \\
& \leq \sum_{i=1}^{t}\left(2(\Delta(G)-1)\left(\operatorname{Deg}\left(e_{i}\right)-2(\delta(G)-1)\right)+\operatorname{Deg}\left(e_{i}\right) 2(\delta(G)-1)\right) \\
& =(2(\Delta(G)+\delta(G))-4) \sum_{i=1}^{t}\left(\operatorname{Deg}\left(e_{i}\right)-4(\Delta(G)-1)\right)(\delta(G)-1) \sum_{i=1}^{t}(1)
\end{aligned}
$$

From the definition of $R Z$-invariant, we obtain; $\sum_{u v \in E(G)}(\operatorname{Deg}(u)+\operatorname{Deg}(v)-$ $2)^{2} \leq(2(\Delta(G)+\delta(G))-4) \sum_{u v E(G)}(\operatorname{Deg}(u)+\operatorname{Deg}(v)-2)-4(\delta(G)-1)(\Delta(G)-$

1) $\sum_{u v \in E(G)}(1)$. Hence $R Z(G) \leq 2(\Delta(G)+\delta(G)-2) M_{1}(G)-4(\Delta(G) \delta(G)-1) t$.

This completes the proof with equality if and only if G is regular.
Next we improve the bounds given in Theorem 2.1 by using Harmonic index
$H(G)$ which is defined for a connected graph G as $H(G)=\sum_{u v \in E(G)} \frac{2}{D \operatorname{eg}(u)+\operatorname{Deg}(v)}$.
Theorem 2.2. Let G be a simple connected graph with s vertices and t edges. Then $R Z(G) \leq(2(\Delta(G)+\delta(G))-3) M_{1}(G)-2 t(\Delta(G)+\delta(G)+2 \delta(G) \Delta(G)-$ $\delta(G) \Delta(G) H(G)-2)$. Equality holds if and only if G is a regular graph.
Proof. By Theorem 2.1, $R Z(G) \leq 2(\Delta(G)+\delta(G)-2) M_{1}(G)-4 t(\delta(G) \Delta(G)-1)$. For any edge $u v \in E(G)$, it is true that $\frac{1}{\operatorname{Deg}(u)+\operatorname{Deg}(v)}<1$ and using in the above inequality, we obtain

$$
\begin{aligned}
& \sum_{u v \in E(G)}\left[1-\frac{1}{\operatorname{Deg}(u)+\operatorname{Deg}(v)}\right](\operatorname{Deg}(u)+\operatorname{Deg}(v)-2)^{2} \\
& \leq(2(\Delta(G)+\delta(G))-4) \sum_{u v \in E(G)}\left[1-\frac{1}{\operatorname{Deg}(u)+\operatorname{Deg}(v)}\right](\operatorname{Deg}(u)+\operatorname{Deg}(v)) \\
&-4(\Delta(G) \delta(G)-1) \sum_{u v \in E(G)}\left[1-\frac{1}{\operatorname{Deg}(u)+\operatorname{Deg}(v)}\right] . \\
& \sum_{u v \in E(G)}\left[(\operatorname{Deg}(u)+\operatorname{Deg}(v)-2)^{2}-(\operatorname{Deg}(u)+\operatorname{Deg}(v))+4-\frac{4}{\operatorname{Deg}(u)+\operatorname{Deg}(v)}\right] \\
& \leq(2(\Delta(G)+\delta(G))-4) \sum_{u v \in E(G)}[\operatorname{Deg}(u)+\operatorname{Deg}(v)]-(2(\Delta(G)+\delta(G))-4) t \\
&-4(\Delta(G) \delta(G)-1) t+\sum_{u v \in E(G)}\left(\frac{4(\Delta(G) \delta(G)-1)}{\operatorname{Deg}(u)+\operatorname{Deg}(v)}\right) .
\end{aligned}
$$

By the definitions of Zagreb and $R Z$ invariants, we have

$$
\begin{aligned}
& R Z(G)-M_{1}(G)+4 t-2 H(G) \leq(2(\Delta(G)+\delta(G))-4) M_{1}(G)-(2(\Delta(G)+\delta(G))-4) t \\
& -4(\Delta(G) \delta(G)-1) t+2(\Delta(G) \delta(G)-1) \sum_{u v \in E(G)}\left(\frac{2}{\operatorname{Deg}(u)+\operatorname{Deg}(v)}\right) .
\end{aligned}
$$

Hence $R Z(G)=M_{1}(G)+2 H(G)-4 t+(2(\Delta(G)+\delta(G))-4) M_{1}(G)-2(\Delta(G)+$ $\delta(G)) t+4 t-4(\Delta(G) \delta(G)) t+4 t+2(\Delta(G) \delta(G)-1) H(G)=(2(\Delta(G)+\delta(G))-$ 3) $M_{1}(G)-2(\Delta(G)+\delta(G)) t-4 \Delta(G) \delta(G) t+4 t+2 \Delta(G) \delta(G) H(G)$. Equality holds if and only if G is a regular graph, hence completes the proof.
Theorem 2.3. Let G be a simple connected graph with s vertices and t edges. If G
has no isolated edges, then $R Z(G) \leq(2(\Delta(G)+\delta(G))-3) M_{1}(G)-2 t(3 \Delta(G)+$ $3 \delta(G)+2(\Delta(G)-1)(\delta(G)-1)-5)+4(\Delta(G)-1)(\delta(G)-1) I D_{e}(G)$ with equality if and only G is a regular graph.
Proof. Let G be a graph with no isolated edges. Then $\operatorname{Deg}(u)+\operatorname{Deg}(v)>2$ and with the assumption of the proof of Theorem 2.1, we have

$$
\begin{aligned}
\sum_{i=1}^{t}\left[1-\frac{1}{D e g\left(e_{i}\right)}\right] \operatorname{Deg}\left(e_{i}\right)^{2} \leq & (2(\Delta(G)+\delta(G))-4) \sum_{i=1}^{t}\left[1-\frac{1}{\operatorname{Deg}\left(e_{i}\right)}\right] \operatorname{Deg}\left(e_{i}\right) \\
& -4(\Delta(G)-1)(\delta(G)-1) \sum_{i=1}^{t}\left[1-\frac{1}{\operatorname{Deg}\left(e_{i}\right)}\right] \\
\sum_{i=1}^{t} \operatorname{Deg}\left(e_{i}\right)^{2}-\sum_{i=1}^{t} \operatorname{Deg}\left(e_{i}\right) \leq & (2(\Delta(G)+\delta(G))-4)\left[\sum_{i=1}^{t} \operatorname{Deg}\left(e_{i}\right)-\sum_{i=1}^{t} 1\right] \\
& -4(\Delta(G)-1)(\delta(G)-1)\left[\sum_{i=1}^{t} 1+\sum_{i=1}^{t} \frac{1}{\operatorname{Deg}\left(e_{i}\right)}\right] . \\
\sum_{u v \in E(G)}(\operatorname{Deg}(u)+\operatorname{Deg}(v)-2)^{2} \leq & \sum_{u v \in E(G)}(\operatorname{Deg}(u)+\operatorname{Deg}(v)-2) \\
& +(2(\Delta(G)+\delta(G))-4) \sum_{u v \in E(G)}(\operatorname{Deg}(u)+\operatorname{Deg}(v)-2) \\
& -(2(\Delta(G)+\delta(G))-4) t-4(\Delta(G)-1)(\delta(G)-1) t \\
& +4(\Delta(G)-1)(\delta(G)-1) \sum_{u v \in E(G)} \overline{(\operatorname{Deg}(u)+\operatorname{Deg}(v)-2)} .
\end{aligned}
$$

From the definition of $R Z$-invariant, we have $R Z(G) \leq M_{1}(G)-2 t+2(\Delta(G)+$ $\delta(G)-2) M_{1}(G)-6(\Delta(G)+\delta(G)-2) t-4(\Delta(G)-1)(\delta(G)-1) t+4(\Delta(G)-$ 1) $(\delta(G)-1) I D_{e}(G)=(1+2((\Delta(G)+\delta(G))-2)) M_{1}(G)+10 t-6(\Delta(G)+\delta(G)) t-$ $4(\Delta(G)-1)(\delta(G)-1) t+4(\Delta(G)-1)(\delta(G)-1) I D_{e}(G)$. The equality holds for any vertex $v \in V(G), \operatorname{Deg}(v)=\Delta(G)=\delta(G)$. This implies that G is regular.

The bidegreed graph is a graph whose vertices have exactly two vertex degrees $\Delta(G)$ and $\delta(G)$.
Theorem 2.4. Let G be a simple connected graph with s vertices and t edges. If G has no isolated edges, then $R Z(G) \leq(\Delta(G)+\delta(G)-4) M_{1}(G)+\Delta(G) \delta(G) I D(G)-$ $2 t(\Delta(G) \delta(G)-3)-(\Delta(G)+\delta(G)) s$ with equality if and only if G is regular (or)

bidegreed graph.

Proof. Suppose $a, A \in R$ and x_{i}, y_{i} be two sequences in such a way that it has the property $a y_{i} \leq x_{i} \leq A y_{i}$ for $i=1,2, \ldots, s$ and w_{i} be any sequence of positive real numbers, it holds $w_{i}\left(A y_{i}-x_{i}\right)\left(x_{i}-a y_{i}\right) \geq 0$. Since w_{i} is a positive sequence, choose $w_{i}=m_{i}-n_{i}$ such that $m_{i} \geq n_{i}$, we get $\sum_{i=1}^{s}\left(m_{i}-n_{i}\right)\left((A+a) x_{i} y_{i}-x_{i}^{2}-A a y_{i}^{2}\right) \geq 0$. By setting $A=\Delta(G), a=\delta(G), x_{i}=\operatorname{Deg}\left(v_{i}\right), y_{i}=1, m_{i}=\operatorname{Deg}\left(v_{i}\right)$ and $n_{i}=$ $\operatorname{Deg}\left(v_{i}\right)^{-1}$, we have

$$
(\Delta(G)+\delta(G)) \sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right)^{2}-\sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right)^{3}-(\Delta(G) \delta(G)) \sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right) \geq(\Delta(G)+
$$ $\delta(G)) \sum_{i=1}^{s} 1-\sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right)-(\Delta(G) \delta(G)) \sum_{i=1}^{s} \frac{1}{\operatorname{Deg}\left(v_{i}\right)}$. Simplify the above inequality, we have $(\Delta(G)+\delta(G)) M_{1}(G)-F(G)-2 t \Delta \delta \geq(\Delta(G)+\delta(G)) s-2 t-\Delta(G) \delta(G) I D(G)$.

$F(G) \leq(\Delta(G)+\delta(G)) M_{1}(G)-2 t \Delta \delta-(\Delta(G)+\delta(G)) s+2 t+\Delta(G) \delta(G) I D(G)+$ $4 t-4 M_{1}(G)$.

From the definition of $R Z$-invariant, we obtain $R Z(G) \leq(\Delta(G)+\delta(G)-$ 4) $M_{1}(G)+\Delta(G) \delta(G) I D(G)-2 t(\Delta(G) \delta(G)-3)-(\Delta(G)+\delta(G)) s$.

Theorem 2.5. Let G be a simple connected graph with s vertices and t edges. If G has no isolated edges, then $R Z(G) \leq(\Delta(G)+\delta(G)-4) M_{1}(G)+\Delta(G) \delta(G) I D(G)-$ $2 t(\delta(G) \delta(G)-3)-(\delta(G)+\delta(G)) s$.
Proof. The proof follows by using similar arguments as in the proof of theorem ??. By setting $A=\Delta(G), a=\delta(G), x_{i}=d\left(v_{i}\right), y_{i}=1, t_{i}=d\left(v_{i}\right)$ and $a_{i}=1$, we have $(\Delta(G)+\delta(G)) \sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right)^{2}-\sum_{i=1}^{a} \operatorname{Deg}\left(v_{i}\right)^{3}-(\Delta(G) \delta(G)) \sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right) \geq(\Delta(G)+$ $\delta(G)) \sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right)-\sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right)^{2}-(\Delta(G) \delta(G)) \sum_{i=1}^{s}(1)$.
$(\Delta(G)+\delta(G)) M_{1}(G)-F(G)-2 t \Delta(G) \delta(G) \geq(\Delta(G)+\delta(G)) 2 t+M_{1}(G)+$ $\Delta(G) \delta(G) s . F(G) \leq(\Delta(G)+\delta(G)) M_{1}(G)-2 t \Delta(G) \delta(G)-(\Delta(G)+\delta(G)) 2 t+$ $M_{1}(G)+\Delta(G) \delta(G) s+4 t-4 M_{1}(G)$. From the definition of $R Z$-invariant, we obtain the required result.

Theorem 2.6. Let G be a simple connected graph with s vertices and t edges. If G has no isolated edges, then $R Z(G) \geq F(G)+2 M_{2}(G)+4 t-4 M_{1}(G)+\frac{1}{2 t}\left[\left(M_{1}(G)\right)^{2}-\right.$ $\left.s^{2}\right]+I D(G)$. Equality holds if and only if G is regular.
Proof. Suppose $w_{1}, w_{2}, \ldots, w_{n}$ be non-negative weights, then we have the weighted version of Cauchy-Schwartz inequality, we have $\sum_{i=1}^{n} w_{i} a_{i}^{2} \sum_{i=1}^{n} w_{i} b_{i}^{2} \geq\left(\sum_{i=1}^{n} w_{i} a_{i} b_{i}\right)^{2}$. Let $w_{i}=m_{i}-n_{i}$ such that $m_{i} \geq n_{i} \geq 0$. Then
$\sum_{i=1}^{s} m_{i} a_{i}^{2} \sum_{i=1}^{s} m_{i} b_{i}^{2}-\left(\sum_{i=1}^{s}\left(m_{i} a_{i} b_{i}\right)\right)^{2} \geq \sum_{i=1}^{s} n_{i} a_{i}^{2} \sum_{i=1}^{s} n_{i} b_{i}^{2}-\left(\sum_{i=1}^{s}\left(n_{i} a_{i} b_{i}\right)\right)^{2} \geq 0$.
By setting $m_{i}=\operatorname{Deg}\left(v_{i}\right), n_{i}=\frac{1}{\operatorname{Deg}\left(v_{i}\right)}, a_{i}=\operatorname{Deg}\left(v_{i}\right)$ and $b_{i}=1$, for all $i=$ $1,2, \ldots, s$ in the above inequality we have,

$$
\begin{aligned}
& \sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right)^{3} \sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right)-\left(\sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right)^{2}\right)^{2} \geq \sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right) \sum_{i=1}^{s} \frac{1}{\operatorname{Deg}\left(v_{i}\right)}-\left(\sum_{i=1}^{s}(1)\right)^{2} \\
& \sum_{i=1}^{n} \operatorname{Deg}\left(v_{i}\right)^{3} \geq \frac{1}{\sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right)}\left[\left(\sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right)^{2}\right)^{2}+\sum_{i=1}^{s} \operatorname{Deg}\left(v_{i}\right) \sum_{i=1}^{s} \frac{1}{\operatorname{Deg}\left(v_{i}\right)}-\left(\sum_{i=1}^{s}(1)\right)^{2}\right] .
\end{aligned}
$$

Hence $R Z(G) \geq F(G)+2 M_{2}(G)+4 t-4 M_{1}(G)+\frac{1}{2 m}\left(M_{1}(G)\right)^{2}+I D(G)-\frac{s^{2}}{2 t}$. Equality holds if and only if G is regular.
3. Conclusion: In this article, we have presented several upper and lower bounds for $R Z$-invariant for a connected graph.

References

[1] K. C. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem., 46(2009) 514-521.
[2] N. De, Some bounds of reformulated Zagreb indices, Appl. Math. Sci., 101 (2012), 5005-5012.
[3] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50(2004) 83-92.
[4] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total pelectron energy of alternate hydrocarbons, Chem. Phys. Lett., 17(1972), 535-538.
[5] A. Ilić, B. Zhou, On reformulated Zagreb indices, Discrete Appl. Math., 160 (2012), 204-209.
[6] A. Milicević, S. Nikolić and N. Trinajstić, On reformulated Zagreb indices, Mol. Divers., 8(2004), 393-399.
[7] G. $\mathrm{Su}, \mathrm{L} . \mathrm{Xiong}, \mathrm{L} . \mathrm{Xu}$ and B. Ma, On the maximum and minimum first reformulated Zagreb index with connectivity of at most k, Filomat, 25 (2011), 75-83.

