On Modular Identities and Evaluation of Theta-Functions

Rajnish Kant Upadhayay \& *Jay Parkash Singh,
Department of Mathematics,
S.N.P.G. College, Azamgarh, (U.P.) India
*Department of Mathematics,
Deen Dayal Upadhyaya Govt. P.G. College,
Saidabad, Allahabad (U.P.) India.
Received June 12, 2014
Abstract: . In this paper, making use of modular equations due to Ramanujan relations between α, β and the multiplier m have degree $3,5,7,9,13$ and 25 we have established interesting P, Q identities.
Key words and phrases: Summation formula, Identity, Jacobi's triple product identity and Ramanujan's theta functions,
2000 A.M.S. subject classification: 33D15

1. Introduction, Notations and Definitions

For real and complex $\mathrm{q},|q|<1$, then

$$
[\alpha ; q]_{\infty}=\prod_{k=0}^{\infty}\left(1-\alpha q^{k}\right)
$$

where α is any complex number.
Also,

$$
\left[a_{1}, a_{2}, a_{3}, \ldots, a_{r} ; q\right]_{\infty}=\left[a_{1} ; q\right]_{\infty}\left[a_{2} ; q\right]_{\infty} \ldots\left[a_{r} ; q\right]_{\infty} .
$$

Ramanujan's defined the general theta function as,

$$
\begin{equation*}
f(a, b)=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2}, \tag{1.1}
\end{equation*}
$$

which by an appeal of Jacobi's triple product identity [Gasper and Rahman 2; App. 11 (11.28)] yields,

$$
\begin{equation*}
f(a, b)=[a b,-a,-b ; q]_{\infty} \tag{1.2}
\end{equation*}
$$

The most important special cases of (1.1) are,

$$
\begin{equation*}
\Phi(q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\frac{[-q ;-q]_{\infty}}{[q ;-q]_{\infty}}=\left[q^{2} ; q^{2}\right]_{\infty}\left[-q ; q^{2}\right]_{\infty} . \tag{1.3}
\end{equation*}
$$

$$
\begin{gather*}
\Psi(q)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left[q^{2} ; q^{2}\right]_{\infty}}{\left[q ; q^{2}\right]_{\infty}} \tag{1.4}\\
f(-q)=\sum_{n=-\infty}^{\infty}(-)^{n} q^{n(3 n-1) / 2}=[q ; q]_{\infty} \tag{1.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\chi(-q)=\left[q ; q^{2}\right]_{\infty} \tag{1.6}
\end{equation*}
$$

Let

$$
z_{r}=z(r ; x)={ }_{2} F_{1}[1 / r,(r-1) / r ; 1 ; x]
$$

and

$$
\begin{equation*}
q_{r}=q_{r}(x)=\exp \left[-r \operatorname{cosec} \pi / r \frac{{ }_{2} F_{1}[1 / r,(r-1) / r ; 1 ; 1-x]}{{ }_{2} F_{1}[1 / r,(r-1) / r ; 1 ; x]}\right] \tag{1.7}
\end{equation*}
$$

where $\mathrm{r}=2,3,4,5,6$ and $|x|<1$.

$$
{ }_{2} F_{1}[a, b ; c ; x]=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k} k!} x^{k}
$$

with $(a)_{k}=a(a+1)(a+2) \ldots(a+k-1) ; \quad a_{0}=1$.
Let n denote a fixed natural number and assume that

$$
\begin{equation*}
n \frac{{ }_{2} F_{1}[1 / r,(r-1) / r ; 1 ; 1-\alpha]}{{ }_{2} F_{1}[1 / r,(r-1) / r ; 1 ; \alpha]}=\frac{{ }_{2} F_{1}[1 / r,(r-1) / r ; 1 ; 1-\beta]}{{ }_{2} F_{1}[1 / r,(r-1) / r ; 1 ; \beta]} \tag{1.8}
\end{equation*}
$$

where $\mathrm{r}=2,3,4$ and 6 . Then a modular equation of degree ' n ' in the theory of elliptic function of signature ' r ' is a relation between α and β induced by (1.8). We often say that β has degree n order α and $m(r)=z(r, \alpha) / z(r, \beta)$ is called multiplier.

We shall use the following modular equations due to Ramanujan in our analysis. (i) If β and the multiplier m have degree 3 , then

$$
\begin{align*}
& m^{2}=\left(\frac{\beta}{\alpha}\right)^{1 / 2}+\left(\frac{1-\beta}{1-\alpha}\right)^{1 / 2}-\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{1 / 2} \tag{1.9}\\
& \frac{9}{m^{2}}=\left(\frac{\alpha}{\beta}\right)^{1 / 2}+\left(\frac{1-\alpha}{1-\beta}\right)^{1 / 2}-\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{1 / 2} \tag{1.10}
\end{align*}
$$

[Andrews and Berndt 1; Entry (17.3.21) p. 391]
(ii) If β and the multiplier m have degree 5 , then

$$
\begin{align*}
& m=\left(\frac{\beta}{\alpha}\right)^{1 / 4}+\left(\frac{1-\beta}{1-\alpha}\right)^{1 / 4}-\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{1 / 4} \tag{1.11}\\
& \frac{5}{m}=\left(\frac{\alpha}{\beta}\right)^{1 / 4}+\left(\frac{1-\alpha}{1-\beta}\right)^{1 / 4}-\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{1 / 4} \tag{1.12}
\end{align*}
$$

[Andrews and Berndt 1; Entry (17.3.22) p
p. 391]
(iii) If β and the multiplier m have degree 7 , then

$$
\begin{align*}
m^{2} & =\left(\frac{\beta}{\alpha}\right)^{1 / 2}+\left(\frac{1-\beta}{1-\alpha}\right)^{1 / 2}-\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{1 / 2}-8\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{1 / 3} \tag{1.13}\\
\frac{49}{m^{2}} & =\left(\frac{\alpha}{\beta}\right)^{1 / 2}+\left(\frac{1-\alpha}{1-\beta}\right)^{1 / 2}-8\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{1 / 2}-8\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{1 / 3} \tag{1.14}
\end{align*}
$$

[Andrews and Berndt 1; Entry (17.3.23)
p. 391]
(iv) If β and the multiplier m have degree 9 , then

$$
\begin{align*}
& m^{1 / 2}=\left(\frac{\beta}{\alpha}\right)^{1 / 8}+\left(\frac{1-\beta}{1-\alpha}\right)^{1 / 8}-\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{1 / 8} \tag{1.15}\\
& \frac{3}{m^{1 / 2}}=\left(\frac{\alpha}{\beta}\right)^{1 / 8}+\left(\frac{1-\alpha}{1-\beta}\right)^{1 / 8}-\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{1 / 8} \tag{1.16}
\end{align*}
$$

[Andrews and Berndt 1; Entry (17.3.24) p. 391]
(v) If β and the multiplier m have degree 13 , then

$$
\begin{align*}
& m=\left(\frac{\beta}{\alpha}\right)^{1 / 4}+\left(\frac{1-\beta}{1-\alpha}\right)^{1 / 4}-\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{1 / 4}-4\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{1 / 6} \tag{1.17}\\
& \frac{13}{m}=\left(\frac{\alpha}{\beta}\right)^{1 / 4}+\left(\frac{1-\alpha}{1-\beta}\right)^{1 / 2}-\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{1 / 4}-4\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{1 / 6} \tag{1.18}
\end{align*}
$$

[Andrews and Berndt 1; Entry (17.3.25) p. 391]
(vi) If β and the multiplier m have degree 25 , then

$$
\begin{align*}
& \sqrt{m}=\left(\frac{\beta}{\alpha}\right)^{1 / 8}+\left(\frac{1-\beta}{1-\alpha}\right)^{1 / 8}-\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{1 / 8}-2\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{1 / 12} \tag{1.19}\\
& \frac{5}{\sqrt{m}}=\left(\frac{\alpha}{\beta}\right)^{1 / 8}+\left(\frac{1-\alpha}{1-\beta}\right)^{1 / 8}-\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{1 / 8}-2\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{1 / 12} \tag{1.20}
\end{align*}
$$

[Andrews and Berndt 1; Entry (17.3.27) p. 391]
We shall make use of the following results due to Ramanujan,

$$
\begin{equation*}
f(q)=\frac{\sqrt{z}}{\sqrt[6]{z}}\left\{\frac{x(1-x)}{q}\right\}^{1 / 24} \tag{1.21}
\end{equation*}
$$

[Ramanujan 3; Chapter 17 entry 12 (i)]

$$
\begin{equation*}
\chi(q)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{x(1-x)}{q}}} \tag{1.22}
\end{equation*}
$$

[Ramanujan 3; Chapter 17 entry 12 (v)]

2. Modular Identities

In this section we establish certain modular identities,
(i) In modular equations (1.9) and (1.10), β is degree 3 over α and m is the multiplier associated with α and β so, from (1.21) and (1.22), we have

$$
\begin{gather*}
f(q)=\frac{\sqrt{z_{1}}}{\sqrt[6]{2}}\left\{\frac{\alpha(1-\alpha)}{q}\right\}^{1 / 24}, \quad f\left(q^{3}\right)=\frac{\sqrt{z_{3}}}{\sqrt[6]{2}}\left\{\frac{\beta(1-\beta)}{q^{3}}\right\}^{1 / 24} \tag{2.1}\\
\chi(q)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\alpha(1-\alpha)}{q}}}, \quad \chi\left(q^{3}\right)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\beta(1-\beta)}{q^{3}}}} \tag{2.2}
\end{gather*}
$$

Let us assume that

$$
\begin{equation*}
P=\frac{f(q)}{q^{1 / 12} f\left(q^{3}\right)}=\sqrt{m}\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{\chi\left(q^{3}\right)}{q^{1 / 12} \chi(q)}=\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} \tag{2.4}
\end{equation*}
$$

Thus we have

$$
\frac{P}{Q}=\sqrt{m}
$$

Now, eliminating α, β and m from (1.9) and (1.10) using (2.3) and (2.4) we get the modular identity,

$$
\begin{equation*}
P^{4}+P^{8} Q^{8}=P^{4} Q^{12}+9 Q^{4} . \tag{2.5}
\end{equation*}
$$

(ii) In the modular equations (1.11) and (1.12), β is degree 5 over α and m is the multiplier associated with α and β so, from (1.21) and (1.22), we have

$$
\begin{gather*}
f(q)=\frac{\sqrt{z_{1}}}{\sqrt[6]{2}}\left\{\frac{\alpha(1-\alpha)}{q}\right\}^{1 / 24}, \quad f\left(q^{5}\right)=\frac{\sqrt{z_{5}}}{\sqrt[6]{2}}\left\{\frac{\beta(1-\beta)}{q^{5}}\right\}^{1 / 24} . \tag{2.6}\\
\chi(q)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\alpha(1-\alpha)}{q}}}, \quad \chi\left(q^{5}\right)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\beta(1-\beta)}{q^{5}}}} . \tag{2.7}
\end{gather*}
$$

Let us assume that

$$
\begin{equation*}
P=\frac{f(q)}{q^{1 / 6} f\left(q^{5}\right)}=\sqrt{m}\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} . \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{\chi\left(q^{5}\right)}{q^{1 / 6} \chi(q)}=\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} \tag{2.9}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\frac{P}{Q}=\sqrt{m} \tag{2.10}
\end{equation*}
$$

Now, eliminating α, β and m from (1.11) and (1.12) by making use of (2.9) and (2.10) we get the modular identity,

$$
\begin{equation*}
P^{4} Q^{4}+P^{8}=P^{2} Q^{6}+5 Q^{2} . \tag{2.11}
\end{equation*}
$$

(iii) In the modular equations (1.13) and (1.14), β is degree 7 over α and m is the multiplier associated with α and β so, from (1.21) and (1.22), we have

$$
\begin{gather*}
f(q)=\frac{\sqrt{z_{1}}}{\sqrt[6]{2}}\left\{\frac{\alpha(1-\alpha)}{q}\right\}^{1 / 24}, \quad f\left(q^{7}\right)=\frac{\sqrt{z_{7}}}{\sqrt[6]{2}}\left\{\frac{\beta(1-\beta)}{q^{7}}\right\}^{1 / 24} . \tag{2.12}\\
\chi(q)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\alpha(1-\alpha)}{q}}}, \quad \chi\left(q^{7}\right)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\beta(1-\beta)}{q^{7}}}} . \tag{2.13}
\end{gather*}
$$

Let us assume that

$$
\begin{equation*}
P=\frac{f(q)}{q^{1 / 4} f\left(q^{7}\right)}=\sqrt{m}\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{\chi\left(q^{7}\right)}{q^{1 / 4} \chi(q)}=\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} \tag{2.15}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\frac{P}{Q}=\sqrt{m} \tag{2.16}
\end{equation*}
$$

Now, eliminating α, β and m from (1.13) and (1.14) by making use of (2.15) and (2.16) we get the modular identity,

$$
\begin{equation*}
P^{8} Q^{8}+P^{4}+8 P^{4} Q^{4}=49 Q^{4}+Q^{12} P^{4}+8 P^{4} Q^{8} \tag{2.17}
\end{equation*}
$$

(iv) In the modular equations (1.15) and (1.16), β is degree 9 over α and m is the multiplier associated with α and β so, from (1.21) and (1.22), we have

$$
\begin{gather*}
f(q)=\frac{\sqrt{z_{1}}}{\sqrt[6]{2}}\left\{\frac{\alpha(1-\alpha)}{q}\right\}^{1 / 24}, \quad f\left(q^{9}\right)=\frac{\sqrt{z_{9}}}{\sqrt[6]{2}}\left\{\frac{\beta(1-\beta)}{q^{9}}\right\}^{1 / 24} \tag{2.18}\\
\chi(q)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\alpha(1-\alpha)}{q}}}, \quad \chi\left(q^{9}\right)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\beta(1-\beta)}{q^{9}}}} \tag{2.19}
\end{gather*}
$$

Let us assume that

$$
\begin{equation*}
P=\frac{f(q)}{q^{1 / 3} f\left(q^{9}\right)}=\sqrt{m}\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{\chi\left(q^{9}\right)}{q^{1 / 3} \chi(q)}=\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} \tag{2.21}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\frac{P}{Q}=\sqrt{m} \tag{2.22}
\end{equation*}
$$

Now, eliminating α, β and m from (1.13) and (1.14) by making use of (2.21) and (2.22) we get the modular identity,

$$
\begin{equation*}
P^{2} Q^{2}+P=P Q^{2}+3 Q \tag{2.23}
\end{equation*}
$$

(v) In the modular equations (1.17) and (1.18), β is degree 13 over α and m is the multiplier associated with α and β so, from (1.21) and (1.22), we have

$$
\begin{gather*}
f(q)=\frac{\sqrt{z_{1}}}{\sqrt[6]{2}}\left\{\frac{\alpha(1-\alpha)}{q}\right\}^{1 / 24}, \quad f\left(q^{13}\right)=\frac{\sqrt{z_{13}}}{\sqrt[6]{2}}\left\{\frac{\beta(1-\beta)}{q^{13}}\right\}^{1 / 24} . \tag{2.24}\\
\chi(q)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\alpha(1-\alpha)}{q}}}, \quad \chi\left(q^{13}\right)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\beta(1-\beta)}{q^{13}}}} . \tag{2.25}
\end{gather*}
$$

Let us assume that

$$
\begin{equation*}
P=\frac{f(q)}{q^{1 / 2} f\left(q^{13}\right)}=\sqrt{m}\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} . \tag{2.26}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{\chi\left(q^{13}\right)}{q^{1 / 2} \chi(q)}=\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} \tag{2.27}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\frac{P}{Q}=\sqrt{m} \tag{2.28}
\end{equation*}
$$

Now, eliminating α, β and m from (1.17) and (1.18) by making use of (2.27) and (2.28) we get the modular identity,

$$
\begin{equation*}
13 Q^{2}+P^{2} Q^{6}+4 P^{2} Q^{4}=P^{2}+4 Q^{2}+P^{4} Q^{4} \tag{2.29}
\end{equation*}
$$

(vi) In the modular equations (1.19) and (1.20), β is degree 25 over α and m is the multiplier associated with α and β so, from (1.21) and (1.22), we have

$$
\begin{gather*}
f(q)=\frac{\sqrt{z_{1}}}{\sqrt[6]{2}}\left\{\frac{\alpha(1-\alpha)}{q}\right\}^{1 / 24}, \quad f\left(q^{25}\right)=\frac{\sqrt{z_{25}}}{\sqrt[6]{2}}\left\{\frac{\beta(1-\beta)}{q^{25}}\right\}^{1 / 24} . \tag{2.30}\\
\chi(q)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\alpha(1-\alpha)}{q}}}, \quad \chi\left(q^{25}\right)=\frac{\sqrt[6]{2}}{\sqrt[24]{\frac{\beta(1-\beta)}{q^{25}}}} . \tag{2.31}
\end{gather*}
$$

Let us assume that

$$
\begin{equation*}
P=\frac{f(q)}{q f\left(q^{25}\right)}=\sqrt{m}\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} \tag{2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{\chi\left(q^{25}\right)}{q \chi(q)}=\left\{\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right\}^{1 / 24} \tag{2.33}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\frac{P}{Q}=\sqrt{m} \tag{2.34}
\end{equation*}
$$

Now, eliminating α, β and m from (1.19) and (1.20) by making use of (2.33) and (2.34) we get the modular identity,

$$
\begin{equation*}
P^{2} Q^{2}+P+2 P Q=5 Q+P Q^{3}+2 P Q^{2} \tag{2.35}
\end{equation*}
$$

References

[1] Andrews, G. E. and Berndt, B. C. (2005) Ramanujan's Lost Notebook, Part I, Springer, New York.
[2] Gasper, G and Rahman, M (1991) Basic Hypergeometric series, Cambridge University press, Cambridge.
[3] Ramanujan, S. (1957) Notebooks of Ramanujan, vol. I, T. I. F. R. Bombay.
[4] Singh, S.P., On P-Q identities associated with Ramanujans modular equations. Indian J. Pure Appl. Math. 38 (2007), no.5, 365-371.

