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Abstract: We consider plane curves of the form (ax)α + (by)α = rα defined on
the first quadrant of R2, where α > 0 and a, b, r > 0. We summarize the outlines
of them by using elementary differential calculus. We will in this note understand
that they are classified into three types of curves, convex, straight and concave,
depending on α.
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1. Introduction
There are many famous plane curves in mathematics. We take up, in this note,

plane curves represented by implicit functions of the form

F (x, y) = xα + yα − rα = 0

where α, r > 0. They include the famous plane curves as follows:

� If α = 2, the curve x2 + y2 − r2 = 0 is the circle that its center is the origin
and the length of its radius is r. (See Figure 1 for the outline.)

� If α = 1, the curve x + y − r = 0 is the straight line whose y-intercept is r.
(See Figure 2 for the outline.)
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� If α = 2/3, the curve x2/3 + y2/3 − r2/3 = 0 is the asteroid whose x and
y-intercept are both r. (See Figure 3 for the outline.)
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Figure 1: α = 2; Circle
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Figure 2: α = 1; Straight line
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Figure 3: α = 2/3; Asteroid

As we can see from Figures 1-3, it is expected that, for C : xα + yα = rα, (i)
if α > 1, then C is a convex curve; (ii) if α = 1, then C is a straight line; (iii) if
0 < α < 1, then C is a concave curve. Let us prove that which is more generalized
in the next section.

2. Orthogonal Representation of Plane Curves
Theorem 2.1. We consider a curve

C1 : (ax)α + (by)α = rα (2.1)

on x ≥ 0 and y ≥ 0, where α is a positive real number and a, b, r positive constants.
Then, the following facts hold:

(i) If α > 1, then C1 is a convex curve (Figure 4);

(ii) If α = 1, then C1 is a straight line (Figure 5);

(iii) If 0 < α < 1, then C1 is a concave curve (Figure 6).

Proof. Remark that 0 ≤ x ≤ r/a in any case, since

rα = (ax)α + (by)α ≥ (ax)α

for all α > 0. The case (ii) is obvious, so let us prove the cases (i) and (iii). We
consider a function on [0, r/a]:

F (x) := y =
1

b
{−(ax)α + rα}1/α .
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We notice that F (x) > 0 for all x ∈ (0, r/a). Then, we have

F ′(x) = −a
α

b
xα−1 {−(ax)α + rα}1/α−1 ,

F ′′(x) = −a
α

b
(α− 1)xα−1 {−(ax)α + rα}1/α−2

{
−(ax)α + rα + aαxα−1

}
.

Since −(ax)α + rα + aαxα−1 > 0 on (0, r/a), we obtain the following tables on the
increase and decrease of F and the outlines of C1:

(i) In case of α > 1:
x 0 · · · r/a

F ′(x) 0 − 0
F ′′(x) 0 − 0
F (x) r/b _ 0

This represents that C1 is the convex curve on [0, r/a].

(iii) In case of α < 1:
x 0 · · · r/a

F ′(x) 0 − 0
F ′′(x) 0 + 0
F (x) r/b ^ 0

This represents that C1 is the concave curve on [0, r/a].

This completes the proof.
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Figure 4: The case of α > 1
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Figure 5: The case of α = 1
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Figure 6: The case of 0 < α < 1

Like this, we can draw the graphs of curves of the form C1. It is interesting to
know areas of the graphs as the information of curves. We investigate the formula
of the area of the hypograph of C1.

Proposition 2.2. The area A(C1; [0, r/a]) of the hypograph of C1, (2.1), is given
by

A(C1; [0, r/a]) =
r2

ab

∫ π/2

0

(1− cosα θ)1/α sin θ dθ. (2.2)

Proof. Recall that C1 is rewritten as y = (1/b) {−(ax)α + rα}1/α ≥ 0 if x, y ≥ 0.
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We shall calculate the integral

A(C1; [0, r/a]) =

∫ r/a

0

1

b
{−(ax)α + rα}1/α dx,

but we consider a change of variables x 7→ (r/a) cos θ. Then, it follows that

dx

dθ
= −r

a
sin θ

x 0 → r/a
θ π/2 → 0

Hence, we have obtained the desired result by organizing.

Example 2.1. If a = b = 1 and α = 2, C1 is the quadrant whose center is the
origin and whose length of its radius is r. Hence the area of the hypograph of C1 is
πr2/4 since it is a quarter of the circle whose length of its radius is r, but we have
the same result from (2.2):

A(C1; [0, r]) = r2
∫ π/2

0

(1− cos2 θ)1/2 sin θ dθ

= r2
∫ π/2

0

sin2 θ dθ

=
πr2

4
.

3. Polar Representation of Plane Curves
Plane coordinate systems have the polar coordinate (x, y) 7→ (r cos θ, r sin θ)

with r > 0 and 0 ≤ θ < 2π in addition to the orthogonal coordinate. We mention
the outline of a curve represented by the polar coordinate.
Theorem 3.1. We consider a curve

C2 :

{
x = r cosk θ,

y = r sink θ
(3.1)

for θ ∈ [0, π/2], where k is a positive real number and r a positive constant. Then,
the following facts hold:

(i) If k > 2, then C2 is a concave curve;

(ii) If k = 2, then C2 is a straight line;

(iii) If 0 < k < 2, then C2 is a convex curve.
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Proof. C2 can be represented as the orthogonal form

x2/k + y2/k = r2/k, (3.2)

so there is no difference between the proof of this theorem and that of Theorem
2.1. In fact, this situation is the case that a = b = 1 and α = 2/k in Theorem 2.1.

Example 3.1. On the hand, setting k = 3 in (3.1), we have

x2/3 + y2/3 = r2/3

by (3.2). This represents the asteroid and thus C is the concave curve. On the
other hand, setting k = 1 in (3.1), we have

x2 + y2 = (r cos θ)2 + (r sin θ)2 = r2

since (x, y) = (r cos θ, r sin θ). This represents the circle and thus C is the convex
curve.

Example 3.2. If a = b = 1 and α = 1/2 in Theorem 3.1, C1 represents the
parabola. C1 is actually the parabola obtained by rotating

y =
1√
2r
x2 +

r

2
√

2

by −π/4 around the origin. This thing also declares that the parabola which has
the axis y = x represents by the polar coordinate{

x = r cos4 θ,

y = r sin4 θ

since
√
x+
√
y =
√
r is the curve in the case of k = 4 in Theorem 3.1.

4. Symmetry of Curves of the Form C1 or C2

We finally investigate the symmetry in the real II-IV quadrants of the form
C1 or C2 defined in the real I-quadrant. We discuss only C1 hereafter, because
C2 is the special curve of C1. This note introduces the following terminology for
convenience.

Definition 4.1. Let C be a curve defined in the real I-quadrant. We say that C
is kaleidoscope-type symmetric, if C is symmetric with respect to the x-axis, y-axis
and origin.
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Figure 7: Circle (Left), Asteroid (Right)

The circle (α = 2) and the asteroid (α = 2/3) are kaleidoscope-type symmetric
(See Figure 7.), but the straight line (α = 1) is not so. We can thus see that not
every curve C1 is kaleidoscope-type symmetric. So what is the value of α > 0 and
what makes kaleidoscope-type symmetric?

Proposition 4.2. C1 is kaleidoscope-type symmetric if and only if α is not 1 and
is a real number factored by 2: α 6= 1 and there exists α̃ ∈ R such that α = 2α̃.
Proof. It is trivial that α 6= 1. We put

Fα(x, y) := (ax)α + (by)α − rα = 0.

For the proof, it is sufficient to verify that α ∈ (0, 1) ∪ (1,∞) such that

Fα(x,−y) = Fα(x, y), Fα(−x, y) = Fα(x, y) and Fα(−x,−y) = Fα(x, y)
(4.1)

is represented as α = 2α̃ where α̃ ∈ R, since it is easy to see the converse. We
write Q+ for the set of positive rational numbers. To beginning with, we prove
(4.1) if α ∈ Q+ \ {1}. For that, we should prove that the necessary and sufficient
condition for (−1)m = 1, m ∈ N, is that m is even. It is however obvious by virtue
of the theory of complex numbers. Now recall that, for any real number, there
exists a certain sequence which converges to that real number. Then, we consider
a sequence {qn := 2q̃n} ⊂ Q+ \ {1} such that

qn = 2q̃n −−−→
n→∞

2α̃ = α ∈ (0, 1) ∪ (1,∞).
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Since it holds that
lim
n→∞

Fqn(x, y) = Fα(x, y)

because of the continuity of exponential functions, three expressions in (4.1) hold.
Hence, this completes the proof.

5. Comments
This note gives us the results (Theorem 2.1, 3.1) on the outlines of plane curves

of the forms C1 and C2 in the first quadrant of R2. Moreover, it mentions the
integral-formula (Proposition 2.2) of the area of the closed region made by the plane
curve, x-axis and y-axis. Finally, the kaleidoscope-type symmetry (Proposition 4.1)
of C1 and C2 was revealed.

One of purposes to know outlines of curves is to find areas (or volumes) of the
graphs. In case of C1, we can fortunately calculate the area of the hypograph of it
by integrals without drawing of the graphs, because

y =
1

b
{−(ax)α + rα}1/α ≥ 0

on [0, r/a]. (It is also so for C2.) That is however generally rare, and it is often
necessary to draw the graphs. We should thus know the outlines of several funda-
mental curves in order to calculate those areas. Furthermore, it is useful to know
the kaleidoscope-type symmetry of the graphs when we draw them.

We hope that fundamental results obtained in this note will be common sense
not only among scholars but also among students studying mathematics.

References

[1] Brieskorn, E. and Knörrer, H. (trans. Stillwell, J.), Plane Algebraic Curves,
Birkhaeuser (2012).

[2] Friedman, A., Advanced Calculus, Dover Publications (2007).



108 J. of Ramanujan Society of Mathematics and Mathematical Sciences


