J. of Ramanujan Society of Mathematics and Mathematical Sciences

Vol. 7, No. 2 (2020), pp. 99-108
ISSN (Online): 2582-5461
ISSN (Print): 2319-1023
ON THE OUTLINES OF PLANE CURVES OF THE FORM
$(a x)^{\alpha}+(b y)^{\alpha}=r^{\alpha}$ WITH $\alpha>0$

Norihiro Someyama

Shin-yo-ji Buddhist Temple, 5-44-4 Minamisenju, Arakawa-ku, Tokyo 116-0003 JAPAN

E-mail : philomatics@outlook.jp
ORCID iD: https://orcid.org/0000-0001-7579-5352
(Received: Mar. 03, 2020 Accepted: Apr. 08, 2020 Published: Jun. 30, 2020)
Abstract: We consider plane curves of the form $(a x)^{\alpha}+(b y)^{\alpha}=r^{\alpha}$ defined on the first quadrant of \mathbb{R}^{2}, where $\alpha>0$ and $a, b, r>0$. We summarize the outlines of them by using elementary differential calculus. We will in this note understand that they are classified into three types of curves, convex, straight and concave, depending on α.

Keywords and Phrases: Plane curve, implicit function, orthogonal representation, polar representation, differential calculus, area, integral.
2010 Mathematics Subject Classification: 14H50, 26B10.

1. Introduction

There are many famous plane curves in mathematics. We take up, in this note, plane curves represented by implicit functions of the form

$$
F(x, y)=x^{\alpha}+y^{\alpha}-r^{\alpha}=0
$$

where $\alpha, r>0$. They include the famous plane curves as follows:

- If $\alpha=2$, the curve $x^{2}+y^{2}-r^{2}=0$ is the circle that its center is the origin and the length of its radius is r. (See Figure 1 for the outline.)
- If $\alpha=1$, the curve $x+y-r=0$ is the straight line whose y-intercept is r. (See Figure 2 for the outline.)
- If $\alpha=2 / 3$, the curve $x^{2 / 3}+y^{2 / 3}-r^{2 / 3}=0$ is the asteroid whose x and y-intercept are both r. (See Figure 3 for the outline.)

Figure 1: $\alpha=2$; Circle

Figure 2: $\alpha=1$; Straight line

Figure 3: $\alpha=2 / 3$; Asteroid

As we can see from Figures 1-3, it is expected that, for $C: x^{\alpha}+y^{\alpha}=r^{\alpha}$, (i) if $\alpha>1$, then C is a convex curve; (ii) if $\alpha=1$, then C is a straight line; (iii) if $0<\alpha<1$, then C is a concave curve. Let us prove that which is more generalized in the next section.

2. Orthogonal Representation of Plane Curves

Theorem 2.1. We consider a curve

$$
\begin{equation*}
C_{1}:(a x)^{\alpha}+(b y)^{\alpha}=r^{\alpha} \tag{2.1}
\end{equation*}
$$

on $x \geq 0$ and $y \geq 0$, where α is a positive real number and a, b, r positive constants. Then, the following facts hold:
(i) If $\alpha>1$, then C_{1} is a convex curve (Figure 4);
(ii) If $\alpha=1$, then C_{1} is a straight line (Figure 5);
(iii) If $0<\alpha<1$, then C_{1} is a concave curve (Figure 6).

Proof. Remark that $0 \leq x \leq r / a$ in any case, since

$$
r^{\alpha}=(a x)^{\alpha}+(b y)^{\alpha} \geq(a x)^{\alpha}
$$

for all $\alpha>0$. The case (ii) is obvious, so let us prove the cases (i) and (iii). We consider a function on $[0, r / a]$:

$$
F(x):=y=\frac{1}{b}\left\{-(a x)^{\alpha}+r^{\alpha}\right\}^{1 / \alpha}
$$

We notice that $F(x)>0$ for all $x \in(0, r / a)$. Then, we have

$$
\begin{gathered}
F^{\prime}(x)=-\frac{a^{\alpha}}{b} x^{\alpha-1}\left\{-(a x)^{\alpha}+r^{\alpha}\right\}^{1 / \alpha-1} \\
F^{\prime \prime}(x)=-\frac{a^{\alpha}}{b}(\alpha-1) x^{\alpha-1}\left\{-(a x)^{\alpha}+r^{\alpha}\right\}^{1 / \alpha-2}\left\{-(a x)^{\alpha}+r^{\alpha}+a^{\alpha} x^{\alpha-1}\right\} .
\end{gathered}
$$

Since $-(a x)^{\alpha}+r^{\alpha}+a^{\alpha} x^{\alpha-1}>0$ on $(0, r / a)$, we obtain the following tables on the increase and decrease of F and the outlines of C_{1} :
(i) In case of $\alpha>1$:

x	0	\cdots	r / a
$F^{\prime}(x)$	0	-	0
$F^{\prime \prime}(x)$	0	-	0
$F(x)$	r / b	\frown	0

This represents that C_{1} is the convex curve on $[0, r / a]$.
(iii) In case of $\alpha<1$:

x	0	\cdots	r / a
$F^{\prime}(x)$	0	-	0
$F^{\prime \prime}(x)$	0	+	0
$F(x)$	r / b	\smile	0

This represents that C_{1} is the concave curve on $[0, r / a]$.
This completes the proof.

Figure 4: The case of $\alpha>1$

Figure 5: The case of $\alpha=1$

Figure 6: The case of $0<\alpha<1$

Like this, we can draw the graphs of curves of the form C_{1}. It is interesting to know areas of the graphs as the information of curves. We investigate the formula of the area of the hypograph of C_{1}.

Proposition 2.2. The area $\mathrm{A}\left(C_{1} ;[0, r / a]\right)$ of the hypograph of C_{1}, (2.1), is given by

$$
\begin{equation*}
\mathrm{A}\left(C_{1} ;[0, r / a]\right)=\frac{r^{2}}{a b} \int_{0}^{\pi / 2}\left(1-\cos ^{\alpha} \theta\right)^{1 / \alpha} \sin \theta d \theta . \tag{2.2}
\end{equation*}
$$

Proof. Recall that C_{1} is rewritten as $y=(1 / b)\left\{-(a x)^{\alpha}+r^{\alpha}\right\}^{1 / \alpha} \geq 0$ if $x, y \geq 0$.

We shall calculate the integral

$$
\mathrm{A}\left(C_{1} ;[0, r / a]\right)=\int_{0}^{r / a} \frac{1}{b}\left\{-(a x)^{\alpha}+r^{\alpha}\right\}^{1 / \alpha} d x
$$

but we consider a change of variables $x \mapsto(r / a) \cos \theta$. Then, it follows that

$$
\frac{d x}{d \theta}=-\frac{r}{a} \sin \theta \quad \begin{array}{c||ccc}
x & 0 & \rightarrow & r / a \\
\hline \theta & \pi / 2 & \rightarrow & 0
\end{array}
$$

Hence, we have obtained the desired result by organizing.
Example 2.1. If $a=b=1$ and $\alpha=2, C_{1}$ is the quadrant whose center is the origin and whose length of its radius is r. Hence the area of the hypograph of C_{1} is $\pi r^{2} / 4$ since it is a quarter of the circle whose length of its radius is r, but we have the same result from (2.2):

$$
\begin{aligned}
\mathrm{A}\left(C_{1} ;[0, r]\right) & =r^{2} \int_{0}^{\pi / 2}\left(1-\cos ^{2} \theta\right)^{1 / 2} \sin \theta d \theta \\
& =r^{2} \int_{0}^{\pi / 2} \sin ^{2} \theta d \theta \\
& =\frac{\pi r^{2}}{4}
\end{aligned}
$$

3. Polar Representation of Plane Curves

Plane coordinate systems have the polar coordinate $(x, y) \mapsto(r \cos \theta, r \sin \theta)$ with $r>0$ and $0 \leq \theta<2 \pi$ in addition to the orthogonal coordinate. We mention the outline of a curve represented by the polar coordinate.
Theorem 3.1. We consider a curve

$$
C_{2}:\left\{\begin{array}{l}
x=r \cos ^{k} \theta \tag{3.1}\\
y=r \sin ^{k} \theta
\end{array}\right.
$$

for $\theta \in[0, \pi / 2]$, where k is a positive real number and r a positive constant. Then, the following facts hold:
(i) If $k>2$, then C_{2} is a concave curve;
(ii) If $k=2$, then C_{2} is a straight line;
(iii) If $0<k<2$, then C_{2} is a convex curve.

Proof. C_{2} can be represented as the orthogonal form

$$
\begin{equation*}
x^{2 / k}+y^{2 / k}=r^{2 / k}, \tag{3.2}
\end{equation*}
$$

so there is no difference between the proof of this theorem and that of Theorem 2.1. In fact, this situation is the case that $a=b=1$ and $\alpha=2 / k$ in Theorem 2.1.

Example 3.1. On the hand, setting $k=3$ in (3.1), we have

$$
x^{2 / 3}+y^{2 / 3}=r^{2 / 3}
$$

by (3.2). This represents the asteroid and thus C is the concave curve. On the other hand, setting $k=1$ in (3.1), we have

$$
x^{2}+y^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}=r^{2}
$$

since $(x, y)=(r \cos \theta, r \sin \theta)$. This represents the circle and thus C is the convex curve.

Example 3.2. If $a=b=1$ and $\alpha=1 / 2$ in Theorem 3.1, C_{1} represents the parabola. C_{1} is actually the parabola obtained by rotating

$$
y=\frac{1}{\sqrt{2} r} x^{2}+\frac{r}{2 \sqrt{2}}
$$

by $-\pi / 4$ around the origin. This thing also declares that the parabola which has the axis $y=x$ represents by the polar coordinate

$$
\left\{\begin{array}{l}
x=r \cos ^{4} \theta, \\
y=r \sin ^{4} \theta
\end{array}\right.
$$

since $\sqrt{x}+\sqrt{y}=\sqrt{r}$ is the curve in the case of $k=4$ in Theorem 3.1.
4. Symmetry of Curves of the Form C_{1} or C_{2}

We finally investigate the symmetry in the real II-IV quadrants of the form C_{1} or C_{2} defined in the real I-quadrant. We discuss only C_{1} hereafter, because C_{2} is the special curve of C_{1}. This note introduces the following terminology for convenience.

Definition 4.1. Let C be a curve defined in the real I-quadrant. We say that C is kaleidoscope-type symmetric, if C is symmetric with respect to the x-axis, y-axis and origin.

Figure 7: Circle (Left), Asteroid (Right)

The circle $(\alpha=2)$ and the asteroid $(\alpha=2 / 3)$ are kaleidoscope-type symmetric (See Figure 7.), but the straight line $(\alpha=1)$ is not so. We can thus see that not every curve C_{1} is kaleidoscope-type symmetric. So what is the value of $\alpha>0$ and what makes kaleidoscope-type symmetric?
Proposition 4.2. C_{1} is kaleidoscope-type symmetric if and only if α is not 1 and is a real number factored by $2: \alpha \neq 1$ and there exists $\widetilde{\alpha} \in \mathbb{R}$ such that $\alpha=2 \widetilde{\alpha}$.
Proof. It is trivial that $\alpha \neq 1$. We put

$$
F_{\alpha}(x, y):=(a x)^{\alpha}+(b y)^{\alpha}-r^{\alpha}=0 .
$$

For the proof, it is sufficient to verify that $\alpha \in(0,1) \cup(1, \infty)$ such that

$$
\begin{equation*}
F_{\alpha}(x,-y)=F_{\alpha}(x, y), \quad F_{\alpha}(-x, y)=F_{\alpha}(x, y) \quad \text { and } \quad F_{\alpha}(-x,-y)=F_{\alpha}(x, y) \tag{4.1}
\end{equation*}
$$

is represented as $\alpha=2 \widetilde{\alpha}$ where $\widetilde{\alpha} \in \mathbb{R}$, since it is easy to see the converse. We write \mathbb{Q}_{+}for the set of positive rational numbers. To beginning with, we prove (4.1) if $\alpha \in \mathbb{Q}_{+} \backslash\{1\}$. For that, we should prove that the necessary and sufficient condition for $(-1)^{m}=1, m \in \mathbb{N}$, is that m is even. It is however obvious by virtue of the theory of complex numbers. Now recall that, for any real number, there exists a certain sequence which converges to that real number. Then, we consider a sequence $\left\{q_{n}:=2 \widetilde{q}_{n}\right\} \subset \mathbb{Q}_{+} \backslash\{1\}$ such that

$$
q_{n}=2 \widetilde{q}_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 2 \widetilde{\alpha}=\alpha \in(0,1) \cup(1, \infty) .
$$

Since it holds that

$$
\lim _{n \rightarrow \infty} F_{q_{n}}(x, y)=F_{\alpha}(x, y)
$$

because of the continuity of exponential functions, three expressions in (4.1) hold. Hence, this completes the proof.

5. Comments

This note gives us the results (Theorem 2.1,3.1) on the outlines of plane curves of the forms C_{1} and C_{2} in the first quadrant of \mathbb{R}^{2}. Moreover, it mentions the integral-formula (Proposition 2.2) of the area of the closed region made by the plane curve, x-axis and y-axis. Finally, the kaleidoscope-type symmetry (Proposition 4.1) of C_{1} and C_{2} was revealed.

One of purposes to know outlines of curves is to find areas (or volumes) of the graphs. In case of C_{1}, we can fortunately calculate the area of the hypograph of it by integrals without drawing of the graphs, because

$$
y=\frac{1}{b}\left\{-(a x)^{\alpha}+r^{\alpha}\right\}^{1 / \alpha} \geq 0
$$

on $[0, r / a]$. (It is also so for C_{2}.) That is however generally rare, and it is often necessary to draw the graphs. We should thus know the outlines of several fundamental curves in order to calculate those areas. Furthermore, it is useful to know the kaleidoscope-type symmetry of the graphs when we draw them.

We hope that fundamental results obtained in this note will be common sense not only among scholars but also among students studying mathematics.

References

[1] Brieskorn, E. and Knörrer, H. (trans. Stillwell, J.), Plane Algebraic Curves, Birkhaeuser (2012).
[2] Friedman, A., Advanced Calculus, Dover Publications (2007).

