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Abstract: By Applying extension of k-Gamma and k-Beta functions we derive the
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1. Introduction
Many researchers are developing the fractional calculus theory and its applica-

tions with the help some special functions like Gamma, Beta, extended Gamma,
extended Beta , k-Gamma, k-Beta, extended k-Gamma and extended k-Beta func-
tions ( Mathai et al [9] , Chaudhry et al [3], Daiz et al [4] Mubeen et al [12]) .
Many problems of science and engineering can be evaluated by help these functions
(Bapna at al [1], Krishanamoorthy [8]) Presently more researchers are working on
k-Beta function and extension of k-beta function and these functions have more
applications in mathematical analysis and pure statistics. The aim of this paper is
to develop extended k-Beta and extended k-Gamma functions involving fractional
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calculus theory and statistical distribution theory. We are giving the following ba-
sic definitions based on our main results related to k-Beta function and extension
of k-beta function.

2. Gamma and Beta functions
The Gamma function Γz is introduced by Euler (1707-1783). Many forms of

Gamma function are given by Euler, Carl Friendrich Gauss, Karl Weierstrass and
Egan which are useful in various scientific and real life applications( Mathai et
al. [9], Bapna et al.[1], Vyas [16],and Walac [17]) The Gamma is defined by the
formula

Γ (z) = lim
n→∞

n!nz−1

(z)n
(1)

Its integral representation is also given as

Γz =

∞∫
0

xz−1e−xdx; Re (z) > 0 (2)

And
Γ (z + 1) = zΓz (3)

Beta function B (m,n) is defined as

B (m,n) =

1∫
0

xm−1(1− x)n−1dx ; Re (m) > 0, R (n) > 0 (4)

The Beta function in term of Gamma function is given by

B (m,n) =
ΓmΓn

Γ (m+ n)
(5)

Let n be positive integer. Then Pochhammer symbol (a)n defined as

(a)n = a (a+ 1) (a+ 2) (a+ 3) ... (a+ (n− 1)) (6)

(a)0 = 1 (7)
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1.2. k-Gamma and k-Beta functions
In 2007 Diaz and Pariguan (see Diaz et al.[4], Diaz et al.[5]) have introduced

the following Pochhammer k-symbol and k-Gamma function .The Pochhammer
k-symbol is (a)n,k defined as

(a)n,k =

{
a (a+ k) (a+ 2k) . . . (a+ (n− 1) k) ;n ≥ 1, k > 0

1 ;n = 0

}
(8)

For k > 0Re(z) > 0 the k-Gamma function is defined as

Γk (z) = lim
n→∞

n!kn(nk)
z
k
−1

(z)n, k
(9)

(a)n,k =
Γk (z + nk)

Γk (z)
(10)

And its integral form as

Γk (z) =

∞∫
0

xz−1e−
xk

k dx (11)

Γk (z + k) = zΓk (z) (12)

The k- beta function for k > 0 and Re (m) > 0,Re (n) > 0 is given by

Bk (m,n) =

1∫
0

x
m
k
−1(1− x)

n
k
−1dx (13)

The relation between k-Beta and k-Gamma function are given as

Bk (m,n) =
Γk (m) Γk (n)

Γk (m+ n)
(14)

Many researchers (see more detail Kokologiannak et al [6], Kokologiannak et al
[7], Mubeen et al. [11], Rehman et al [15], Merovci [14] and Wang [18]) have
investigated some properties of k-Gamma and k-Beta functions.

1.3. Extension of Gamma and Beta functions
Extension of gamma function Γb (z) is investigated by Chaudhry and Zubair

[3]. It is defined as

Γb (z) =

∞∫
0

xz−1e−x−bx
−1

dx; Re (z) > 0, b ≥ 0 (15)
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If b = 0 then (15) tend to (2) and extension of Beta function is given as

B (m,n; b) =

1∫
0

tm(1− t)ne−
b

t(1−t)dt (16)

Where Re (m) > 0,Re (n) > 0,Re (b) > 0 If b = 0 then (16) tend to (4) (see
Chaudhry et al. [2], Chaudhry et al [3]).

1.4. Extension of k-Gamma and k-Beta functions

In 2016, Mubeen et al. have introduced the following extension of k-Gamma
function

Γb,k (z) =

∞∫
0

xz−1e−
xk

k
− b

kx−k
k dx (17)

Where k > 0,Re (m) > 0,Re (n) ,Re (b) > 0
When (i) put b = 0, (17) tend to (11) (ii) put k = 1, (17) tend to (15) (iii) put
both k = 1 and b = 0, (17) tend to (2)
The extension of k-Beta function of two variables m and n is denoted

Bk (m,n; b) =
1

k

1∫
0

x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)dx (18)

Where Re (m) > 0,Re (n) > 0, k > 0,Re (b) > 0
If (i) put k = 1 (18) tend to (16) (ii) put b = 0 (18) tend to (13) (iii) put k = 1
and b=0 (18) tend (4)
Trigonometry representation of extended k-Beta function is given as (Mubeen et
al. [11])

Bk (m,n; b) =
2

k

π
2∫

0

(cos θ)
2m
k
−1(sin θ)

2n
k
−1e−

bk

k
sec2θ cos ec2θdθ (19)

Integral representation of extended k- Beta function is given as (Mubeen et al.
[11])

∞∫
0

bs−1Bk (m,n; b) dx = Γk (s)Bk (m+ s, n+ s) (20)
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Let Γb,k (m) denotes extended k-Gamma function then (Mubeen et al. [11])

Γb,k (m) Γb,k (n) =
2

k

∞∫
0

r2
m+n
k
−1e−

r2

k

2

k

π
2∫

0

(cos θ)
2m
k
−1(sin θ)

2n
k
−1e−

bk

kr2sin2θcos2θ dθ

 dr

(21)
2. Main result some properties of extended k-beta function
Theorem 2.1. For k > 0,Re (m) > 0,Re (n) > 0,Re (r) > 0 and Re (s) > 0 then
following integral representation holds true

(i)

π
2∫

0

∞∫
0

rs−1(cos θ)
2m
k
−1(sin θ)

2n
k
−1e−

bk

k
sec2θ cos ec2θdθdr =

k

2
Γk (s)Bk (m+ s, n+ s)

(22)

(ii)

π
2∫

0

∞∫
0

rs−1(cos θ)
2m
k
−1e−

bk

k
sec2θ cos ec2θdθdr =

k

2
Γk (s)Bk

(
m+ s, s+

k

2

)
(23)

(iii)

π
2∫

0

∞∫
0

rs−1(sin θ)
2n
k
−1e−

bk

k
sec2θ cos ec2θdθdr =

k

2
Γk (s)Bk

(
s+

k

2
, s+ n

)
(24)

(iv)

π
2∫

0

∞∫
0

rs−1e−
bk

k
sec2θ cos ec2θdθdr =

k

2
Γk (s)Bk

(
s+

k

2
, s+

k

2

)
(25)

(v)

π
2∫

0

∞∫
0

rs−1(cos θ)p(sin θ)qe−
bk

k
sec2θ cos ec2θdθdr =

k

2
Γk (s)Bk

(
s+

k (p+ 1)

2
, s+

k (q + 1)

2

)
(26)

Proof. (i) we have by (20)
∞∫
0

bs−1Bk (m,n; b) dx = Γk (s)Bk (m+ s, n+ s) Using

in L.H.S. of equation (19) and replace b = r

π
2∫

0

∞∫
0

rs−1(cos θ)
2m
k
−1(sin θ)

2n
k
−1e−

bk

k
sec2θ cos ec2θdθdr =

k

2
Γk (s)Bk (m+ s, n+ s)
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Which is completes proof of equation (22)
(ii)When in equation (22) put n = k

2
then equation (23) will be

(iii) When in equation (22) put m = k
2

then equation (24) will be
(iv)When in equation (22) put m = k

2
and n = k

2
then equation (25) will be

(v)When in equation (22) put 2m
k
− 1 = p and 2n

k
− 1 = q then equation (26) will

be

Theorem 2.2. Let k > 0; Re (m) > 0,Re (n) > 0,Re (r) > 0 and Re (b) > 0 then
extended k-Gamma, k- Gamma and k-Beta function have relation

Γb,k (m) Γb,k (n) =
∞∑
s=0

(−1)s

s!

(
bk

k

)s
Bk (m− sk, n− sk) Γk (m+ n− sk)

Where
Re (m− sk) > 0,Re (n− sk) > 0 (27)

Proof. Using the equation (21)

Γb,k (m) Γb,k (n) =
2

k

∞∫
0

r2
m+n
k
−1e−

r2

k

2

k

π
2∫

0

(cos θ)
2m
k
−1(sin θ)

2n
k
−1e−

bk

kr2sin2θcos2θ dθ

 dr

=
2

k

∞∫
0

r2
m+n
k
−1e−

r2

k

2

k

π
2∫

0

(cos θ)
2m
k
−1(sin θ)

2n
k
−1

∞∑
s=0

(−1)s

s!

(
bk

kr2sin2θcos2θ

)s dr

=
2

k

∞∫
0

r2
m+n
k
−1e−

r2

k

∞∑
s=0

(−1)s

s!

(
bk

kr2

)s2

k

π
2∫

0

(cos θ)
2(m−sk)

k
−1(sin θ)

2(n−sk)
k
−1dθ

 dr

=
∞∑
s=0

(−1)s

s!

(
bk

k

)s
Bk (m− sk, n− sk)

2

k

∞∫
0

r2
m+n−sk

k
−1e−

r2

k dr

=
∞∑
s=0

(−1)s

s!

(
bk

k

)s
Bk (m− sk, n− sk) Γk (m+ n− sk)
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Thus equation (27) has proved.

Theorem 2.3. Let k > 0; Re (m) > 0,Re (n) > 0 and Re (b) > 0 then extended
k-Gamma functions have property

Γb,k (m) Γb,k (n) =
∞∑
s=0

∞∑
r=0

(
bk

k

)s+r
(−1)s+r

s!r!
Γk (m− rk) Γk (n− sk) (28)

Proof.

Γb,k (m) Γb,k (n) =

∞∫
0

xm−1e−
xk

k
− bk

kxk dx

∞∫
0

ym−1e
− y

k

k
− bk

kyk dy

=
∞∑
r=0

(
bk

k

)r
(−1)r

r!

∞∫
0

xm−rk−1e−
xk

k dx
∞∑
s=0

(
bk

k

)s
(−1)s

s!

∞∫
0

yn−ske−
yk

k dy

=
∞∑
r=0

∞∑
s=0

(
bk

k

)s+r
(−1)s+r

s!r!
Γk (m− rk) Γk (n− sk)

Theorem 2.4. Let Γb,k (m) denotes extended k-Gamma function then prove that

∞∫
0

e−bsΓb,k (m) Γb,k (n) db =
∞∑
r=0

(
−1

k

)r
1

r!
Bk (m− rk, n− rk) Γk (m+ n− rk)

Γk (rk + 1)

prk+1

(29)
Proof. Using the equation (27)

∞∫
0

e−bsΓb,k (m) Γb,k (n) db =

∞∫
0

e−sb
∞∑
s=0

(−1)r

r!

(
bk

k

)r
Bk (m− rk, n− rk) Γk (m+ n− rk) db

=
∞∑
r=0

(
−1

k

)r
1

r!
Bk (m− rk, n− rk) Γk (m+ n− rk)

∞∫
0

e−bsbrkdb

=
∞∑
r=0

(
−1

k

)r
1

r!
Bk (m− rk, n− rk) Γk (m+ n− rk)

Γk (rk + 1)

srk+1
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3. Extended k- Beta distribution
Let a continuous random variable X is said to have extension of k-Beta distri-

bution if its probability density function is given as (Rehman et al. [13], Mubeen
et al. [11]) {

1
Bk(m,n;b)

x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)

0

}
; 0 < x < 1
;Otherwise

(30)

And cumulative density function of extended k-Beta function is given as

Fx (X ≤ x) =
1

kBk (m,n; b)

x∫
0

x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)dx =
Ix,k (m,n; k)

Bk (m,n; b)
(31)

Mean of extended k-beta distribution is given as

E (x) =
1

kBk (m,n; b)

∞∫
0

xx
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)dx =
Bk (m+ k, n; b)

Bk (m,n; b)
(32)

Theorem 3.1. Let X is extended k- beta Bk(m,n;b) random variable then nth
moment about mean is random variable then given as

µn =
s∑
r=0

sCr(−1)r
(
Bk (m+ k, n; b)

B (m,n; b)

)s−r
Bk (m+ rk, n; b)

Bk (m,n; b)
(33)

Proof. Using (30)

µn =
1∫
0

(x− A)s 1
Bk(m,n;b)

x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)dx

∵ A = Bk(m+k,n;b)
B(m,n;k)

= 1
kBk(m,n;b)

1∫
0

s∑
r=0

sCr(−1)rxrAs−rx
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)dx

=
s∑
r=0

sCr(−1)rAs−r 1
Bk(m,n;b)

1∫
0

x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)dx

=
s∑
r=0

sCr(−1)rAs−r Bk(m+rk,n;b)
Bk(m,n;b)

=
s∑
r=0

sCr(−1)r
(
Bk(m+k,n;b)
Bk(m,n;b)

)r
Bk(m+rk,n;b)
B(m,n;b)

Which is represent the nth moment about mean of extended k-Beta distribution
When Put s = 0, 1,2,3,4 in equation (33) then first four central moment respectively

µ0 = 1 (34)
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µ1 = 0 (35)

µ2 =
Bk (m+ 2k, n; b)Bk (m,n; b)−B2

k (m+ k, n; b)

B2
k (m,n)

(36)

µ3 =

(
Bk (m+ k, n; b)

Bk (m,n)

)3

− 3

(
Bk (m+ k, n; b)

Bk (m,n; b)

)2
Bk (m+ k, n; b)

Bk (m,n; b)

+3
Bk (m+ k, n)

Bk (m,n)

Bk (m+ 2k, n)

Bk (m,n)
+
Bk (m+ 3k, n; b)

Bk (m,n)
(37)

µ4 =

(
Bk (m+ k, n)

Bk (m,n)

)4

− 4

(
Bk (m+ k, n; b)

Bk (m,n; b)

)3
Bk (m+ k, n; b)

Bk (m,n; b)
+

6

(
Bk (m+ k, n)

Bk (m,n; b)

)2
Bk (m+ 2k, n)

Bk (m,n; b)
+
Bk (m+ k, n)

B (m,n)

Bk (m+ 3k, n)

Bk (m,n; b)
+
Bk (m+ 4k, n)

Bk (m,n)
(38)

Remark: In equations (34, (35), (36) and (37), (i) put b=0 then these will follow
k-Beta distribution (see Rehman et al. [13]) (ii) put both k = 1 and b = 0 these
will follow Beta Distribution.

Theorem 3.2. Maximum likelihood estimators
Let X1, X2,X3, . . . . . . ., X3 be random variable of extended k-Beta distribution with
parameter (α, β, b) if θ = (α, β, b) then likelihood function of parameters is given
by

L (θ) =
n∏
i=0

1

kBk (α, β; b)
x
α
k
i (1− xi)

β
k
−1e
− bk

kxi(1−xi) (39)

Taking the natural logarithm of the above equation, we get

logL (θ) =
(
α
k
− 1
)

log
n∏
i=1

xi +
(
β
k
− 1
)

log
n∏
i=1

(1− xi)− bk

k

n∑
i=1

1
xi(1−xi)

−n log k − n logB (α, β; b)
(40)

Equation (40) is differentiated with respect to α, β and b

∂L (θ)

∂α
=

1

k
log

n∏
i=1

xi −
n

Bk (α, β; b)

∂Bk (α, β; b)

∂α
= 0 (41)
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∂L (θ)

∂β
=

1

k
log

n∏
i=1

(1− xi)−
n

Bk (α, β; b)

∂Bk (α, β; b)

∂β
= 0 (42)

∂L (θ)

∂b
= −bk−1

n∑
i=1

1

xi (1− xi)
− n

Bk (α, β; b)

∂Bk (α, β; b)

∂b
= 0 (43)

Case –I If α and β known and b unknown then the maximum likelihood estimator
of b is obtained by (43)
Case-II If β and b known and α unknown then the maximum likelihood estimator
α of is obtained by (41)
Case-III If α and b known and β unknown then the maximum likelihood estimator
of β is obtained by (42) We will solve the equation received in case-I, II, III with
help of Newton-Raphson method.

Theorem 3.3. Let X be extended k-Beta random variable with parameter m, n
and b then extended k-Beta distribution satisfies following properties

(i)E (log x) = k

[
∂ logBk (m,n; b)

∂m

]
(44)

(ii)E (log (1− x)) = k

[
∂ logBk (m,n; b)

∂n

]
(45)

(iii)E
(
log2x

)
= k2

[(
∂ logBk (m,n; b)

∂m

)2

− ∂2 logBk (m,n; b)

∂n

]
(46)

(iv)E
(
log2 (1− x)

)
= k2

[(
∂ logBk (m,n; b)

∂n

)2

− ∂2 logBk (m,n; b)

∂n

]
(47)

Proof. (i) E (log x) = 1
kBk(m,n;b)

1∫
0

(log x)x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)dx

= k
kBk(m,n;b)

1∫
0

∂x
m
k
−1(1−x)

n
k
−1

∂m
e−

bk

kx(1−x)dx

= k
Bk(m,n;b)

∂Bk(m,n;b)
∂m

= k ∂ logBk(m,n;b)
∂m
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(ii)This proof is similar to proof of (i)

(iii)E
(
log2 (x)

)
= 1

kBk(m,n;b)

1∫
0

(
log2x

)
x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)dx

= k2

kBk(m,n;b)

1∫
0

∂2

∂m2x
m
k
−1(1− x)

n
k
−1e−

b
kx(1−x)dx

= k2

Bk(m,n;b)
∂2Bk(m,n;b)

∂m2

= k2
[(

∂Bk(m,n;b)
∂m

)2
− ∂2 logBk(m,n;b)

∂m2

]
Hence the required result is
(iv) Proof is similar to proof of (i).

Corollary 3.4. Let X be the extended k- beta random variable with parameter
m,n and b then

(i)V ar (log x) = −k2
(
∂2 logBk (m,n; b)

∂m2

)
(48)

(ii)V ar (log (1− x)) = −k2
(
∂2 logBk (m,n; b)

∂m2

)
(49)

(iii)E
(
x

1
2

)
=
Bk

(
m+ k

2
, n; b

)
Bk (m,n; b)

(50)

(iv)E
(
x(2r−1)

1
2

)
=
Bk

(
m+ (2r − 1) k

2
, n; b

)
Bk (m,n; b)

(51)

(v)E

(
1

(1− x)
1
s

)
=
∞∑
r=0

(
1
s

)
r

Γ (r + 1)

Bk (m+ rk, n; b)

Bk (m,n; b)
(52)

Theorem 3.5. For β < 1 and X, k > 0, be extended k-beta Bk (m,n; b) random
variable then

(i)fx (x |0 < X < β ) =
x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)

Iβ,k (m,n; b)
(53)

(ii)E (x |0 < X < β ) =
Iβ,k (m+ k, n; b)

Iβ,k (m,n; b)
(54)
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(iii)E
(
x2 |0 < X ≤ β

)
=
Iβ,k (m+ 2k, n; b)

Iβ,k (m,n; b)
(55)

(iv)V ar (x |0 < X ≤ β ) =
Iβ,k (m+ 2k, n)

Iβ,k (m,n; b)
−
[
Iβ,k (m+ k, n)

Iβ,k (m,n; b)

]2
(56)

Where

Iβ,k (m,n; b) =
1

k

β∫
0

x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)dx (57)

is incomplete extended k-Beta function.
Proof. (i) Using equation (30) and (31)

fx (x |0 < X < β ) =
fx (x)

F (x ≤ β)
=

x
m
k
−1(1−x)

n
k
−1e
− bk

kx(1−x)

kBk(m,n;b)

1
kBk(m,n;b)

β∫
0

x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)

=
x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)

Iβ,k (m,n; b)

(ii)E (x |0 < x < β ) = 1
Iβ,k(m,n;b)

β∫
0

x
m
k (1− x)

n
k
−1e−

bk

kx(1−x)dx =
Iβ,k(m+k,n;b)

Iβ,k(m,n;b)

(iii)E (x2 |0 < X < β ) = 1
Iβ,k(m,n;b)

β∫
0

x
m
k
+1(1− x)

n
k
−1e−

bk

kx(1−x)dx =
Iβ,k(m+2k,n;b)

Iβ,k(m,n;b)

(iv)V ar (x |0 < X < β ) = E (x2 |0 < X < β )− [E (x |0 < X < β )]2

=
Iβ,k (m+ 2k, n; b)

Iβ,k (m,n; b)
−
[
Iβ,k (m+ k, n; b)

Iβ,k (m,n; b)

]2
Hence theorem (3.5) has been proved.

3.6 Applications in real life
3.6.1 Life Time of Component Let X is extended k-Beta Bk (m,n; b) random
variable then the probability of failure till time x is given by

Fx (x) = P (X ≤ x) =
Ix,k (m,n; b)

Bk (m,n; b)
(58)
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Where Ik (m,n; b) denotes incomplete k-Beta function
The probability that the component survives until time x is denoted Sx (x) and
can be expressed as

Sx (x) = F (X ≥ x) =

1∫
x

fx (x) dx =
Icx,k (m,n; b)

Bk (m,n; b)
(59)

Where Icx,k (m,n; b) denotes complement of incomplete extended k-Beta function
which is used for many problem of mathematical analysis by mathematician.

3.6.2 The Hazard Rate Function h (x)
Let fx (x) be the failure density function of extended k-Beta Bk (m,n; b) random
variable then Hazard rate function is defined by

h (x) =
fx (x)

Sx (x)
(60)

Using (30) and (56) in (57)

h (x) =
x
m
k
−1(1− x)

n
k
−1e

bk

kx(1−x)

Icx,k (m,n; b)
(61)

The Mean Residue Life Time κ (x)
For extended k- Beta Bk (m,n; b) random variable X the mean residue life function
κ (x) is defined as

κ (x) = E (X − x |X ≥ x) =

∞∫
x

(t− x) ft(t)dt

S(x)
=

∞∫
x

tft (t) dt

S(x)
− x (62)

Here
∞∫
x

tft (t)dt =
Icxk(m+k,n;b)

Bk(m,n;b)
thus mean residue life function will be as

κ (x) =
Icx,k (m+ k, n; b)

Icxk (m,n; b)
− x (63)
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3.7 Quantity information (entropy)
3.7.1 Differential entropy
For extended k- Beta Bk (m,n; b) random variable X, the differential entropy h (x)
is defined as

h (x) = E (− log (fx (x))) =

∞∫
−∞

−fx (x) log (fx (x)) dx (64)

Using equation (30) in (63)

h (x) =
1∫
0

−x
m
k
−1(1−x)

n
k
−1e
− bk

kx(1−x)

kBk(m,n;b)[(m
k
− 1
)

log x+
(n
k
− 1
)

+ log
(n
k
− 1
)
− bk

kx (1− x)
− log kBk (m,n; b)

]
dx

h (x) = log kBk (m,n; b) + bk

k
Bk(m−k,n−k;b)

Bk(m,n;b)

−
(m
k
− 1
)
k
∂ logBk (m,n; b)

∂m
−
(n
k
− 1
)
k
∂Bk (m,n; b)

∂n
(65)

Equation (64) is differential entropy for extended k-Beta distribution (measured in
nuts).
3.7.2 Cross Entropy
For two extended k-Beta random variables such that X1 k̃−Bk (m,n; b) and X1 k̃−
Bk (m′, n′; b) then the cross entropy is expressed as (measured in nats)

H (X1, X2) =
1∫
0

−fX1 (x) log fX2 (x)dx

=

∞∫
0

x
m
k
−1(1− x)

n
k
−1e−

bk

kx(1−x)

kBk (m,n; b)
log

x
m′
k
−1x

n′
k
−1e−

bk

kx(1−x)

kBk (m′, n′; b)
dx

= log kBk (m′, n′; b) +
bk

k

Bk (m− k, n− k; b)

B (m,n; b)

−k
(
m′

k
− 1

)
∂Bk (m,n; b)

∂m
− k

(
n′

k
− 1

)
∂Bk (m,n; b)

∂n
(66)
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3.7.3 Kullback-Leibler Divergence ( Relative Entropy)DKL (X1 ‖X2 )

The relative entropy DKL (X1 ‖X2 ) for two extended k-Beta random variables such
that X1 k̃ −Bk (m,n; b) and X1 k̃ −Bk (m′, n′; b) is defined by(measured in nats)

DKL (X1 ‖X2 ) =

1∫
0

fX1 (x) log

(
fX1 (x)

fX2 (x)

)
dx = −h (X1) +H (X1, X2) (67)

Using equation (64) and (65) in (66)

DKL (X1 ‖X2 ) = (m−m′) ∂ logBk (m,n; b)

∂m
+(n− n′) ∂ logBk (m,n; b)

∂n
+log

Bk (m′, n′; b)

Bk (m,n; b)
(68)
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