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Abstract: In a previous work we presented a correspondence between unrestricted
partitions of n and the number of representations of m as a t-squared partition (de-
fined as the frequency of m), for m in the interval [1 , n2 − 1]. Here we want to
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identities and frequency of numbers also represented by t-squared partitions.
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1. Introduction
The relation between partitions and two-line matrices started at the beginning

of the last century with Frobenius [4], and were further developed by Andrews [1]. A
new approach was introduced in Mondek-Ribeiro-Santos [7], also relating partitions

1This paper was written while the first author enjoyed the hospitality of the Universidade de
Campinas in São Paulo-Brazil, supported by a grant from CNPq (Conselho Nacional de Desen-
volvimento Cient́ıfico e Tecnológico)-Brazil
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and two-line matrices, but now adding an important feature to this matricial rep-
resentation, since the conjugate of the partition can also be read from the matrix
representation. Other important references on this subject are Brietzke-Santos-
Silva [2, 3] where generalizations involving mock theta functions are presented.
The relation goes as follows:

Let n, β ∈ N, with β < n− 1, and δ ∈ N ∪ {0}. Let us define M(n, β, δ) to be
the set of all two-line matrices

M =

(
c1 c2 · · · cs
d1 d2 · · · ds

)
, (1)

such that cj, dj ∈ N ∪ {0} and

cs = β, cj = cj+1 + dj+1 + δ and
s∑

i=1

(ci + di) = n. (2)

The condition β < n− 1 follows from the fact that

|M(n, n, δ)| = |M(n, n− 1, δ)| = 1 and M(n, n+ t, δ) = ∅, ∀t ∈ N.

Given M ∈ M(n, β, δ), written as (1), if we define cj + dj = µj we would have the
partition of n

n = µ1 + · · ·+ µs,

with the least part µs ≥ β and µj−µj−1 ≥ δ. On the other hand, given a partition
n = µ1 + · · ·+ µs, with µs ≥ β and µj−1 − µj ≥ δ, we can write

µs = β + ds,
µs−1 = µs + δ + ds−1 = cs−1 + ds−1,
µs−2 = µs−1 + δ + ds−2 = cs−1 + ds−1 + δ + ds−2 = cs−2 + ds−2,

and continuing this process we obtain a matrix M ∈ M(n, β, δ) (see (1)). This
establish a bijection between the set M(n, β, δ) and the set of all partitions of n
with the smallest part being at least β and the minimum distance between parts
being at least δ. In particular we have that (here |A| means the cardinality of the
set A)

(a) |M(n, 1, 1)| is equal to the number of partitions of n into distinct parts;

(b) |M(n, 1, 2)| is equal to the number of partitions of n where the difference
between two parts is at least two (Rogers-Ramanujan of type I);
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(c) |M(n, 2, 2)| is equal to the number of partitions of n where the difference
between two parts is at least two and each part is greater than one (Rogers-
Ramanujan of type II).

This theory was extended in Matte-Santos [8], where a correspondence (known as
Path Procedure) is presented between these matrices, paths in the Cartesian plane
and partitions into distinct odd parts all greater than one. In the same paper,
Matte and Santos studied these partitions in detail and interesting properties are
presented.

Motivated by the ideas presented in [8], we introduced in [5] a correspondence
between unrestricted partitions of n and the number of representations of m as a
t-squared partition (defined as the frequency of m), for m in the interval [1 , n2 −
1]. Here we want to go a step further presenting also correspondences between
the Rogers-Ramanujan identities and frequency of numbers also represented as
t-squared partitions. We start with a series of results designed to improve our
understanding of numbers m admitting t-squared partitions and their frenquencies,
proving for example that any m ∈ N admits a t-squared partition if, and only if,
m ≡ 0 or 3 (mod 4), provided m is not one of the 12 exceptional values. We end
this section mentioning that the peculiar shape of the t-squared partitions is due
to its close relation to the partitions into distinct odd parts obtained by the Path
Procedure.

2. t-Squared Partitions
We say that m ∈ N admits a t-squared partition if m can be written as

m = (c1 + c2 + · · ·+ ct)
2 + 2(c21 + c22 + · · ·+ c2t ). (3)

For example, the numbers 107 and 144 can be written as

107 = (5 + 2)2 + 2× (52 + 22)
144 = (3 + 3 + 1 + 1 + 1 + 1)2 + 2× (32 + 32 + 12 + 12 + 12 + 12)

that is, 107 admits a 2-squared partition and 144 admits a 6-squared partition. In
this section, we repeat a few lemmas proved in [5], with the intention of keeping
this paper as self-contained as possible.

Lemma 2.1. Let m ∈ N and suppose that m admits a t-squared partition. Then
we can find a, b ∈ N such that m = b2 + 2a with

a ≡ b (mod 2) and ta ≥ b2 ≥ a ≥ b.

Proof. The fact that m = b2 + 2a follows from (3), and since x2 ≡ x (mod 2), for
any integer x, we have that a ≡ b (mod 2). Now we focus our attention in proving
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the inequalities. It is easy to see that a positive integer m admits a t-squared
partition if m can be written as m = b2 + 2a, and we can find a solution for the
system {

b = x1 + · · ·+ xt,
a = x21 + · · ·+ x2t ,

(4)

with x1, . . . , xt ∈ N. Since these are all natural numbers it follows easily that
b2 ≥ a ≥ b. The last inequality follows from the Cauchy-Schwarz inequality since

b2 = (
t∑

i=1

xi)
2 = (

t∑
i=1

xi · 1)2 ≤ (
t∑

i=1

x2i )(
t∑

i=1

12) = ta.

Lemma 2.2. Let m ∈ N. The integer m admits a t-squared partition only if
m ≡ 0 or 3 (mod 4).
Proof. If m admits a t-squared partition then it can be written as m = b2 + 2a,
with a ≡ b (mod 2). From this congruence condition follows the result of this
lemma.

For some special values of m, and also for small values of t is easy to obtain
t-squared partitions, as can be seen in the next two results.

Lemma 2.3. Let m be a positive integer. If m+ 1 = d2, for some d ∈ N, then m
admits a (d− 1)-squared partition.
Proof. Let us write m = d2−1 = (d−1)2+2(d−1). Now take x1 = · · · = xd−1 = 1
as a solution for the system (4), with t = d− 1 and a = b = d− 1.

Lemma 2.4. Let m be a positive integer written as m = b2 + 2a. Then

(a) m admits a 1-squared partition if, and only if, a = b2.

(b) m admits a 2-squared partition if, and only if, 2a − b2 is a square smaller
than b2.

Proof. The case (a) is immediate, for the only possibility is to write m = b2 + 2b2.
Let us proceed to the other case, considering the system (4) with t = 2. Observe
that 2a − b2 = 2(x21 + x22) − (x1 + x2)

2 = (x1 − x2)
2. Thus if m admits a 2-

squared partition, then 2a − b2 = (x1 − x2)
2. Since x1, x2 ∈ N, we have that

|x1−x2| < x1+x2 = b. Conversely, consider 2a−b2 = d2 < b2 and take x1 = (b+d)/2
and x2 = (b − d)/2. Since b ≡ d (mod 2) and b > d, we have that x1 and x2 are
positive integers.

Next we present some combinatorial lemmas that will be helpful for our study
of numbers m admitting t-squared partitions.
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Lemma 2.5. Let c1, c2, . . . , cs ∈ N, with s ≥ 2, and assume c1 ≥ · · · ≥ cs. Then

c21 + c22 + · · · c2s ≤

(
(

s∑
i=1

ci)− 1

)2

+ 1.

Proof. (Induction on s). Let s = 2, then

(c1 + c2 − 1)2 + 1 = (c1 + c2)
2 − 2(c1 + c2) + 2 ≥ c21 + c22,

since c1, c2 ∈ N. Now, let b = c1 + c2 + · · · + cs. By the induction hypothesis, we
have

c21 + · · ·+ c2s−1 + c2s ≤ ((b− cs)− 1)2 + 1 + c2s ≤
≤ (b− 1)2 + 1− 2cs((b− 1)− cs) ≤ (b− 1)2 + 1,

since b > cs.

Lemma 2.6. Let c1, c2, . . . , cs ∈ N, with s ≥ 2, and assume that they are not all
equal. Then

2
s∑

1=i<j

cicj + (s− 1) ≤ (s− 1)
s∑

i=1

c2i . (5)

Proof. (Induction on s). The case s = 2 follows from (c1−c2)2 ≥ 1. Let us assume
that there is only one cj different from the others, say c1 = · · · = cs−1 6= cs. In this
case the LHS of (5) is equal to

(s− 1){(s− 2)c21 + 2c1cs + 1}

and the RHS of (5) is equal to (s− 1){(s− 1)c21 + c2s}. Now it is simple to see that
the inequality in (5) holds since (c1 − cs)2 ≥ 1.

Let us assume c1 ≥ · · · ≥ cs and write cj = cs + δj, for j = 1, . . . , s− 1. Hence
we have

2
s∑

1=i<j

cicj = s(s− 1)c2s + 2(s− 1)cs(
s−1∑
j=1

δj) + 2
s−1∑

1=i<j

δiδj, (6)

and

(s− 1)
s∑

i=1

c2i = s(s− 1)c2s + 2(s− 1)cs(
s−1∑
j=1

δj) + (s− 1)
s−1∑
i=1

δ2i . (7)
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Since the δj’s are not all equal (for there are at least two distinct cj’s), the result
follows from the induction hypothesis, since

2
s−1∑

1=i<j

δiδj + (s− 2) ≤ (s− 2)
s−1∑
i=1

δ2i < (s− 1)
s−1∑
i=1

δ2i ,

(see (6) and (7) above). completing the proof.

Theorem 2.7. Let m ∈ N. Then m admits a s-squared partition only if m can be
written as m = b2 + 2a, with a, b ∈ N and

(i)

⌈√
m

3

⌉
≤ b ≤ b

√
m+ 1 c − 1.

(ii) (

⌈
b

s

⌉
)2 + (s− 1)(

⌊
b

s

⌋
)2 ≤ a ≤ (b− 1)2 + 1.

Proof. Let m = b2 + 2a, and c1, . . . , cs ∈ N be a solution for (4). From the
inequalities stated in Lemma 2.1 we have

b2 + 2b ≤ m ≤ 3b2,

which gives (i), since b2 + 2b = (b+ 1)2− 1. For the item (ii), the inequality on the
RHS follows directly from Lemma 2.5. Now observe that

(db
s
e)2 + (s− 1)(bb

s
c)2 =


b2

s
, if b ≡ 0 (mod s)

((b− r) + 1)2 + (s− 1)

s
, if b ≡ r 6≡ 0 (mod s).

In any case we have, (taking r = 1)

(db
s
e)2 + (s− 1)(bb

s
c)2 ≤ b2 + (s− 1)

s
.

By Lemma 2.6, we have

b2 + (s− 1) ≤ s
s∑

i=1

c2i = sa,

concluding the proof.
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Our goal is to prove that any m ∈ N, m ≡ 0 or 3 (mod 4), admits a t-squared
partition, provided m is not one of the 12 exceptional values. For this purpose we
need the following Theorem proved in Pall [Theorem 4, [9]] and a Lemma.
Theorem 2.8. Let a, b ∈ N, and assume that a ≡ b (mod 2) and 7a ≥ b2 ≥ 3a−5.
Then the system (4), with t = 7, has a solution c1, . . . , c7 ∈ N ∪ {0}.
Lemma 2.9. Let m ∈ N, m ≥ 5 and let

c =

⌈√
3m− 10

5

⌉
and d =

⌊√
7m

9

⌋
. (8)

If m ≥ 290 then d ≥ c+ 1.
Proof. Observe that

H(m) =

√
7m

9
−
√

3m− 10

5
> (

√
7

9
−
√

3

5
)
√
m >

√
m

10
,

hence H(m) is an increasing function. Since H(350) > 2, consequently we have
d ≥ c + 1, for m ≥ 350. For smaller values of m in the interval [290 , 349], a
computer search verified that d ≥ c+ 1, in all of these cases.
Theorem 2.10. Let m ∈ N such that m ≡ 0 or 3 (mod 4) then m always admits
a t-squared partition, unless

m ∈ {4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95}.

Proof. First let us assume m ≥ 290 and m ≡ 0 or 3 (mod 4). According to Lemma
2.9, the interval [c, d] contains at least two consecutive natural numbers, so we can
choose b ∈ [c, d] such that m ≡ b (mod 2). Now, it follows from (8) that

3

5
m− 2 ≤ b2 ≤ 7

9
m, (9)

Let a = (m − b2)/2, and recall that m ≡ 0 or 3 (mod 4) and m ≡ b (mod 2). If
m ≡ 0 (mod 4), then we also have b2 ≡ 0 (mod 4), and if m ≡ 3 (mod 4), then b
is odd, and b2 ≡ 1 (mod 4). In any case we have a ≡ b (mod 2).

It follows from (9) that a and b satisfy the following inequalities

b2 <
7

9
m =⇒ 2b2 < 7(m− b2) =⇒ b2 < 7a,

and
3

5
m− 2 < b2 =⇒ 3m− 10 < 5b2 =⇒ 3a− 5 < b2.
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Hence, for this choice of a and b there exist a solution c1, . . . , c7 ∈ N ∪ {0} for
the system (4) with t = 7, according to Theorem 2.8. With no loss in generality,
let us assume c1 ≥ · · · ≥ c7 ≥ 0, and since b 6= 0, there must be an s such that
c1 ≥ · · · ≥ cs ≥ 1 and cs+1 = 0. Therefore, m admits a s-squared partition, as
desired.

For all other values of m in the interval [3 , 290], a computer search was per-
formed using the software MAPLE©, with the bounds for the parameters a and
b given in Theorem 2.7, and assuming also that m ≡ 0 or 3 (mod 4) and m ≡
b ≡ a (mod 2). For all values of m ∈ [3 , 290], satisfying the conditions above
we have found s-squared partitions, unless m is in the set {4, 7, 11, 16, 20, 23, 31,
40, 44, 55, 68, 95}.
Definition 2.11. Let m ∈ N and define f(m), the frequency of m, as the number
of times m can be represented by a t-squared partition.

Corollary 2.12. Let m ∈ N, such that m ≡ 0 or 3 (mod 4). Then f(m) is equal
to the number of non-negative solutions (c1, c2, . . . , cb), assuming c1 ≥ c2 ≥ · · · ≥
cb ≥ 0, of systems of the type {

b = x1 + · · ·+ xb
a = x21 + · · ·+ x2b ,

(10)

for any pair a, b such that a ≡ b (mod 2) and m = b2 + 2a. Moreover, f(m) ≥ 1
unless m ∈ {4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95}.
Proof. Given a non-negative solution (c1, c2, . . . , cb) with c1 ≥ c2 ≥ · · · ≥ cb ≥ 0,
we may assume that for some t ≥ 1 we have ct 6= 0 and ct+1 = · · · = cb = 0.
This shows that m admits a t-squared partition and for any distinct non-negative
solution (c1, c2, . . . , cb) of (10), assuming c1 ≥ c2 ≥ · · · ≥ cb ≥ 0, we have a distinct
t-squared partition of m. The final statement is a direct consequence of Theorem
2.10.

Example 2.13. It is not a simple task to determine the frequency of a number, for
it involves calculating the number of positive solutions of the system (10). But for
small values of m it can be easily done, for example, a simple computation shows
that f(107) = 2 and f(144) = 4. Below we have a list of the distinct t-squared
partitions of 107 and 144.

107 = (5 + 2)2 + 2× (52 + 22)
107 = (2 + 2 + 1 + 1 + 1 + 1 + 1)2

+ 2× (22 + 22 + 12 + 12 + 12 + 12 + 12)
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144 = (6 + 2)2 + 2× (62 + 22)
144 = (3 + 2 + 2 + 2 + 1)2 + 2× (32 + 22 + 22 + 22 + 12)
144 = (3 + 3 + 1 + 1 + 1 + 1)2 + 2× (32 + 32 + 12 + 12 + 12 + 12)
144 = (4 + 1 + 1 + 1 + 1 + 1 + 1)2

+ 2× (42 + 12 + 12 + 12 + 12 + 12 + 12)

For the interested reader we recommend the papers of Kloosterman [6] and Pall [9]
where conditions for the existence of integer solutions and formulas for the number
of integer solutions for the system (10) are presented.

2.1. The Special Set Un(m,β, δ)
Let m ∈ N. For a fixed pair a, b such that a ≡ b (mod 2) and m = b2 + 2a

define A(m) as the set of all non-negative solutions ~x of (10) such that

~x = (c1, c2, . . . , cb), and c1 ≥ c2 ≥ · · · ≥ cb ≥ 0.

According to Corollary 2.12, we have |A(m)| = f(m). For ~x ∈ A(m), denote by
w(~x) the number of nonzero coordinates of ~x, by b(~x) the sum of the coordinates
of ~x and by c(~x) the biggest coordinate of ~x. Hence if ~x = (c1, c2, . . . , cb) ∈ A(m)
and w = w(~x) then

c1 ≥ c2 ≥ · · · ≥ cw ≥ 1, and cw+1 = · · · = cb = 0,

b(~x) =
b∑

i=1

ci = c1 + · · ·+ cw and c(~x) = c1.
(11)

For fixed n ∈ N, and β, δ ∈ N∪{0}, with n > β, take any m, such that m ≡ 0 or 3
(mod 4) and consider the set A(m). For any ~x ∈ A(m), ~x written as in (11), and
assuming (and abusing notation) w = w(~x), b = b(~x) and c = c(~x), we define the
set Un(m,β, δ) as

{~x ∈ A(m) | b + c+ δ ≤ n, cw ≥ β, and cj ≥ cj+1 + δ, for 1 ≤ j ≤ w− 1}. (12)

Lemma 2.14. Let n ∈ N, and β, δ ∈ N ∪ {0}, with n > β. If m ≥ n2 then

Un(m,β, δ) = ∅.

Proof. Suppose m ≥ n2 and let ~x ∈ Un(m,β, δ). Writing
~x = (c1, c2, . . . , cw), we have

m = (c1 + c2 + · · ·+ cw)2 + 2(c21 + c22 + · · ·+ c2w). (13)
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Since ~x ∈ Un(m,β, δ), we must have (c1 + c2 + · · ·+ cw) + c1 + δ ≤ n, and then

(c1 + c2 + · · ·+ cw)2 + 2(c1 + δ)(c1 + c2 + · · ·+ cw) + (c1 + δ)2 ≤ n2.

Since
(c1 + c2 + · · ·+ cw)c1 ≥ (c21 + c22 + · · ·+ c2w)

we must have (see (13)) m < n2, a contradiction. Therefore the set Un(m,β, δ)
must be empty.

3. Sets of Two-Line Matrices
Let M ∈M(n, β, δ) (see (1) and (2))

M =

(
c1 c2 · · · cs−1 cs
d1 d2 · · · ds−1 ds

)
, (14)

and define
`(M) = (c1 + d1) + · · ·+ (cs + ds) = n. (15)

From this point onwards, we will always consider that all matrices in the set
M(n, β, δ) are written as in (14), so we will refer to the entries of a matrix M ∈M
in terms of cj’s and dj’s.

Definition 3.1. Let n ∈ N and β, δ ∈ N ∪ {0}, with n > β. Define

M0(n, β, δ) = {M ∈M(n, β, δ) | d1 = 0}. (16)

Lemma 3.2. Let M ∈M0(n, β, δ), then

(i) cs−1 ≥ β + δ, and cj ≥ cj+1 + δ, for 1 ≤ j ≤ s− 2;

(ii) `(M) = 2c1 + c2 + · · ·+ cs−1 − (s− 1)δ;

Proof. The first statement follows from (2), since dj ∈ N ∪ {0} for j = 2, . . . , s
(we are assuming d1 = 0). Again from (2), we have dj+1 = cj − cj+1 − δ, for
j = 1, . . . s− 1, thus (see (15))

`(M) =
s−1∑
j=1

cj + β +
s∑

j=2

dj =
s−1∑
j=1

cj + c1 − (s− 1)δ.

Remark 3.3. The matrix

(
β

n− β

)
is the only one-column matrix in the set

M(n, β, δ), and since n > β, this matrix does not belong to M0(k, β, δ), for any k.
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Furthermore, observe that if i 6= j then M0(i, β, δ) ∩M0(j, β, δ) = ∅, otherwise we
would have a matrix M such that `(M) = i and `(M) = j, which is impossible.

Lemma 3.4. Let n ∈ N and β, δ ∈ N ∪ {0}, with n > β. With the notation of
Definition 3.1, we have

|M(n, β, δ) | =
n∑

j=1

|M0(j, β, δ) |+ 1.

Proof. Let M∗(n, β, δ) be the subset of M(n, β, δ) of all matrices with at least two
columns. In order to complete this proof we present the following 1-1 correspon-
dence between M∗(n, β, δ) and the disjoint union

⋃n
j=1 M0(j, β, δ):

M ←→ M0(
c1 c2 · · · cs−1 cs
d1 d2 · · · ds−1 ds

)
←→

(
c1 c2 · · · cs−1 cs
0 d2 · · · ds−1 ds

)
.

Since `(M) = n then `(M0) ≤ n, hence M0 ∈
⋃n

j=1M0(j, β, δ). On the other hand
given any M0 ∈

⋃n
j=1 M0(j, β, δ), we can find d1 ∈ N∪{0}, such that `(M0)+d1 = n,

and determine the matrix M ∈ M∗(n, β, δ). Now the result follows from the fact
that M∗(n, β, δ) = M(n, β, δ)− 1, according to Remark 3.3.

The next theorem establishes an 1-1 correspondence between subsets of A(m)
and subsets of M(n, β, δ).

Theorem 3.5. Let n ∈ N and β, δ ∈ N ∪ {0}, with n > β. There exits an 1-1

correspondence between vectors ~x in
⋃n2−1

m=1 Un(m,β, δ) and two-line matrices M in⋃n
j=1M0(j, β, δ).

Proof. Let m ∈ [1, n2 − 1] (see Lemma 2.14). For any ~x ∈ Un(m,β, δ), (see (11)
and (12)) we associate the 2× (w + 1) matrix

M(~x) =

(
(c1 + δ) (c2 + δ) · · · (cw + δ) β

0 d2 · · · dw dw+1

)
,

where dw+1 = cw − β, and dj = cj − cj−1 − δ, for 2 ≤ j ≤ w. It follows from the
definition of the set Un(m,β, δ) that the dj ∈ N ∪ {0}, for j = 2, . . . , w + 1, and
(see (12))

`(M(~x)) =
∑w

i=1(ci + δ) + β +
∑w+1

j=2 dj
= 2c1 + c2 + · · ·+ cw + δ = b(~x) + c(~x) + δ ≤ n.

Hence M(~x) ∈M0(`x, β, δ), with `x = `(M(~x)) ≤ n (see (16)).
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Now take a matrix M ∈M0(r, β, δ), with r ≤ n,

M =

(
c1 c2 · · · cs β
0 d2 · · · ds ds+1

)
,

and define ~xM = (c∗1, . . . , c
∗
s) = ((c1 − δ), . . . , (cs − δ)). According to Lemma 3.2

we have, for any j = 1, . . . , s− 1,

cj ≥ cj+1 + δ =⇒ c∗j ≥ c∗j+1 + δ and cs ≥ β + δ =⇒ c∗s ≥ β,

and
`(M) = 2c1 + c2 + · · ·+ cs − sδ

= (c1 − δ) + (c1 − δ) + (c2 − δ) + · · ·+ (cs − δ) + δ
= b(~x) + c∗1 + δ = r ≤ n.

(17)

Now define
mM = (c∗1 + · · ·+ c∗s)

2 + 2((c∗1)
2 + · · ·+ (c∗s)

2). (18)

We want to prove that ~xM ∈ U(mM , β, δ), and the only thing left to be proved is
that mM ∈ [1, n2 − 1]. Observe that (see (17))

n2 ≥ `(M)2 = (b(~xM) + c∗1 + δ)2,
= (c∗1 + · · ·+ c∗s)

2 + 2(c∗1 + δ)(c∗1 + · · ·+ c∗s) + (c∗1 + δ)2

> (c∗1 + · · ·+ c∗s)
2 + 2((c∗1)

2 + · · ·+ (c∗s)
2) = mM ,

since c∗1 ≥ c∗2 ≥ · · · ≥ c∗s, completing the proof.

Corollary 3.6. Under the same hypothesis of Theorem 3.5 we have

n2−1∑
m=1

|Un(m,β, δ)| =
n∑

j=1

|M0(j, β, δ)|.

Proof. It is a straight forward consequence of Theorem 3.5, since these sets are
all disjoint.

4. Main Theorem
Now we are ready to state and prove our main Theorem presenting new formulas

for the number of partitions of n into distinct parts, and the partitions of n arising
from the two classic Rogers-Ramanujan Identities.

Theorem 4.1. Let n be a natural number. Then

(a) The number of partitions of n into distinct parts is equal to
n2−1∑
m=1

|Un(m, 1, 1)|

+ 1.
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(b) The number of partitions of n where the difference between two parts is at

least two is equal to
n2−1∑
m=1

|Un(m, 2, 1)| + 1.

(c) The number of partitions of n where the difference between two parts is at

least two and each part is greater than one is equal to
n2−1∑
m=1

|Un(m, 2, 2)| + 1.

Proof. By the definition of M(n, β, δ), we have that the number of partitions of n
into distinct parts is equal to |M(n, 1, 1)|, the number of partitions of n where the
difference between two parts is at least two is equal to |M(n, 2, 1)|, and the number
of partitions of n where the difference between two parts is at least two and each
part is greater than one is equal to |M(n, 2, 2)|. Now the conclusion follows from
Lemma 3.4 and Corollary 3.6, since

|M(n, β, δ)| =
n∑

j=1

|M0(j, β, δ)|+ 1 =
n2−1∑
m=1

|Un(m,β, δ)|+ 1.
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