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Abstract: In this paper we defined generalized (s, t)-Pell matrix sequence which
is generalized by (s, t)-Pell Matrix sequence and (s, t)-Pell-Lucas Matrix sequence.
We also described some properties for generalized (s, t)-Pell matrix sequence and
established relationship among (s, t)-Pell Matrix and (s, t)-Pell-Lucas Matrix se-
quence.

Keywords and Phrases: (s,t)-Fibonacci, (s,t)-Lucas, (s,t)-Pell, (s,t)-Pell Lu-
cas, (s,t)-Pell matrix.

2010 Mathematics Subject Classification: 11B37, 11B39, 15A15.

1. Introduction, Notations and Definitions
Many scholars done fabulous work on Fibonacci, Lucas, Pell, Jacobsthal se-
quence etc by many sided of conditions [1-4]. The wonderful sequence Fibonacci is
given by the equation
Fo=F, 1+ F, 2, n2>2,

From past years many scholars established the generalizations of Fibonacci, Lucas,
Pell sequence etc by using parameters s and ¢ then sequence called (s, t)-Fibonacci,
(s,t)-Lucas, (s,t)-Pell sequence etc and we also describe the matrix sequence called
as (s,t)- type matrix sequence like (s,?)-Fibonacci matrix sequence, (s,t)-Lucas
Matrix Sequence, (s, t)-Pell matrix sequence etc.

In 2012 Gulec and Taskara in [5] defined (s, t)-Pell Sequence {p,(s,t)},en and
(s,t)-Pell Lucas sequence {q,(s,t)}nen and their matrix sequence (s, t)-Pell matrix
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sequence { P, (s,t) }nen and (s, t)-Pell Lucas matrix sequence {Q,(s,t) }nen respec-
tively. For any real number s,t and n > 2, let s> +¢ > 0,s > 0 and ¢t # 0, then
the (s,t)-Pell sequence {p,(s,t)}nen and (s,t)-Pell-Lucas sequence {g,(s,t)}nen
are defined by

Pn($,t) = 25pp_1(s,t) + tpp_a(s,t), (1)
Gn(8,t) = 25¢,_1(8,t) + tgn_a(s,t), (2)

For some special values of s and ¢ in (1), it is observable that the following results
hold:

o If s = %,t =1, the classic Fibonacci sequence is obtained.
e If s =t =1, the classic Pell sequence is obtained.
Also some special values of s and ¢ in (2), it is clear that the following results holds
o If s = %, t = 1, the classic Lucas sequence is obtained.
o If s =t =1, the classic Pell-Lucas sequence is obtained.

In the following definition (s, ¢)-Pell matrix sequence { P, (s, t)nen} and (s,t)— Pell-
Lucas matrix sequence {Q,(s,t)},en are defined respectively.

Proposition 1. Let us consider s > 0,¢ # 0 and s? +¢ > 0 and n > 2 we have
1. P,(s,t) =2sP,_1(s,t) + tP,_o(s,1),

with initial conditions Py(s,t) = <(1) (1)>7 Pi(s,t) = (Qts (1))’

2. Qn(s,t) =25Q,_1(s,t)+tQ,_2(s,t), with initial conditions Qy(s,t) = (28 2 ),

2t —2s
4s? + 2t 2s
Qs ={"og o)
Pn+1 Pn dn+1 dn
3. P,(s,t) = and Q),(s,t) = ,
( ) ( tpn tpn—l) Q ( ) ( th th—l)

rh
4'pn: 1 QaQn:T?—i_r?Q‘b

T —T2

where r; = s+ vs2+tand ro = s — s2+t.
For m,n € Z* Puym(s,t) = Po(s,t)Pn(s,t),

Po(s,)Qns1(5,t) = Qui1(s,t)Pn(s,t).
In this paper we will use the notation P, instead of P,(s,t) and @, instead of

Qn(s,t).
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2. Main Results

In this section we consider the following definition of generalized (s, t)-Pell num-
ber sequence and also defined the generalized (s, t)-Pell matrix sequence and rela-
tionships among them.
Definition 2.1. For n > 0 any integer, let a,b € R and s> +t > 0, s > 0, and
t # 0 then the generalized (s,t)-Pell integer sequence {H,(s,t)}nen defined by the
following equation,

Hyo(s,t) = 2sH,q(s,t) + tH,(s, 1), (2.1)
with initial conditions Hy(s,t) = a, Hy(s,t) = bs.

Definition 2.2.For n > 0 any integer, let a,b € R and s>+t > 0, s > 0, and
t # 0 then the generalized (s,t)-Pell matriz sequence {T,,(s,t)}nen defined by the
following equation,

Thia(s,t) = 28T, 11(s,t) +tT,(s,t), (2.2)

bs a 2bs* +at  bs
at 2(b— a)s) o Tls,t) = bst at)'
Now using this definitions we proved some theorems and established relations.

with initial conditions Ty(s,t) = (

Theorem 2.3. For any integer n > 1, we have

T — Hn+1 2Hn
" 2tH,, tH,_,)"

Proof. Let us consider n = 1 in this theorem. Then we clearly have Hy = a, H, =
bs and H, = 2bs® + at, then

T o_ Hy, 2H;\ 2bs? +at  2bs
V7 \otH, tHy) 2bst at )’
as a next step of that, for n = 2, we also get

T Hs 2H;\ 2bs?® + 2sat + bst  4bs® + 2at
2= \2tH, tH,) 4bs?t + 2at? bst

By following this procedure and considering induction method, let us assume that
the theorem is proved for n = i € Z*, now we have to show that the case also
holds for n =i + 1, therefore, we get

E-{-l :237_’1 + tj—‘i—l(sa t)7

5 H;yy  2H; n H;, 2H;,
%\ otH, tH, %H, | tH, o
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o QSHZ'_H 45Hz + tHZ QtHi_l
N 4StHz QStHi,1 QtQHifl t2Hn,2
o 2SHZ‘+1 + tHl 43Hz + QtHi_l

o 457&[’[Z + 2t2HZ’,1 QStHZ',1 + tan,Q

_( Hiy2 2Hip
2tHi+1 tHl

Corollary 2.4. In above theorem 2.3, if we choose suitable values on s, t, a and b
then it is obtained some special matriz sequence for example, by putting s =t =1
and a =0, b =1, we obtain the (s,t) Pell matriz

Hn _ (pn+1 2pn)
2pn Pn—1
where p, is n'" (s,t)-Pell number and by putting s =t =1 and a = 2, b = 1, we
get the (s,t)-Pell Lucas matriz:

Hn — (Qn+1 QQn>
2Q7L Gn—1

where g, is n'" (s,t)-Pell-Lucas number.

Hence the result.

Theorem 2.5. Forn > 1 any integer, we have

1. H, = bsp, + atp,_1

2. Hyy1 +tH,_1 = bsq, + atq,_1

Proof. To prove this theorem, we use the definition 2.1 with its initial conditions.
1. If we consider the initial conditions H; = bs, Hy = 2bs? + at, then we observe
that Hy = bs = (bs)p1 + (at)py and Hy = 2s(bs) + (at) = bspy + atp.

By using the (s, t)-Pell sequence and following above procedure, we get bsps + atpy
which gives Hs. So by following above progresses, we obtain the general term
bsp, + atp,_1 that implies H,, as required.

2. Now we replacing (s, t)-Pell’s initial conditions pg and p; by (s,t)-Pell Lucas
initial condition gy and ¢; in above, then we get H,,.1 + tH, 1 = bsq, + atq,_1.

Theorem 2.6. Forn > 1 any integer, we have
1. T,, = bsP, + atP,_;

2. Tho1 +tT, 1 = bsQ, + atQ, 1

Proof. 1. First we consider the initial values for

2bs® 4+ at  bs
= ( bst at)
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Then it is clear that

25 1 10
les(t O)—l—at(O 1)bsP1+atP0

Now we use above idea

T _ 4bs3 + 2ast + bst  2bs® + at
2 2bs%t + at? bst

then

48> +t 2s 2s 1
Tg—bS( 9t t>+at(t 0)—bsP2+atP1

Therefore T7 = bsP; + atPy and Ty = bsP, + atP; by By using above process, we
get the general terms T, = bs,, + at,,_1.

2. Replacing the (s,t)-Pell initial conditions Py and P; by (s,t)-Pell- Lucas initial
conditions @)y and @)1, we get

Tn+1 +tTh 1 = bSQn + a'th—l-
Theorem 2.7. For 1,57 € N, we have
Ti+j - PZTj

Proof. To prove this equation, we have to follow induction method for 5 = 0,

_(Piv1 P bs a

hlo= (tpi tpi_l) (at 2(b — a)s) ’
_ [ bspiy1tatp;  apipa +2(b — a)sp;
-~ \bstp; + at*piy atp; + 2(b — a)stp;—y

=T,
Let us assume that is true for all positive j, that is

Tiy; = PT;
Now we prove it for j + 1,

PTy =Pi(2sT; +tT;_,)
—9sP.T; + tPT)_y
=25T;1j + 115151

—Litj+1
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hence Proved.
Theorem 2.8. Binet’s Formula for generalized (s,t)-Pell numbers

Xt — Y
71— 72

H, =

It is clear that the characteristic equation of (3) is x*

S+ Vs2+t, 9 =5—+s2+1t are the roots.

Then the Binet’s Formula for n'* the generalized (s,t)-Pell number is given by

= 2sx +t where v; =

X =Yy
Y1 — V2

H, =

t
whereX—bs+— Y—bs—l—a—

71 Y2
H,, =(bs)pn + (at)p,_1

—(bs )’71 Vs i (at)fy _72

Y1 — V2 Y1 — V2
at at
= |:b5 -+ 1 |:b$ + ] /72
4! Al
o 2] ap = fos+ 2] g
Y1 — Y2
g, ==Y
Y1 — Y2

Theorem 2.9. Fora,b€ R, n€ N, s>0,t#0 and s>+t > 0, we have

TiQn = Thyo + 1T,

2bs®> +at bs\ (que1
bst at) \ tq, tgu-1)’

( bS dn+1 + ath-H + bSth QbSQQn + ath + bSth—l)

Proof.

Tl Qn

bSth—H + (Zt qn—1 bSth + atZQn—l

Hyy3  2H, 0 Ly H.1 2H,
%H, ., tH, )

=T Qn = Ipt2 + .

2tH, tH,
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Hence Proved
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