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Abstract: In this paper we defined generalized (s, t)-Pell matrix sequence which
is generalized by (s, t)-Pell Matrix sequence and (s, t)-Pell-Lucas Matrix sequence.
We also described some properties for generalized (s, t)-Pell matrix sequence and
established relationship among (s, t)-Pell Matrix and (s, t)-Pell-Lucas Matrix se-
quence.
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1. Introduction, Notations and Definitions
Many scholars done fabulous work on Fibonacci, Lucas, Pell, Jacobsthal se-

quence etc by many sided of conditions [1-4]. The wonderful sequence Fibonacci is
given by the equation

Fn = Fn−1 + Fn−2, n ≥ 2,

From past years many scholars established the generalizations of Fibonacci, Lucas,
Pell sequence etc by using parameters s and t then sequence called (s, t)-Fibonacci,
(s, t)-Lucas, (s, t)-Pell sequence etc and we also describe the matrix sequence called
as (s, t)- type matrix sequence like (s, t)-Fibonacci matrix sequence, (s, t)-Lucas
Matrix Sequence, (s, t)-Pell matrix sequence etc.

In 2012 Gulec and Taskara in [5] defined (s, t)-Pell Sequence {pn(s, t)}n∈N and
(s, t)-Pell Lucas sequence {qn(s, t)}n∈N and their matrix sequence (s, t)-Pell matrix
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sequence {Pn(s, t)}n∈N and (s, t)-Pell Lucas matrix sequence {Qn(s, t)}n∈N respec-
tively. For any real number s, t and n ≥ 2, let s2 + t > 0, s > 0 and t 6= 0, then
the (s, t)-Pell sequence {pn(s, t)}n∈N and (s, t)-Pell-Lucas sequence {qn(s, t)}n∈N
are defined by

pn(s, t) = 2spn−1(s, t) + tpn−2(s, t), (1)

qn(s, t) = 2sqn−1(s, t) + tqn−2(s, t), (2)

For some special values of s and t in (1), it is observable that the following results
hold:

• If s = 1
2
, t = 1, the classic Fibonacci sequence is obtained.

• If s = t = 1, the classic Pell sequence is obtained.

Also some special values of s and t in (2), it is clear that the following results holds

• If s = 1
2
, t = 1, the classic Lucas sequence is obtained.

• If s = t = 1, the classic Pell-Lucas sequence is obtained.

In the following definition (s, t)-Pell matrix sequence {Pn(s, t)n∈N} and (s, t)− Pell-
Lucas matrix sequence {Qn(s, t)}n∈N are defined respectively.

Proposition 1. Let us consider s > 0, t 6= 0 and s2 + t > 0 and n ≥ 2 we have
1. Pn(s, t) = 2sPn−1(s, t) + tPn−2(s, t),

with initial conditions P0(s, t) =

(
1 0
0 1

)
, P1(s, t) =

(
2s 1
t 0

)
,

2. Qn(s, t) = 2sQn−1(s, t)+tQn−2(s, t), with initial conditionsQ0(s, t) =

(
2s 2
2t −2s

)
,

Q1(s, t) =

(
4s2 + 2t 2s

2st 2t

)
,

3. Pn(s, t) =

(
pn+1 pn
tpn tpn−1

)
and Qn(s, t) =

(
qn+1 qn
tqn tqn−1

)
,

4. pn =
rn1 − rn2
r1 − r2

, qn = rn1 + rn2

where r1 = s+
√
s2 + t and r2 = s−

√
s2 + t.

For m,n ∈ Z+ Pn+m(s, t) = Pn(s, t)Pm(s, t),
Pm(s, t)Qn+1(s, t) = Qn+1(s, t)Pm(s, t).
In this paper we will use the notation Pn instead of Pn(s, t) and Qn instead of
Qn(s, t).
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2. Main Results
In this section we consider the following definition of generalized (s, t)-Pell num-

ber sequence and also defined the generalized (s, t)-Pell matrix sequence and rela-
tionships among them.
Definition 2.1. For n ≥ 0 any integer, let a, b ∈ R and s2 + t > 0, s > 0, and
t 6= 0 then the generalized (s, t)-Pell integer sequence {Hn(s, t)}n∈N defined by the
following equation,

Hn+2(s, t) = 2sHn+1(s, t) + tHn(s, t), (2.1)

with initial conditions H0(s, t) = a, H1(s, t) = bs.

Definition 2.2.For n ≥ 0 any integer, let a, b ∈ R and s2 + t > 0, s > 0, and
t 6= 0 then the generalized (s, t)-Pell matrix sequence {Tn(s, t)}n∈N defined by the
following equation,

Tn+2(s, t) = 2sTn+1(s, t) + tTn(s, t), (2.2)

with initial conditions T0(s, t) =

(
bs a
at 2(b− a)s

)
, T1(s, t) =

(
2bs2 + at bs

bst at

)
.

Now using this definitions we proved some theorems and established relations.

Theorem 2.3. For any integer n ≥ 1, we have

Tn =

(
Hn+1 2Hn

2tHn tHn−1

)
.

Proof. Let us consider n = 1 in this theorem. Then we clearly have H0 = a,H1 =
bs and H2 = 2bs2 + at, then

T1 =

(
H2 2H1

2tH1 tH0

)
=

(
2bs2 + at 2bs

2bst at

)
,

as a next step of that, for n = 2, we also get

T2 =

(
H3 2H2

2tH2 tH1

)
=

(
2bs2 + 2sat+ bst 4bs2 + 2at

4bs2t+ 2at2 bst

)
By following this procedure and considering induction method, let us assume that
the theorem is proved for n = i ∈ Z+, now we have to show that the case also
holds for n = i+ 1, therefore, we get

Ti+1 =2sTi + tTi−1(s, t),

=2s

(
Hi+1 2Hi

2tHi tHi−1

)
+

(
Hi 2Hi−1

2tHi−1 tHn−2

)
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=

(
2sHi+1 4sHi

4stHi 2stHi−1

)
+

(
tHi 2tHi−1

2t2Hi−1 t2Hn−2

)
=

(
2sHi+1 + tHi 4sHi + 2tHi−1

4stHi + 2t2Hi−1 2stHi−1 + t2Hn−2

)
=

(
Hi+2 2Hi+1

2tHi+1 tHi

)
Hence the result.

Corollary 2.4. In above theorem 2.3, if we choose suitable values on s, t, a and b
then it is obtained some special matrix sequence for example, by putting s = t = 1
and a = 0, b = 1, we obtain the (s, t) Pell matrix

Hn =

(
pn+1 2pn
2pn pn−1

)
where pn is nth (s, t)-Pell number and by putting s = t = 1 and a = 2, b = 1, we
get the (s, t)-Pell Lucas matrix:

Hn =

(
qn+1 2qn
2qn qn−1

)
where qn is nth (s, t)-Pell-Lucas number.

Theorem 2.5. For n ≥ 1 any integer, we have
1. Hn = bspn + atpn−1
2. Hn+1 + tHn−1 = bsqn + atqn−1
Proof. To prove this theorem, we use the definition 2.1 with its initial conditions.
1. If we consider the initial conditions H1 = bs,H2 = 2bs2 + at, then we observe
that H1 = bs = (bs)p1 + (at)p0 and H2 = 2s(bs) + (at) = bsp2 + atp1.
By using the (s, t)-Pell sequence and following above procedure, we get bsp3 + atp2
which gives H3. So by following above progresses, we obtain the general term
bspn + atpn−1 that implies Hn as required.
2. Now we replacing (s, t)-Pell’s initial conditions p0 and p1 by (s, t)-Pell Lucas
initial condition q0 and q1 in above, then we get Hn+1 + tHn−1 = bsqn + atqn−1.

Theorem 2.6. For n ≥ 1 any integer, we have
1. Tn = bsPn + atPn−1
2. Tn+1 + tTn−1 = bsQn + atQn−1
Proof. 1. First we consider the initial values for

T1 =

(
2bs2 + at bs

bst at

)
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Then it is clear that

T1 = bs

(
2s 1
t 0

)
+ at

(
1 0
0 1

)
= bsP1 + atP0

Now we use above idea

T2 =

(
4bs3 + 2ast+ bst 2bs2 + at

2bs2t+ at2 bst

)
then

T2 = bs

(
4s2 + t 2s

2st t

)
+ at

(
2s 1
t 0

)
= bsP2 + atP1

Therefore T1 = bsP1 + atP0 and T2 = bsP2 + atP1 by By using above process, we
get the general terms Tn = bsn + atn−1.
2. Replacing the (s, t)-Pell initial conditions P0 and P1 by (s, t)-Pell- Lucas initial
conditions Q0 and Q1, we get

Tn+1 + tTn−1 = bsQn + atQn−1.

Theorem 2.7. For i, j ∈ N , we have

Ti+j = PiTj

Proof. To prove this equation, we have to follow induction method for j = 0,

P1T0 =

(
pi+1 pi
tpi tpi−1

)(
bs a
at 2(b− a)s

)
,

=

(
bspi+1 + atpi api+1 + 2(b− a)spi
bstpi + at2pi−1 atpi + 2(b− a)stpi−1

)
=Ti

Let us assume that is true for all positive j, that is

Ti+j = PiTj

Now we prove it for j + 1,

PiT+1 =Pi(2sTj + tTj−1)

=2sPiTj + tPiTj−1

=2sTi+j + tTi+j−1

=Ti+j+1
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hence Proved.
Theorem 2.8. Binet’s Formula for generalized (s,t)-Pell numbers

Hn =
Xγn1 − Y γn2
γ1 − γ2

It is clear that the characteristic equation of (3) is x2 = 2sx + t where γ1 =
s+
√
s2 + t, γ2 = s−

√
s2 + t are the roots.

Then the Binet’s Formula for nth the generalized (s, t)-Pell number is given by

Hn =
Xγn1 − Y γn2
γ1 − γ2

where X = bs+
at

γ1
, Y = bs+

at

γ2

Hn =(bs)pn + (at)pn−1

=(bs)
γn1 − γn2
γ1 − γ2

+ (at)
γn−11 − γn−12

γ1 − γ2

=

[
bs+

at

γ1

]
γn1 −

[
bs+

at

γ1

]
γn2

=

[
bs+ at

γ1

]
γn1 −

[
bs+ at

γ1

]
γn2

γ1 − γ2

Hn =
Xγn1 − Y γn2
γ1 − γ2

.

Theorem 2.9. For a, b ∈ R, n ∈ N , s > 0, t 6= 0 and s2 + t > 0, we have

T1Qn = Tn+2 + tTn

Proof.

T1Qn =

(
2bs2 + at bs

bst at

)(
qn+1 qn
tqn tqn−1

)
,

=

(
2bs2qn+1 + atqn+1 + bstqn 2bs2qn + atqn + bstqn−1

bstqn+1 + at2qn−1 bstqn + at2qn−1

)
,

=

(
Hn+3 2Hn+2

2tHn+2 tHn−1

)
+ t

(
Hn+1 2Hn

2tHn tHn−1

)
,

=T1Qn = Tn+2 + tTn.
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Hence Proved
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