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1. Introduction
In this note, we characterise certain operators Im and Km on the space of Jacobi

forms of weight k+ 1/2(k > 1 is an integer), index m and level 4. The operator Im
has been introduced in [2] and proved that it maps Jacobi forms of weight k+ 1/2,
index m, level 4 into the space of Jacobi forms of weight k+ 1/2, index 1, level 4m
and character χm - a real character mod m or 4m according as m ≡ 1(mod 4) or
m ≡ 2, 3(mod 4). It is also known that, the operator Im preserves the space of cusp
forms. It has a connection with the Eichler-Zagier maps: φ|Zm := φ|ImZ1 where φ
is a Jacobi form of weight k + 1/2, index m, level 4 and Zm is the Eichler-Zagier
map as in [2]. We first prove that the index changing operator Im preserves the
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space of Eisenstein series.
Then, we consider an operator Km which maps the space of Jacobi forms of weight
k+ 1/2, index m, level 4 into the space of Jacobi forms of weight k, index m, level
4m and it also acts on the Fourier expansion φ =

∑
C(D, r)e(nτ + rz) and gives

φ|Km =
∑

0≥D,r∈Z
D≡r2(4m)
(D,m)=1

C(D, r)e(nτ + rz).

We then prove that its kernel is equal to the space of oldforms and it is injective
on the space of newforms under the assumption that the Eichler- Zagier map Zm
is injective on the space of Jacobi forms of weight k + 1/2, index m and level 4.

2. Notations
Throughout this paper, the letters k,m,N stand for natural numbers and

2|k. (k > 1,m ≡ 1(mod 4) is a square-free odd integer). Let τ be an element
of H, the complex upper half plane. Let Z be the ring of integers.
For a complex number z, we write

√
z for the square root with argument in

(−π/2, π/2] and we set za/2 = (
√
z)a for any a ∈ Z

For integers c, d, 4 divides c and d odd, let
(
c
d

)
denote the generalized quadratic

residue symbol. Let d(c) denote d(mod c), c, d ∈ Z

Definition 2.1. Modular forms of weight k, level N, character χ. For details we
refer to [3]

Let f(z) be an analytic function on the upper half-plane H and at all rational
points, and let k > 1 be an integer. Suppose that f(z) satisfies the relation

f(γz) = χ(d)(cz + d)kf(z)for all γ =
(
a b
c d

)
∈ Γ0(N).

Then, f(z) is called a modular form of weight k, level N and character χ with
χ(−1) = (−1)k.
Let Mk(N,χ) denote the space of modular forms of weight k, level N and character
χ. Let Sk(N,χ) denote the space of cusp forms in Mk(N,χ). For cusp forms f, g
in the space Sk(N,χ), we denote their Petersson scalar product by < f, g >.

Definition 2.2. Poincarě series in Sk(N,χ):
Let k > 2. For n ∈ N, define the nth Poincarě series in Sk(N,χ) as follows:

Pk,N,χ;n(τ) =
1

2

∑
(c,d)∈Z2

(c,d)=1
N |c

χ̄(d)(cτ + d)−ke2πin(aτ+bcτ+d)
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where in the above summation (c, d) ∈ Z2 with (c, d) = 1 and N |c which is equiv-
alent that

(
a b
c d

)
∈ Γ \ H where (a, b) ∈ Z2 with ad − bc = 1. We characterise

the Poincarě series as < f, Pk,N,χ;n >= Γ(k−1)
iN (4πn)k−1af (n), for all f ∈ Sk(N,χ) with

Fourier expansion

f(τ) =
∑
n≥1

af (n)qn.

Definition 2.3. Jacobi forms [1]
Let Jk+1/2,m(Γ0(4N)) denote the space of Jacobi forms of weight k+ 1/2, index m,
for Γ0(4N) and J cuspk+1/2,m(Γ0(4N) denote the space of cusp forms in Jk+1/2,m(Γ0(4N).

If φ, ψ ∈ J cuspk+1/2,m(Γ0(4N), we denote < φ,ψ > the Petersson scalar product of φ
and ψ.
Let JEisk+1/2,m(Γ0(4N) be the space of Jacobi Eisenstein series in Jk+1/2,m(Γ0(4N).

and it is the orthogonal compliment of J cuspk+1/2,m(Γ0(4N), with respect to Petersson
scalar product.

Definition 2.4. Poincarě series in Sk+1/2(4N,χ):
We define the nth Poincarě series in Sk+1/2(4N,χ) as follows:

Pk+1/2,4N,χ;n(τ) =
1

2

∑
(c,d)∈Z2

(c,d)=1,4N |c

χ̄(d)
( c
d

)(−4

d

)k+1/2

(cτ + d)−k−
1
2 e

(
n
a0τ + b0

cτ + d

)

where the summation above varies for each coprime pair (c, d) with 4N |c, we make
a fixed choice of (a0, b0) ∈ Z2 with a0d − b0c = 1. We characterize the Poincare
series as follows:

< f, Pk+1/2,4N,χ;n >=
Γ(k − 1/2)

i4N(4πn)k−1/2
af (n),

for any cusp form f ∈ Sk+1/2(4N,χ) with Fourier expansion

f(τ) =
∑
n≥1

af (n)qn.

Definition 2.5. Im Operator [2]
If φ ∈ Jk+1/2,m(4N,χ), define Im by

φ|Im(τ, z) =
∑
λ(m)

e(λ2τ + 2λτ)φ(mτ, z + λτ).
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Im maps J cuspk+1/2,m(4N,χ) into J cuspk+1/2,1(4mN,χχm). The Fourier development of

φ|Im is of the form

φ|Im(τ, z) =
∑

0<D,r∈Z
D≡r2(mod4)

 ∑
s(mod 2m)
s≡r(2)

cφ(D, s)

 e

(
r2 −D

4
τ + rz

)
.

Definition 2.6. Km Operator
If φ ∈ Jk+1/2,m(4, χ), define

Km = φ−
∑

g|m,g>1

1

g

∑
µ(g)

φ|
[(

1 0
0 1

)∗
, (0, µ/g), 1

]
.

A direct computation shows that Km maps Jk+1/2,m(4, χ) into Jk+1/2,m(4, χ) and
preserving cusp forms and Eisenstein series. For this we compute its Fourier coef-
ficient on Jacobi form in the following.
Proof. ∑

g|m,g>1

1

g

∑
µ(g)

∑
n,r∈Z
r2≤4mn

c(n, r)e(nτ + rz)|k,m
[(

1 0
0 1

)∗
, (0, µ/g), 1

]

=
∑

g|m,g>1

1

g

∑
µ(g)

∑
n,r∈Z
r2≤4mn

c(n, r)e(nτ + r(z + µ/g))

=
∑
n,r∈Z
r2≤4mn

c(n, r)
∑

g|m,g>1

1

g

∑
µ(g)

e(rµ/g)e(nτ + rz)

=
∑
g|m

∑
n,r∈Z
r2≤4mn
g|r,g>1

c(n, r)e(nτ + rz)

=
∑
g|m

∑
0>D,r∈Z
D≡r2(4m)
g|D,g>1

c(D, r)e(
r2 −D

4m
τ + rz)

=
∑

0>D,r∈Z
D≡r2(4m)
(D,m)>1

c(D, r)e(
r2 −D

4m
τ + rz)



Note on Certain Operators of Jacobi forms of Half Integral Weight 211

Thus,

φ|Km =
∑

0>D,r∈Z
D≡r2(4m)
(D,m)=1

c(D, r)e(
r2 −D

4m
τ + rz)

3. Statement of Results
We first prove that Im preserves the space of Eisenstein series.

The operator Im maps Jacobi forms of weight k + 1/2, index m, for Γ0(4N), char-
acter χ, into Jacobi forms of weight k + 1/2, index 1 for Γ0(4mN), character χχm
where χm is the quadratic character modulo m or 4m according as m ≡ 1 (mod 4)
or m ≡ 2, 3 (mod 4). It is also known that Im preserves the space of cusp forms.
Let φ ∈ JEisk,m(N).

Then, if PD,r is the (D, r)th Poincare series in J cuspk,m (N), P|D| = PD,r|Zm. This re-
sult has been proved in [2]. Using the action of Zm on the Poincaré series and the
definition of adjoint map we have a constant λ such that

PD|Z∗m = λ
∑

r(mod 2m),

D≡r2(mod 4m)

PD,r.

Now, for any φ in JEisk+1/2,m(4), we have

< φ|Zm, PD >=< φ|ImZ1, PD >

< φ|Im, PD|Z∗1 >=< φ|Im, PD,r >

On the other hand,

< φ|Zm, PD >=< φ, PD|Z∗m >

= λ < φ,
∑
ρ(2m)

PD,ρ >

= λ
∑
ρ(2m)

< φ, PD,ρ >= 0,

since φ ∈ JEisk,m(N) and PD,ρ ∈ J cuspk,m (N) and JEisk,m(N) is the orthogonal compliment
of J cuspk,m (N) with respect to Petersson scalar product. Now,

0 =
∑
ρ(2m)

< φ, PD,ρ >=< φ,
∑
ρ(2m)

PD,ρ >=< φ|Zm, P|D| >=< φ|Im, PD,ρ >
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Hence, we have the required mapping property of Im.
Define,

Jnewk+1/2,m(4) =
{
φ ∈ Jk+1/2,m(4)|φ|Zm ∈Mnew

k (4m,χm)
}

and
Joldk+1/2,m(4) =

{
φ ∈ Jk+1/2,m(4)|φ|Zm ∈M old

k (4m,χm)
}

Then, we have

Theorem 3.1.
Im : JEisk+1/2,m(4N)→ JEisk+1/2,m(4N),

Joldk+1/2,m(4) =
⊕
d2|m

Jk+1/2,m/d2(4)|Bd2

and
kerKm = Joldk+1/2,m(4)

where
Bd2 : φd(τ, z) 7→ φd(τ, dz).

Proof. φ ∈ Joldk+1/2,m(4). Then, φ|Zm ∈M old
k (4m,χm). Since m = m0m

2
1,

φ|Zm =
∑
d2|m

fd(dτ), fd ∈Mk(4m/d
2, χm0) and d|m1.

Thus,

φ|Zm =
∑
d2|m

φd|Zm/d2|Bd2 =
∑
d2|m

φd|Bd2|Zm, φd ∈ Jk+1/2,m/d2(4), φd|Zm/d2 = fd.

Using, Zm is injective on Jk+1/2,m(4), we get

φ =
∑
d2|m

φd|Bd2 .

This characterises the space of old forms as stated above.
Note that kerKm contains Joldk+1/2,m(4).

Now, φ ∈ KerKm, then, Cφ(D, r) = 0, ∀(D,m) = 1, therefore

aφ|Zm(D) = 0,∀(D,m) = 1.

φ|Zm ∈Mk(4m,χm), using χm = χm0χ
2
m1

= χm0 , (m = m1m
2
1,m0−square−free)

Thus
φ|Zm ∈Mk(4m,χm0), aφm(|D|) = 0 ∀(D,m) = 1
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=⇒ φ|Zm =
∑
d2|m

fd(dτ), fd ∈M old
k (4m/d2, χm0)

Hence, φ ∈ Joldk+1/2,m(4m). This completes the proof of the theorem.
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