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1. Introduction, Notations and Definitions

Ramanujan recorded hundreds of modular equations in his three notebooks.
Chapters 19 - 21 in Ramanujans second notebook are almost exclusively devoted
to modular equations. Ramanujan used modular equations to evaluate class invari-
ants, certain q continued fractions, theta functions and certain other quotients and
products of theta functions. Throughout this paper we shall adopt the following
notations and definitions

For any number a and q, real or complex and |q| < 1,

[α; q]n = [α]n =

{
(1− α)(1− αq)(1− αq2)...(1− αqn−1); n > 0
1; n = 0

Accordingly, we have

[α; q]∞ =
∞∏
r=0

(1− αqr)

Also
[a1, a2, ..., ar; q]n = [a1; q]n[a2; q]n...[ar; q]n.

and

[a; q]−n =
qn(n+1)/2

(−a)n[q/a; q]n

Motivated with the Jacobi’s identity,

θ43 (q) = θ42 (q) + θ44 (q) (1.1)
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Borweins in 1991 discovered an elegant cubic analogue of this identity. Borweins
defined following functions which are called cubic theta functions;

a (q) =
∞∑

m,n=−∞

qm
2+mn+n2

, (1.2)

b (q) =
∞∑

m,n=−∞

ωm−nqm
2+mn+n2

,
(
ω = e2πi/3

)
, (1.3)

and

c (q) =
∞∑

m,n=−∞

q(m+ 1
3)

2
+(m+ 1

3)(n+ 1
3)+(n+ 1

3)
2

. (1.4)

Borweins proved that

a3 (q) = b3 (q) + c3 (q) . (1.5)

They also discovered following results;

a (q) = 1 + 6
∞∑
n=0

(
q3n+1

1− q3n+1
− q3n+2

1− q3n+2

)
(1.6)

and

a (q) = Φ (q) Φ
(
q3
)

+ 4qΨ
(
q3
)

Ψ
(
q6
)
. (1.7)

b (q) =
1

2

[
3a
(
q3
)
− a (q)

]
, (1.8)

c (q) =
1

2

[
a
(
q1/3
)
− a (q)

]
. (1.9)

Borweins established following parametric representations for a(q), b(q) and c(q).

If m =
z1
z3
, then

a (q) =
√
z1z3

m2 + 6m− 3

4m
, (1.10)

b (q) =
√
z1z3

(3−m) (9−m2)
1/3

4m2/3
, (1.11)

and

c (q) =
√
z1z3

3 (m+ 1) (m2 + 1)
1/3

4m
. (1.12)
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From these parametric representations of a(q), b(q) and c(q) it is easy to prove,

a3 (q) = b3 (q) + c3 (q) .

From (1.8) and (1.9) it is easy to establish,

a
(
q3
)

= b (q) + c
(
q3
)

(1.13)

and
a (q)− b (q) = 3c

(
q3
)
. (1.14)

2. Main Results
Hypergeometric transformation

Hypergeometric transformation can be used to find hypergeometric representa-
tion of the cubic theta functions. Let us consider the following transformation,

2F1

[
c, c+

1

3
;
3c+ 1

2
; 1−

(
1− x
1 + 2x

)3
]

= (1 + 2x)3c 2F1

[
c, c+

1

3
;
3c+ 5

6
;x3
]
, (2.1)

which is due to Ramanujan.

Putting c =
1

3
and

1− x
1 + 2x

=
b (q)

c (q)
we get,

2F1

[
1

3
,
2

3
; 1; 1− b3 (q)

a3 (q)

]
=

3a (q)

a (q) + 2b (q)
×

×2F1

[
1

3
,
2

3
; 1;

a (q)− b (q)

a (q) + 2b (q)

]
. (2.2)

Now, using (1.8) and (1.14) we get,

2F1

[
1

3
,
2

3
; 1; 1− b3 (q)

a3 (q)

]
=

a (q)

a (q3)
2F1

[
1

3
,
2

3
; 1;

c (q3)

a (q3)

]
or

2F1

[
1

3
,
2

3
; 1; 1− b3 (q)

a3 (q)

]
=

a (q)

a (q3)
2F1

[
1

3
,
2

3
; 1; 1− b (q3)

a (q3)

]
(2.3)

Iterating it m times and putting n = 3m we get,

2F1

[
1

3
,
2

3
; 1; 1− b3 (q)

a3 (q)

]
=

a (q)

a (qn)
2F1

[
1

3
,
2

3
; 1; 1− b (qn)

a (qn)

]
. (2.4)
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As n→∞ we have

a (q) = 2F1

[
1

3
,
2

3
; 1;

c3 (q)

a3 (q)

]
. (2.5)

If we put x for
1− x
1 + 2x

and c =
1

3
in (2.1) we find

2F1

[
1

3
,
2

3
; 1; 1− x3

]
=

(
3

1 + 2x

)
2F1

[
1

3
,
2

3
; 1;

(
1− x
1 + 2x

)3
]
. (2.6)

Now putting
1− x
1 + 2x

=
b (q)

a (q)
in (2.6) we have

2F1

[
1

3
,
2

3
; 1;

b3 (q)

a3 (q)

]
=

a (q)

3a (q3)
2F1

[
1

3
,
2

3
; 1;

b3 (q3)

a3 (q3)

]
(2.7)

Repeating the process m times and writing n = 3m we get

2F1

[
1

3
,
2

3
; 1;

b3 (q)

a3 (q)

]
=

a (q)

na (qn)
2F1

[
1

3
,
2

3
; 1;

b3 (qn)

a3 (qn)

]
. (2.8)

Dividing (2.4) by (2.8), multiplying both sides by − 2π√
3

and taking the exponential

we obtain,

exp .

− 2π√
3

2F1

[
1

3
,
2

3
; 1; 1− b3 (q)

a3 (q)

]
2F1

[
1

3
,
2

3
; 1;

b3 (q)

a3 (q)

]


=

exp .

− 2π√
3

2F1

[
1

3
,
2

3
; 1; 1− b3 (qn)

a3 (qn)

]
2F1

[
1

3
,
2

3
; 1;

b3 (qn)

a3 (qn)

]


n

. (2.9)

We can write as

F

[
b3 (q)

a3 (q)

]
= F n

[
b3 (qn)

a3 (qn)

]
. (2.10)

3. Evaluation of cubic theta functions
Since

m =
z1
z3

=
Φ2(q)

Φ2(q3)
(3.1)
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and for q = e−π

Φ
(
e−π
)

=
π1/4

Γ (3/4)
= a (3.2)

and

m =
Φ (e−π)

Φ (e−3π)
=

4

√
6
√

3− 9. (3.3)

Thus we have
Φ
(
e−3π

)
=

a
4
√

6
√

3− 9
. (3.4)

Hence for q = e−π

z1z3 =
a2

4
√

6
√

3− 9
. (3.5)

From (1.10), (1.11) and (1.12) we have

a
(
e−π
)

=
a2

4
√

6
√

3− 9

31/4

2
√

2

{
3

√
2
√

3−
√

3 + 1

}
, (3.6)

b
(
e−π
)

=
a2

2
4
√

6
√

3− 9

3−
√

6
√

3− 9{
2
(√

3− 1
)}1/3 (3.7)

and

c
(
e−π
)

=
a2
(
6
√

3− 9
)1/4

2
4
√

6
√

3− 9

{
1 +

√
6
√

3− 9

}
. (3.8)

4. Generalized cubic theta functions
Hirschhorn, Garvan and Borwein introduced the functions,

a (q, z) =
∞∑

m,n=−∞

qm
2+mn+n2

zn−m (4.1)

b (q, z) =
∞∑

m,n=−∞

qm
2+mn+n2

ωn−mzm, (4.2)

(
ω = e2πi/3

)
and

c (q, z) = q1/3
∞∑

m,n=−∞

qm
2+mn+n2+m+nzn−m. (4.3)
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As z → 1,
a (q, 1) = a (q) , b (q, 1) = b (q) and c (q, 1) = c (q).
In the definition of c(q,z) there is a multiplier q1/3 which is not in the definition

of Hirschhorn, Garvan and Borwein. It is because of the definition of c(q) taken in
this paper.

Hirschhorn, Garvan and Borwein gave a number of elegant identities involving
a (q, z) , b (q, z) and c (q, z).

Some of these identities are given below.

a (q, z) =
(
2 + z + z−1

) [q; q]∞ [q2; q2]
2
∞

[−q3; q3]∞ [q6; q6]∞
[−zq,−q/z; q]2∞

−
(
1 + z + z−1

) [q2; q2]∞ [q3; q3]∞ [z3q3, q3/z3; q3]∞
[−q3; q3]3∞ [zq, q/z; q]∞

. (4.4)

a (q, z) =
1

3

(
1 + z + z−1

) [
1 + 6

∞∑
n=1

(
q3n−2

1− q3n−2
− q3n−1

1− q3n−1

)]
×

× [q2; q2]
2
∞ [z3q3, q3/z3; q3]∞

[q3; q3]2∞ [zq, q/z; q]∞

+
1

3

(
2− z − z−1

) [q; q]5∞
[q3; q3]3∞

[zq, q/z; q]2∞ . (4.5)

b (q, z) = [q; q]∞
[
q3; q3

]
∞

[zq, z/q; q]∞
[zq3, q3/z; q3]∞

. (4.6)

c (q, z) = q1/3
(
1 + z + z−1

)
[q; q]∞

[
q3; q3

]
∞

[z3q3, q3/z3; q3]∞
[zq, z/q; q]∞

. (4.7)

5. Evaluation of generalized cubic theta functions
(a) For z = ω, (4.4), (4.6) and (4.7) yields,

a (q, ω) =
[q; q]∞ [q2; q2]

2
∞

[−q3; q3]∞ [q6; q6]∞

∞∏
i=1

(
1− qi + q2i

)2
, (5.1)

b (q, ω) = [q; q]∞
[
q3; q3

]
∞

∞∏
i=1

{
(1 + qi + q2i)

(1 + q3i + q6i)

}
, (5.2)

c (q, ω) = 0. (5.3)
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(b) Taking z = −ω in (4.4), (4.6) and (4.7) we get,

a (q,−ω) = 3
[q; q]∞ [q2; q2]

2
∞

[−q3; q3]∞ [q6; q6]∞

∞∏
i=1

(
1 + qi + q2i

)2
,

−2
[q2; q2]∞ [q3; q3]∞

[−q3; q3]∞

{
∞∏
i=1

(
1− qi + q2i

)2}−1
, (5.4)

b (q,−ω) = [q; q]∞
[
q3; q3

]
∞

∞∏
i=1

{
(1− qi + q2i)

(1− q3i + q6i)

}
, (5.5)

c (q,−ω) = 2q1/3
[q; q]∞ [q3; q3]∞ [−q3; q3]2∞

∞∏
i=1

(
1− qi + q2i

) . (5.6)

(c) For z = −1, in (4.4), (4.6) and (4.7) yield,

a (q,−1) =
[q2; q2]∞ [q3; q3]∞

[−q3; q3]∞ [−q; q]2∞
, (5.7)

b (q,−1) =
[q; q]∞ [q3; q3]∞ [−q; q]2∞

[−q3; q3]2∞
, (5.8)

c (q,−1) = −q1/3 [q; q]∞ [q3; q3]∞ [−q3; q3]2∞
[−q2; q2]2∞

. (5.9)

(d) For z = 1, in (4.5), (4.6) and (4.7) yield,

a (q) =

[
1 + 6

∞∑
n=1

(
q3n−2

1− q3n−2
− q3n−1

1− q3n−1

)]
, (5.10)

b (q) =
[q; q]3∞

[q3; q3]∞
, (5.11)

c (q) = 3q1/3
[q3; q3]

3
∞

[q; q]∞
. (5.12)
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