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1. Introduction, Notations and Definitions

The widely-investigated transform, which was discovered by Bailey in 1947,
is being used ever since then in order to obtain various ordinary hypergeometric
series and g-hypergeometric series identities as well as the Rogers-Ramanujan type
identities. As an application of Bailey transform, Bailey himself introduced the
Bailey pair which has been further generalized as the well-poised (or WP-) Bailey
pair by Andrews [2]. Making use of the Bailey pair and WP-Bailey pair, many
researchers derived some new transformation formulas and identities between basic
hypergeometric series and new single-sum and double-sum identities of the Rogers-
Ramanujan-Slater type. Recently, Srivastava et al. [9] and [10]) and Singh et al.
[5] used the Bailey pair, the WP-Bailey pair and the derived WP-Bailey pair in
order to establish many useful transformations and g¢-series identities.

In this paper, we shall adopt following notations and definitions. The g-rising
factorial is defined (for |g| < 1) by

(@;q)o=1 and  (a;q)n=(1—a)(l—aq)---(1—ag"™")  (n=1,2,3,--).
We also write

(a1,az, - ,a;;Q)n = (a1;9)n(a2; Qn - - (@r; @)

and
o

(4300 = [[(1 - ag").
r=0
A basic (or ¢-) hypergeometric series is defined by (see [7, p. 347, Eq. 94
(272)]; see also [4] and [6])

A1, A2, Qr;
P q; %
blab27”' 765;
- (al Ao, - a'r"q)n 1 1+s—r
_ 3 ) ) ) —1)" n(n—1)/2 n
2 bnbe gy (O

n=0

The g-series in above converges for all values of z if r < 1 + s and for |z] < 1 if
r=1+s.
We now state the Bailey transform as follows (see, for details, [2]; see also [3]):
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The Bailey Transform. If

n
Bn - E Ay Up—r Untr
r=0

and

00
Tn = E 6r+nur Ur4-2n,
r=0

then, under suitable convergence conditions,

Zan Tn = Zﬁn 5n7
n=0 n=0

where u,, v., o, and o, are arbitrarily chosen sequences of r alone.
In application of Bailey’s transform (1.1) to (1.3) Bailey chose

1 1
and vy =

(¢:9)r (aq:q)r

Uy =

With this choice Bailey transform takes the following new shape:

If
_ (6
/Bn = .
; (¢ @n—r(aq; @)nsr
= 1 i (_1)n(q—n, q)r an+raT
. r(r+1)/2 14+n.
(a,aq;9)n = ¢tV (ag™ " q),
and

Y = Z 6r+n

“—~ (¢:9)(aq; @)r+2n
1 - 5r+n

(ag; @)2n = (¢; @)r(ag' ™5 q),”

then, under suitable convergence conditions,

Z QpYn = Z ansn;
n=0 n=0
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(1.1)

(1.2)

(1.3)

(1.4)
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where {ozn}zozo and {571}:;0 are arbitrarily chosen sequences of n alone.

A pair of sequences (a,, ) satisfying (1.4) is called a Bailey pair. On the other
hand, a pair of sequences (v,, d,) satisfying (1.5) is called a conjugate Bailey pair
with respect to the parameter a.

Following the above-cited Andrew’s work [2], a WP-Bailey pair relative to the
parameter a is a pair of sequences (a,(a, k; q), 5,(a, k; q)) which are constrained by

(% K3 @)nr
Bula,kiq) =Y i), (ki) o (a, k; q)

— (4 @)n—r(aG; @)ntr

B (%?k;q)n Z”: (kq™, g7 q)r (%)Tar(a’ k;q). (1.7)

(Q7 aq; Q)n 0 (‘“ﬁ;" , aq1+n; q>

Indeed, when k£ — 0, a WP-Bailey pair reduces to the classical Bailey pair given in
(1.4). Bailey’s definition of a conjugate Bailey pair can now be extended to define

a conjugate WP-Bailey pair relative to the parameter a to be a pair of sequences
<’7n<(l, k’ q)7 571,(@7 k, q>> such that

it k' k r+2n
Tula, k;q) = ZE q))r’"(; q;wn%n(a,k;q)
_ (K39)5, (k@5 0)r (559),
2

(g5 9)2n = (ag™;9), (g1 9)s Orin(a; K3 q). (1.8)

Thus, analogous to the Bailey transform, we have the following result.

If (an(a, ki q), Bula, ki q)) is a WP-Bailey pair and (ya(a, k; ), 0n(a, k3 q)) is a con-
Jugate WP-Bailey pair relative to the parameter a, then, under suitable convergence
conditions,

Zanakq%akq Zﬁnakq n(a, k; q). (1.9)

n=0
In our present investigation, we shall make use of following summation formulas:

& (a-5:%)
a .C o a’b,qoo <

b | =% VYV ‘0
2¥1 .Q7ab < i )
G, C, 4

ab (e%s)

c

< 1) (1.10)

(see [4, Appendix II, Eq. (II. 8)])
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a, b; <ﬂ,§;q> b( ) —c(a+b)
S | - (;Z_%qi (a e ) (al <)

(1.11)

(see [11, Eq. (1.4)])

(D @ 0v/a ~/ab.e.d LA (ag, ag/bc, aq/bd, ag/cd; q) o
\/a’ _\/a’ CLCI/b, CLC]/C, Cl(]/d de (a’q/b7 CLQ/C, CLQ/d, CLQ/bCCL Q>oo

(1.12)

(see [4, Appendix II, Eq. (I1.20)])
Finally, we recall the following series identity:
iiQ(n,T):iiQn—i—rr (1.13)
n=0 r=0 n=0 r=0
provided that each member exists.
(see [8, p. 100, Lemma 1, Eq. 2.1 (2)])

2. Main Results
In this section we establish following four theorems which shall be used in next
section.

Theorem 1. If a,(a) is an arbitrary sequence such that
apla) =1

then,

i ()017P2, q)n+r < ) )
(4:9), (aq; Q)n+2r \ P12

n,r=0
aq aq 00 n
(m ﬂz’q> (p1, p2:Q)n ( aq ) 0, (a)
a(a).
. aq aq
(aq, Plp?’q>oo n=0 (p—l p—Q,q> P1P2

aq \"
0, = (/)1702;Q)r (—)
P1P2

(2.1)

Proof. Taking
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n (1.5), summing the series by making use of (1.10) we get after some simplifica-
tions,

n —

aq aq. aq aq. n
(Pl pz’q> (Pl pz’q) ( aq )
(aq, ,,IPQ;Q)OO (aq, pl,,Q;q)n pPrpz

Putting these values of 7, and 9,, in (1.6), again putting the series value of 5, from
(1.4) in (1.6) and applying the lemma (1.13) we get (2.1).

Theorem 2. If a,(a, k) is an arbitrary sequence such that

Q50(aa k) =1
then
i (1 - kq2n+2r> (p1, P25 Dner (559),, (K3 @)nror ( o )nﬂa (a, k)
n,r=0 L=k (%7 %§ q) (@: @)n(aq; rszr \PIP2
n4+r

aq agq

_ (k‘q, Plgz p1’ P2’q) i (P1, P2 @) (aq )nan(a,k). (2.2)

- _aq kg kg aq aq P1P2
(q’ p1p2’ p1’ p2’q> n,r=0 (m pg’q>

Proof. Taking

5. (a, k) = (gv/a, —q\/a, p1, p2; q)r ( ag )r

(VE vk 1,5,4) \pir2

n (1.8), summing the series by making use of (1.12) we get after some simplifica-
tions,

Yu(a, k) =

aq aq n

(k‘q, p1p2’ p1’ pz’q> (Plap2§ )'n, ( aq )
_aq kq kq aq aq.

< aq, p1p2’ pL’ p2jq>oo (,01 02’ q> P1P2

Now, putting these values of v,(a, k) and ,(a, k) in (1.9), again putting the se-
ries value of 3, (a, k) from (1.7) in (1.9) and applying the lemma (1.13) we get (2.2).

Theorem 3. If ay(a, k) is an arbitrary sequence such that

ap(a, k) =
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then

i": (qg;q) (K5 @)nvor (ﬁf)nJrrar(a’k)

n,r=0

F) an(a, k). (2.3)

Proof. Taking

st = ()

in (1.8) and summing the series by making use of (1.10) we get,
: a*q\"
’yn(ay k’) = (aq—> (ﬁ) TOO.
<TaQ>2n <a9ak_2§Q>oo
Putting these values of 7, (a, k) and d,(a, k) in (1.9), again putting the series value

of B.(a, k) from (1.7) in (1.9) and applying the lemma (1.13) we get (2.3).

Theorem 4. If a,(a, k) is an arbitrary sequence such that

apla, k) =1

q
_ (%’%”)m( b )im(uaq%) (Z—z)nan(a,k‘). (2.4)

Proof. Taking

in (1.8) and summing the series by using (1.11) we find,

Tn(a, k) = @q?ag ’q>oo ( : > (k; @)2n(1 + ag®™") <Z_2)n

<aq, %; q) k+a (aq/k; q)an 2
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Putting these values of 7, (a, k) and d,(a, k) in (1.9) and series value of §,(a, k)
from (1.7) in (1.9) and applying the lemma (1.13) we get (2.4).
3. Special Cases

In this section we shall deduce certain interesting double series identities from
theorems established in previous section.

Remark 1. If we choose p1, po — o0 in (2.1), we get

Z a Zq a"o,(a (3.1)

n,r= O
Upon substituting these values of o, = r=5-in (3.1), we derive the following
summation formula

n+r n—H" (

(00 Dnrzr (0 Q)

e q(n+r)2+ran+r

B 1 = ¢"a
2. o _(aq;Q)oonZ;(q;q)n' 32)

n,r=0 (Q> Q)r(a% Q)n+2r

Taking «,, = ﬁ in (3.1) we have
0 (n+r)24r ntr X n2in a™
q a q
R . o

570 (@9)Hag; Onyar

From (3.1) and (3.2) we have,

i q(”+7")2+7”a”+7" i q" +ngn
o (¢ 9)7(agq; @)ntor — (¢ )n
S~ d T o) S
o (G D (g Dnvar 5 (G Dn
1 aq aq® ag? (3.4)
S RS R '
For a =1, (3.2) yields
A GONG Dnszr (G0 5 (G D0 (60020 ¢%) s ‘
Taking a =1 in (3.3) we get,
0 (n+r)2+r o0 n 1
q
. (3.6)
n;) (@ 2@ Dnsr § (G )n (6D 6% )
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Taking a = 1, a, = % in (3.1) we get,

n+r)2—r 1 e 2

(
S GG Dnvze (D0 5 (@D

1 { 1 N 1 }
(D (0,65 (%3 ¢%) )
From (3.5), (3.6) and (3.7) we find,

oo (ntr)2—r n+r) 0 (n4r)2+r
q 4q
+ .
;0 (4 0)7(¢; @)ns2r n;] A& Onrar n; (¢ 0)7(¢; @nrar
Taking a = ¢ in (3.2) we get,
i q(n+r)(n+r+1) _ 1 i qn(n+1)
a2 GONG Dnvzrir (60w 25 (400
For a =1, (3.3) yields
f: q(n+r)2+r 1 f: q”(”‘H)
= (@ g Dnrzr (@00 = (0:0)a
Comparing (3.9) and (3.10) we have,
i q(n—i-r)(n-i-r-i-l) _ i q(n+r)2+r
o GONG Dnszrrr 5= (G DG Dngar

Remark 2. Taking p1, p2 — 00 in (2.2) we obtain,
(5:9), (k; @)nsra™™

o 1 — kg2nt2r (n+r)2
Z ( 1k_qk ) d (q: . a(a, k)
n,r=0 q; q)n(a(L q)n+27’
(kg3 9) i 2
= —— > ¢"a"oy,(a, k).
(ag; @)oo 2=

Taking a,(a, k) = (ql)
i <1 . k.q2n+2r) q(n+r)2 (S;q)n (k; q)npora™t”

1—k (: On(q; O)r(aq; @) ntor

n (3.12) we have

n,r=0

(kG @)oo = ¢ 0"
(ag; @)oo nzzo (¢ @)n
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(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Again, taking a,(a, k) = % in (3.12) we have
> (L) T e, (i
1—k (@ Dnlq; )r(aq; @2

(kq; @)oo o= ¢ Ha"

n,r=0

~ (ag; 9)oe (G @)n (3:14)
From (3.13) and (3.14) we have,
0 (1= k@t g (Erg) (ki q)ngra™tT
WZ:O ( 1=k ) (@3 D (@ @)r (aG; Dsor
X /1 — kg2t q(n+r)2 (g;q)n (k; q)paora™"
n;o ( 1—k ) (4 )n (g O)r(ag; @)nrar
> qn2+nan
= (q;f) _ 1 agag’ ag’ (3.15)
lar 1+ 1+ 141+
; (¢ @)n

For a =1, (3.13) yields

f: (1 - kq?”“’“) g% (k; q),, (k; Qntor
1—k (@ On(@ Or (@ Dngar

(kg 9)s i " (kg @) 1 (3.16)

(@D = (GDn (G (¢,0%6)

n,r=0

For a =1, (3.14) gives

i (1 - kq?”“T) g (ks q), (k5 q)nar
1—k (@ On( @ Q) (@ Dnvar

n,r=0

_ (kg 9)s f: A (7Y U S (3.17)

(D) = (@ 0)n (GO (6,6 0%)
For k = ¢, (3.16) yields
0 (n+1)? o0 n2 1
q q

1 — g2+l _ _ _ 3.18

2 )(Q§Q>r 2 (a)n (.04 ¢) (3.18)

n,r=0
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For k = ¢, (3.17) yields

oo +7r [e.e] 1
1— q2n+2r+1
n;[)( ; (@a)n (0% )
From (3.18) and (3.19) we have
> (n4r)2+r 0 n24n
n T q q
(1 . q2 +2 +1)—
n;} () ; (¢;@)n
oo (n+r)? - o n2
4q q
1— q2n+2r+1)
n;)( (43 9)- 7; (43 @)n

(.45 _ 1 q q
(%,6% @) 1+1+1+1+ ...

Remark 3. Upon setting

(a®q/k; q)2n (2 @)n
(k5 @)2n (¢ On

ap(a, k) =

n (2.3), we get

< (5:q), (b @nrar (550) (50 /g20\ ™
qq(kQ) ( Q) (%:9) < q)

Vn(aq; Omyar (k5 Qor (G 0)r  \ K2

As k — o0, (2.3) yields
e q n2+4-2r2 +2mﬂa2ra’nar(a’ k:)

(¢; @)n(agq; @)ns2r

n,r=0

2% 02 o, (a, k).
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(3.19)

(3.20)

(3.21)

(3.22)
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Choosing
1
O P p—
() (% a*¢% ¢*)n
in (3.22) we get
0 n242r(r+n) ant2r

q
WZ:O (¢ )n(aq; Qn+2r(d% ¢*)n(a?q* ¢2)n

1 oo a2nq2n2
 (ag; @)oo 2 (4% ¢*)n(a®q® 42
1
_ , 3.23
(ag; @) (aq%; ¢%) oo (3.23)

Remark 4. By letting
_ (@q/k;0)20(20)n
" (k5 @)an(g @)n

in (2.4), we deduce that

(k)05 Q) (ks Qnrar(@®q/k; 2r (230)r (@™
2 (¢ On(aq; QDnrar(k; @)2r (g 0)r <k:2)

n,r=0

:<%’%5q>m ko f(@®2/k Q) | (a®2¢° /K% q)oo
{ + } (3.24)

a
(aq,%;q) ktal (@) 9e  (@%¢°/k% )

As k — o0, (2.4) yields

n(n—1)/2 ,(n+2r) (n+2r71)/2an+2r

g
(¢; O)n(aq; @Q)ntor

o0

— qn(2n71)a2n(1 + CLan)Oén(a, k)

q a,(a, k)

n,r=0

— . Z q2n2,na2noén(a7 k’) +a Z q2n2+na2”an((1, k)} . (325)

n=0 n=0
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n (3.25) we find,

> n2—n+2r24+2nr n+2r

(ag;0)oe Y @ q, 5 C;

0@ q)n(aq, On+2r (€% ¢%)r (@%@ ¢%)r

2n +2n 2n+1

(aQq q*) — ( (a6 ¢ )n’

(3.26)

5. Concluding Remarks and Observations

In our present investigation, which is motivated essentially by the earlier works
of Andrews [2], Srivastava et al. ([9] and [10]) and Singh et al. [5], we have success-
fully applied the widely-studied Bailey transform, the Bailey pair of sequences and
the well-poised (or WP-) Bailey pair of sequences in order to derive many useful
summation formulas for g-hypergeometric series as well as bi-basic hypergeometric
series. We have also presented several other related g-series identities. Our results
are stated here as Theorems 1, 2, 3 and 4 and Remarks 1 to 4.
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