POLYNOMIALS YIELDING QUADRUPLES WITH PROPERTY D(k)

A.M.S. Ramasamy
Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R\&D
Institute of Science and Technology, Avadi, Chennai - 600062, INDIA
E-mail: ramasamyams@veltech.edu.in

Dedicated to Prof. A.K. Agarwal on his $70^{\text {th }}$ Birth Anniversary

Abstract: Let k be a natural number. Two integers α and β are said to have the property $\mathrm{D}(\mathrm{k})$ (resp. $\mathrm{D}(-\mathrm{k})$) if $\alpha \beta+\mathrm{k}($ resp. $\alpha \beta-\mathrm{k})$ is a perfect square. The purpose of this paper is identification of polynomials producing quadruples with property $\mathrm{D}(\mathrm{k})$ for certain values of k . Incidentally the paper brings out an attribute of Ramanujan number 1729 in contributing two quadruples of polynomials with property $\mathrm{D}(\mathrm{k})$.
Keyword and Phrases: Property p_{k}, extendable set, $P_{r, k}$ sequence, Pell's equation, quadruple with Diophantine property, Ramanujan number.

2010 Mathematics Subject Classification: 11B37, 11B83, 11D09.

1. Introduction

The Greek mathematician Diophantus raised the question as to four numbers such that the product of any two increased by a given number shall be a square. M.Gardner [11] asked for a fifth number that can be added to the set $\{1,3,8,120\}$ without destroying the property that the product of any two integers is one less than a perfect square. For historical details of the problem, one may refer to J.Roberts [24] and the author [19].

It is seen that the polynomials $\mathrm{x}, \mathrm{x}+2,4 \mathrm{x}+4$ have the property that the product of any two of them increased by 1 is a square. A fourth polynomial that works with these three is $16 x^{3}+48 x^{2}+44 x+12$. B.W.Jones $[12,13]$ considered polynomials for this problem. He found all polynomials that work with x and $\mathrm{x}+2$. He defined

$$
f_{r}(x)=\frac{\alpha^{r}-\beta^{r}}{\alpha-\beta} \text { and } c_{r}(x)=2 f_{r}(x) f_{r+1}(x)
$$

where $\alpha(=\alpha(x))$ and $\beta(=\beta(x))$ are the roots of the quadratic equation

$$
w^{2}-2(x+1) w+1=0
$$

He then showed that

$$
x, x+2, c_{r}(x), c_{r+1}(x)
$$

are such that the product of any two of them is one less than a square. Taking $x=r=1$, we find $\alpha=2+\sqrt{3}, \beta=2-\sqrt{3}, f_{1}(1)=1, f_{2}(1)=4, f_{3}(1)=15$, $c_{1}(1)=8, c_{2}(1)=120$. Thus, in this case, the quadruple $\left\{x, x+2, c_{1}(1), c_{2}(1)\right\}$ becomes $\{1,3,8,120\}$.

2. Definitions

Let N denote the set of all natural numbers. We recall the definitions furnished in [16].
Definition 2.1 Let k be a given element of N. Two integers α and β are said to have the property p_{k} (resp. p_{-k}) if $\alpha \beta+k$ (resp. $\alpha \beta-k$) is a perfect square.
Definition 2.2 Let k be a given element of N. A set S of elements of N is said to be a P_{k} set or a set with property p_{k} if any two elements α and β in S have the property p_{k}. A set with property p_{k} is also referred to as a set with property $D(k)$ where D stands for Diophantus from whom the problem originated.
Definition 2.3 $A P_{k}$ set S is called extendable if, for some integer d, $d \notin S$, the set $S \cup\{d\}$ is a P_{k} set.
Definition 2.4 A sequence of integers is said to be a $P_{r, k}$ sequence if every r consecutive terms of the sequence constitute a P_{k} set. For the construction of a $P_{3, k}$ sequence of integers, one may refer [16].
Following the concept of J. Arkin, V.E. Hoggatt and E.G. Strauss [1], we have a classification of triples and quadruples with property $\mathrm{D}(\mathrm{k})$ as detailed below:
Definition 2.5 A triple $\left\{a_{1}, a_{2}, a_{3}\right\}$ with property $D(k)$, where $a_{1}<a_{2}<a_{3}$ is said to be regular if

$$
\left(a_{3}-a_{2}-a_{1}\right)^{2}=4\left(a_{1} a_{2}+k\right)
$$

Definition 2.6 A quadruple $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ with property $D(k)$, where $a_{1}<a_{2}<$ $a_{3}<a_{4}$ is said to be regular if

$$
k\left(a_{4}+a_{3}-a_{2}-a_{1}\right)^{2}=4\left(a_{1} a_{2}+k\right)\left(a_{3} a_{4}+k\right)
$$

It is seen that a regular quadruple with property $D(k)$ can exist only if k is a square. A quadruple with property $D(k)$ which is not regular is said to be irregular.

3. Linkage with Pell's equation

Starting from a triple with property $\mathrm{D}(\mathrm{k})$, one would like to extend it to a quadruple with property $\mathrm{D}(\mathrm{k})$. In this process, there arises a system of Pell's equations as illustrated in several papers (see for e.g., $[2,3,4,5,8,9,13,14,15$, $16,17,18,20,22,23])$.

4. Overview of previous results

A. Baker and H. Davenport [2] dealt with the quadruple $\{1,3,8,120\}$ with property $\mathrm{D}(1)$ in which the first three terms are the Fibonacci numbers F_{2}, F_{4} and F_{6}. They proved that the set cannot be extended further. Their result was also proved later by P. Kanagasabapathy and T. Ponnudurai [14] employing a different method.
Let us consider the previous works pertaining to polynomials producing P_{k} sets.
Theorem 4.1. (S.P. Mohanty and the Author [16]) If $k \equiv 2(\bmod 4)$, then there is no $P_{r, k}$ sequence with $r \geq 4$.
Theorem 4.2. (A. Filipin and Y.Fujita [10]) Any polynomial quadruple with property $D(4)$ is regular.
Several results on polynomials for sets of numbers with Diophantine property have been furnished by A.Dujella in [3, 5, 6, 7].

5. Special kind of polynomials producing quadruples with Diophantine property

Consider the following sequences $\left\{a_{n}\right\}$ with given k indicated against each: (the author [18])
i. $\left\{2 t+1,11 t^{2}+6 t+1,33 t^{2}+16 t+2,88 t^{2}+42 t+5, \ldots\right\}$ with $k=121 t^{4}+66 t^{3}-$ $7 t^{2}-8 t-1, t \geq 1$
ii. $\left\{2 t+1,33 t^{2}+28 t+6,99 t^{2}+82 t+17,264 t^{2}+218 t+45, \ldots\right\}$ with $k=1089 t^{4}+$ $1650 t^{3}+917 t^{2}+220 t+19, t \geq 0$
iii. $\left\{2 t+3,3 t^{2}+4 t+2,9 t^{2}+10 t+3,24 t^{2}+26 t+7, \ldots\right\}$ with $k=9 t^{4}+6 t^{3}-$ $19 t^{2}-20 t-5, t \geq 1$
iv. $\left\{2 t+7, t^{2}+2 t+3,3 t^{2}+4 t+2,8 t^{2}+10 t+3, \ldots\right\}$ with $k=t^{4}-2 t^{3}-19 t^{2}-20 t-5$, $t \geq 1$.

One can check that the set consisting of the first three terms of the sequence $\left\{a_{n}\right\}$ has the property $\mathrm{D}(\mathrm{k})$. The set consisting of the second, third and fourth terms of
the sequence also has the property $\mathrm{D}(\mathrm{k})$. The terms of the sequence are defined by the relation

$$
a_{n+2}=3 a_{n+1}-a_{n}
$$

for $\mathrm{n} \geq 1$. It is ascertained that each one of these sequences $\left\{a_{n}\right\}$ is a $P_{3, k}$ sequence. A special property of these sequences is that the fourth term also shares the property $\mathrm{D}(\mathrm{k})$ with the first term.

6. Theorems on polynomials

In the following theorems we give some polynomials which produce 4 numbers possessing the property $\mathrm{D}(\mathrm{k})$ for some integer k .

Theorem 6.1. Let t be a given integer \geq 2. Let d_{1}, d_{2} be two positive divisors of $t^{2}-1$ such that $d_{1}<d_{2}$ and $t^{2}-1=d_{1} d_{2}$. Then the numbers $\left\{d_{1}, d_{2}, d_{1}+d_{2}+\right.$ $\left.2 t, 4 t\left(d_{1}+t\right)\left(d_{2}+t\right)\right\}$ have the property $D(1)$.
Proof. We have $d_{1} d_{2}+1=t^{2}, d_{1}\left(d_{1}+d_{2}+2 t\right)+1=\left(t+d_{1}\right)^{2}$,

$$
\begin{aligned}
& d_{1} \cdot 4 t\left(d_{1}+t\right)\left(d_{2}+t\right)+1=\left(2 t^{2}+2 d_{1} t-1\right)^{2} \\
& d_{2}\left(d_{1}+d_{2}+2 t\right)+1=\left(t+d_{2}\right)^{2}, d_{2} \cdot 4 t\left(d_{1}+t\right)\left(d_{2}+t\right)+1=\left(2 t^{2}+2 d_{2} t-1\right)^{2} \\
& \left(d_{1}+d_{2}+2 t\right) \cdot 4 t\left(d_{1}+t\right)\left(d_{2}+t\right)+1=\left(4 t^{2}+2\left(d_{1}+d_{2}\right) t-1\right)^{2}
\end{aligned}
$$

Corollary 6.2. The following are sets with property $D(1)$ for all integers $t \geq 0$: $\left\{t+1, t+3,4 t+8,16 t^{3}+96 t^{2}+128 t+120\right\}$, $\left\{1, t^{2}+4 t+3, t^{2}+6 t+8,4 t^{4}+40 t^{3}+144 t^{2}+220 t+120\right\}$,
$\left\{t+2,4 t+4,9 t+12,144 t^{3}+624 t^{2}+892 t+420\right\}$.
Theorem 6.3. Let t be a given integer \geq 3. Let d_{1}, d_{2} be two positive divisors of $t^{2}-4$ such that $d_{1}<d_{2}$ and $t^{2}-4=d_{1} d_{2}$. Then $d_{1}, d_{2}, d_{1}+d_{2}+2 t, t\left(d_{1}+t\right)\left(d_{2}+t\right)$ have the property $D(4)$.
Proof. It is seen that
$d_{1} d_{2}+4=t^{2}, d_{1}\left(d_{1}+d_{2}+2 t\right)+4=\left(t+d_{1}\right)^{2}$,
$d_{1} t\left(d_{1}+t\right)\left(d_{2}+t\right)+4=\left(2 t^{2}+2 d_{1} t-1\right)^{2}$,
$d_{2}\left(d_{1}+d_{2}+2 t\right)+4=\left(t+d_{2}\right)^{2}$,
$d_{2} t\left(d_{1}+t\right)\left(d_{2}+t\right)+4=\left(2 t^{2}+2 d_{2} t-1\right)^{2}$,
$\left(d_{1}+d_{2}+2 t\right) \cdot t\left(d_{1}+t\right)\left(d_{2}+t\right)+4=\left(4 t^{2}+2\left(d_{1}+d_{2}\right) t-1\right)^{2}$.
Corollary 6.4. $\left\{1, t^{2}+6 t+5, t^{2}+8 t+12, t^{4}+14 t^{3}+69 t^{2}+140 t+96\right\}$ and $\left\{2 t+1,2 t+5,8 t+12,32 t^{3}+144 t^{2}+208 t+96\right\}$ are sets with property $D(4)$ where $t \geq 0$.
This is a generalization of the result contained in [17] regarding the quadruple $\{1,5,12,96\}$ with property $D(4)$.
Theorem 6.5. The set $\left\{1,4 t^{4}+24 t^{3}+52 t^{2}+48 t+16,4 t^{6}+36 t^{5}+133 t^{4}+258 t^{3}+\right.$
$\left.273 t^{2}+144 t+27,16 t^{8}+192 t^{7}+1000 t^{6}+2952 t^{5}+5393 t^{4}+6222 t^{3}+4399 t^{2}+1722 t+280\right\}$ has the property $D\left((2 t+3)^{2}\right)$ for $t \geq 0$.
Theorem 6.6. The numbers $\left\{1,5(t+1)^{2}, 5 t^{2}+16 t+12,45 t^{2}+132 t+96\right\}, t \geq 0$, have the property $D\left(4(t+1)^{2}\right)$.
This is yet another generalization of the result in [17] concerning the quadruple $\{1,5,12,96\}$ with property $D(4)$.
Theorem 6.7. The numbers $\left\{1,\left(m^{2}+2 m\right) t^{2},\left(m^{2}+2 m\right) t^{2}+(2 m+2) t+1,\left(4 m^{4}+\right.\right.$ $\left.\left.16 m^{3}+20 m^{2}+8 m\right) t^{2}+\left(8 m^{3}+24 m^{2}+20 m+4\right) t+4 m^{2}+8 m+4\right\}$ have the property $D\left(t^{2}\right)$ where $m, t \geq 1$.
Corollary 6.8. Given a natural number t, there exist an infinite number of sets of size 4 with property $D\left(t^{2}\right)$.
Theorem 6.9 Let t be any given integer ≥ 0. Then the numbers $\left\{(t+1)^{2}, 2 t^{3}+\right.$ $\left.7 t^{2}+8 t+3,4 t^{3}+16 t^{2}+20 t+8,12 t^{3}+80 t^{2}+172 t+120\right\}$ have the property $D\left((t+1)^{6}\right)$. This is a generalization of the result contained in [2] regarding the quadruple $\{1,3,8,120\}$ with property $D(1)$.
7. Polynomials producing quadruples with property $D(k), k=1,4,16$, 64, 256

Identification of polynomials that would lead to quadruples with property $\mathrm{D}(\mathrm{k})$ is an interesting as well as a challenging task. In this section, we consider the case when k is a square.
Let us recall the following result of Euler: If $a_{1} a_{2}+\lambda^{2}=b^{2}$ for some $\lambda \in N$, then $\left\{a_{1}, a_{2}, a_{1}+a_{2}+2 b, \frac{4 b\left(a_{1}+b\right)\left(a_{2}+b\right)}{\lambda^{2}}\right\}$ is a quadruple with property $D\left(\lambda^{2}\right)$.
This result is used to construct quadruples consisting of polynomials with properties $\mathrm{D}(1), \mathrm{D}(4), \mathrm{D}(16), \mathrm{D}(64)$ and $\mathrm{D}(256)$ which are presented in the sequel.
Theorem 7.1. Let t be any integer ≥ 0. The following polynomial quadruples have property $D(1)$:
$\left\{4 t+4,16 t+12,36 t+30,9216 t^{3}+23808 t^{2}+20464 t+5852\right\}$, $\left\{3 t^{2}+4 t+1,3 t^{2}+10 t+8,12 t^{2}+28 t+15,432 t^{6}+3024 t^{5}+8460 t^{4}+12040 t^{3}+\right.$ $\left.9144 t^{2}+3500 t+528\right\}$,
$\left\{t^{2}+3 t+2, t^{2}+7 t+12,4 t^{2}+20 t+24,16 t^{6}+240 t^{5}+1456 t^{4}+4560 t^{3}+7756 t^{2}+\right.$ $6780 t+2380\}$,
Proof. Consider the quadruple $\left\{4 t+4,16 t+12,36 t+30,9216 t^{3}+23808 t^{2}+20464 t+\right.$ 5852\}.
We observe that $(4 t+4) \cdot(16 t+12)+1=(8 t+7)^{2}$,
$(4 t+4) \cdot(36 t+30)+1=(12 t+11)^{2}$,
$(4 t+4) \cdot\left(9216 t^{3}+23808 t^{2}+20464 t+5852\right)+1=\left(192 t^{2}+344 t+153\right)^{2}$, $(16 t+12) \cdot(36 t+30)+1=(24 t+19)^{2}$,
$(16 t+12) \cdot\left(9216 t^{3}+23808 t^{2}+20464 t+5852\right)+1=\left(384 t^{2}+640 t+265\right)^{2}$,
$(36 t+30) \cdot\left(9216 t^{3}+23808 t^{2}+20464 t+5852\right)+1=\left(576 t^{2}+984 t+419\right)^{2}$.
Therefore it follows that $\left\{4 t+4,16 t+12,36 t+30,9216 t^{3}+23808 t^{2}+20464 t+5852\right\}$ is a P_{1} set of size 4 . Other results can be checked similarly.

Theorem 7.2. The following polynomial quadruples have property D (4) for $t \geq 0$: $\left\{2 t+1,2 t+5,8 t+12,32 t^{3}+144 t^{2}+208 t+96\right\}$, $\left\{2 t+5,8 t+12,18 t+33,288 t^{3}+1680 t^{2}+3248 t+2080\right\}$,
$\left\{5 t^{2}+6 t+1,5 t^{2}+16 t+12,20 t^{2}+44 t+21,500 t^{6}+3300 t^{5}+8585 t^{4}+11154 t^{3}+\right.$ $\left.7553 t^{2}+2508 t+320\right\}$.
Proof. Take the quadruple $\left\{2 t+1,2 t+5,8 t+12,32 t^{3}+144 t^{2}+208 t+96\right\}$.
We have
$(2 t+1) \cdot(2 t+5)+4=(2 t+3)^{2}$,
$(2 t+1) \cdot(8 t+12)+4=(4 t+4)^{2}$,
$(2 t+1) \cdot\left(32 t^{3}+144 t^{2}+208 t+96\right)+4=\left(8 t^{2}+20 t+10\right)^{2}$,
$(2 t+5) \cdot(8 t+12)+4=(4 t+8)^{2}$,
$(2 t+5) \cdot\left(32 t^{3}+144 t^{2}+208 t+96\right)+4=\left(8 t^{2}+28 t+22\right)^{2}$,
$(8 t+12) \cdot\left(32 t^{3}+144 t^{2}+208 t+96\right)+4=\left(16 t^{2}+48 t+34\right)^{2}$.
Consequently, it is seen that $\left\{2 t+1,2 t+5,8 t+12,32 t^{3}+144 t^{2}+208 t+96\right\}$ is a P_{4} set of size 4. Other results follow similarly.
Theorem 7.3. The following polynomial quadruples have property $D(16)$ for $t \geq 0$: $\left\{2 t+1,2 t+9,8 t+20,8 t^{3}+60 t^{2}+142 t+105\right\}$,
$\left\{2 t+9,8 t+20,18 t+57,72 t^{3}+732 t^{2}+2462 t+2737\right\}$,
$\left\{12 t^{2}+20 t+3,12 t^{2}+32 t+16,48 t^{2}+104 t+35,1728 t^{6}+11232 t^{5}+27900 t^{4}+33020 t^{3}+\right.$ $\left.19131 t^{2}+5200 t+528\right\}$.
Proof. Consider the quadruple $\left\{2 t+1,2 t+9,8 t+20,8 t^{3}+60 t^{2}+142 t+105\right\}$.
On computation, we get
$(2 t+1) \cdot(2 t+9)+16=(2 t+5)^{2}$,
$(2 t+1) \cdot(8 t+20)+16=(4 t+6)^{2}$,
$(2 t+1) \cdot\left(8 t^{3}+60 t^{2}+142 t+105\right)+16=\left(4 t^{2}+16 t+11\right)^{2}$,
$(2 t+9) \cdot(8 t+20)+16=(4 t+14)^{2}$,
$(2 t+9) \cdot\left(8 t^{3}+60 t^{2}+142 t+105\right)+16=\left(4 t^{2}+24 t+31\right)^{2}$,
$(8 t+20) \cdot\left(8 t^{3}+60 t^{2}+142 t+105\right)+16=\left(8 t^{2}+40 t+46\right)^{2}$.
Hence it follows that $\left\{2 t+1,2 t+9,8 t+20,8 t^{3}+60 t^{2}+142 t+105\right\}$ is a $P_{l 6}$ set of size 4 . Other results can be derived similarly.
Theorem 7.4. The following polynomial quadruples have property $D(64)$ for $t \geq 0$:
$\left\{12 t^{2}+20 t+3,12 t^{2}+44 t+35,48 t^{2}+128 t+64,432 t^{6}+3456 t^{5}+10728 t^{4}+16256 t^{3}+\right.$ $\left.12459 t^{2}+4552 t+624\right\}$,
$\left\{80 t^{2}+96 t+16,80 t^{2}+136 t+45,320 t^{2}+464 t+117,128000 t^{6}+556800 t^{5}+943760 t^{4}+\right.$ $\left.785784 t^{3}+334901 t^{2}+69774 t+5621\right\}$,
$\left\{20 t^{2}+44 t+21,20 t^{2}+84 t+85,80 t^{2}+256 t+192,2000 t^{6}+19200 t^{5}+74840 t^{4}+\right.$ $\left.151296 t^{3}+167021 t^{2}+95376 t+22016\right\}$.
Proof: Take the quadruple
$\left\{12 t^{2}+20 t+3,12 t^{2}+44 t+35,48 t^{2}+128 t+64,432 t^{6}+3456 t^{5}+10728 t^{4}+16256 t^{3}+\right.$ $\left.12459 t^{2}+4552 t+624\right\}$.
It is observed that

$$
\begin{aligned}
& \left(12 t^{2}+20 t+3\right) \cdot\left(12 t^{2}+44 t+35\right)+64=\left(12 t^{2}+32 t+13\right)^{2} \\
& \left(12 t^{2}+20 t+3\right) \cdot\left(48 t^{2}+128 t+64\right)+64=\left(24 t^{2}+52 t+16\right)^{2} \\
& \left(12 t^{2}+20 t+3\right) \cdot\left(432 t^{6}+3456 t^{5}+10728 t^{4}+16256 t^{3}+12459 t^{2}+4552 t+624\right)+64= \\
& \left(72 t^{4}+348 t^{3}+542 t^{2}+297 t+44\right)^{2} \\
& \left(12 t^{2}+44 t+35\right) \cdot\left(48 t^{2}+128 t+64\right)+64=\left(24 t^{2}+76 t+48\right)^{2} \\
& \left(12 t^{2}+44 t+35\right) \cdot\left(432 t^{6}+3456 t^{5}+10728 t^{4}+16256 t^{3}+12459 t^{2}+4552 t+624\right)+64= \\
& \left(72 t^{4}+420 t^{3}+830 t^{2}+631 t+148\right)^{2}, \\
& \left(48 t^{2}+128 t+64\right) \cdot\left(432 t^{6}+3456 t^{5}+10728 t^{4}+16256 t^{3}+12459 t^{2}+4552 t+624\right)+64= \\
& \left(144 t^{4}+768 t^{3}+1372 t^{2}+928 t+200\right)^{2} .
\end{aligned}
$$

Theorem 7.5. The following polynomial quadruples have property D (256) with $t \geq 0$:
$\left\{320 t^{2}+304 t+21,320 t^{2}+384 t+64,1280 t^{2}+1376 t+165,2048000 t^{6}+6604800 t^{5}+\right.$ $\left.7876160 t^{4}+4212624 t^{3}+993485 t^{2}+103974 t+3965\right\}$,
$\left\{48 t^{2}+104 t+35,48 t^{2}+152 t+99,192 t^{2}+512 t+256,6912 t^{6}+55296 t^{5}+174240 t^{4}+\right.$ $\left.273920 t^{3}+224859 t^{2}+91720 t+14640\right\}$,
$\left\{16 t^{2}+88 t+57,16 t^{2}+104 t+105,64 t^{2}+384 t+320,256 t^{6}+4608 t^{5}+31456 t^{4}+\right.$ $\left.100992 t^{3}+155905 t^{2}+112902 t+30889\right\}$.
Proof. Consider the quadruple $\left\{320 t^{2}+304 t+21,320 t^{2}+384 t+64,1280 t^{2}+1376 t+\right.$ $\left.165,2048000 t^{6}+6604800 t^{5}+7876160 t^{4}+4212624 t^{3}+993485 t^{2}+103974 t+3965\right\}$. We observe that

$$
\begin{aligned}
& \left(320 t^{2}+304 t+21\right) \cdot\left(320 t^{2}+384 t+64\right)+256=\left(320 t^{2}+344 t+40\right)^{2}, \\
& \left(320 t^{2}+304 t+21\right) \cdot\left(1280 t^{2}+1376 t+165\right)+256=\left(640 t^{3}+648 t+61\right)^{2}, \\
& \left(320 t^{2}+304 t+21\right) \cdot\left(2048000 t^{6}+6604800 t^{5}+7876160 t^{4}+4212624 t^{3}+993485 t^{2}+\right. \\
& 103974 t+3965)+256=\left(25600 t^{4}+53440 t^{3}+33504 t^{2}+5863 t+289\right)^{2}, \\
& \left(320 t^{2}+384 t+64\right) \cdot\left(1280 t^{2}+1376 t+165\right)+256=\left(640 t^{2}+728 t+104\right)^{2}, \\
& \left(320 t^{2}+384 t+64\right) \cdot\left(2048000 t^{6}+6604800 t^{5}+7876160 t^{4}+4212624 t^{3}+993485 t^{2}+\right. \\
& 103974 t+3965)+256=\left(256001 t^{4}+56640 t^{3}+38664 t^{2}+8112 t+504\right)^{2}, \\
& \left(1280 t^{2}+1376 t+165\right)\left(2048000 t^{6}+6604800 t^{5}+7876160 t^{4}+4212624 t^{3}+993485 t^{2}+\right.
\end{aligned}
$$

$103974 t+3965)+256=\left(51200 t^{4}+110080 t^{3}+72168 t^{2}+13975 t+809\right)^{2}$.
Therefore we see that
$\left\{320 t^{2}+304 t+21,320 t^{2}+384 t+64,1280 t^{2}+1376 t+165,2048000 t^{6}+6604800 t^{5}+\right.$
$\left.7876160 t^{4}+4212624 t^{3}+993485 t^{2}+103974 t+3965\right\}$ is a P_{256} set of size 4 . Other results are got similarly.

8. Ramanujan's number in Diophantine quadruples

The number 1729 has acquired a special status in mathematics. It is referred to as Ramanujan number. There is a famous anecdote about this number. Ramanujan made a statement to G. H. Hardy that 1729 is the smallest number that can be expressed as a sum of two cubes in two different ways. We have the two expressions $1729=9^{3}+10^{3}$ and $1729=1^{3}+12^{3}$. Thus 1729 is the smallest integral solution of the Diophantine equation $A^{3}+B^{3}=C^{3}+D^{3}$ (see for e.g., [21]).

From our work we observe another property of this number, namely it shares property $\mathrm{D}(64)$ with 9,33 and 80 . This leads to two quadruples of polynomials with property $\mathrm{D}(\mathrm{k})$ as brought out in the following:
Theorem 8.1. The quadruple $\left\{t+9,9 t+33,16 t+80,9 t^{3}+159 t^{2}+919 t+1729\right\}$ has the property $D(64), t \geq 0$.
Proof. We have
$(t+9) \cdot(9 t+33)+64=(3 t+19)^{2}$,
$(t+9) \cdot(16 t+80)+64=(4 t+28)^{2}$,
$(t+9) \cdot\left(9 t^{3}+159 t^{2}+919 t+1729\right)+64=\left(3 t^{2}+40 t+125\right)^{2}$,
$(9 t+33) \cdot(16 t+80)+64=(12 t+52)^{2}$,
$(9 t+33) \cdot\left(9 t^{3}+159 t^{2}+919 t+1729\right)+64=\left(9 t^{2}+96 t+239\right)^{2}$,
$(16 t+80) \cdot\left(9 t^{3}+159 t^{2}+919 t+1729\right)+64=\left(12 t^{2}+136 t+372\right)^{2}$,
Theorem 8.2. The quadruple $\left\{4 t^{2}+20 t+9,4 t^{2}+28 t+33,16 t^{2}+96 t+80,16 t^{6}+\right.$ $\left.288 t^{5}+1960 t^{4}+6240 t^{3}+9457 t^{2}+6630 t+1729\right\}$ has property $D(64), t \geq 0$.
Proof. It is seen that

$$
\begin{aligned}
& \left(4 t^{2}+20 t+9\right) \cdot\left(4 t^{2}+28 t+33\right)+64=\left(4 t^{2}+24 t+19\right)^{2} \\
& \left(4 t^{2}+20 t+9\right) \cdot\left(16 t^{2}+96 t+80\right)+64=\left(8 t^{2}+44 t+28\right)^{2} \\
& \left(4 t^{2}+20 t+9\right) \cdot\left(16 t^{6}+288 t^{5}+1960 t^{4}+6240 t^{3}+9457 t^{2}+6630 t+1729\right)+64= \\
& \left(8 t^{4}+92 t^{3}+330 t^{2}+377 t+125\right)^{2} \\
& \left(4 t^{2}+28 t+33\right) \cdot\left(16 t^{2}+96 t+80\right)+64=\left(8 t^{2}+52 t+52\right)^{2} \\
& \left(4 t^{2}+28 t+33\right) \cdot\left(16 t^{6}+288 t^{5}+1960 t^{4}+6240 t^{3}+9457 t^{2}+6630 t+1729\right)+64= \\
& \left(8 t^{4}+100 t^{3}+402 t^{2}+559 t+239\right)^{2}, \\
& \left(16 t^{2}+96 t+80\right) \cdot\left(16 t^{6}+288 t^{5}+1960 t^{4}+6240 t^{3}+9457 t^{2}+6630 t+1729\right)+64= \\
& \left(16 t^{4}+192 t^{3}+732 t^{2}+936 t+372\right)^{2} .
\end{aligned}
$$

9. Polynomials producing quadruples with property $D(k), k$ being a square
Now we consider sets with property $\mathrm{D}(\mathrm{k})$ where k is a polynomial taking square values.

Theorem 9.1. The quadruple $\left\{1,4 t^{2}+12 t+9,4 t^{6}+36 t^{5}+129 t^{4}+234 t^{3}+225 t^{2}+\right.$ $\left.108 t+20,4 t^{6}+44 t^{5}+197 t^{4}+460 t^{3}+590 t^{2}+392 t+105\right\}$ has property $D\left(\left(2 t^{2}+6 t+4\right)^{2}\right)$ for $t \geq 0$.
Theorem 9.2. The quadruple $\left\{1,36 t^{2}+32 t+7,104976 t^{6}+174960 t^{5}+120528 t^{4}+\right.$ $43920 t^{3}+8892 t^{2}+940 t+40,104976 t^{6}+244944 t^{5}+229392 t^{4}+110448 t^{3}+28932 t^{2}+$ $3924 t+216\}$ has property $D\left(\left(18 t^{2}+16 t+3\right)^{2}\right), t \geq 0$.
Theorem 9.3.The quadruple $\left\{1,36 t^{2}+32 t+7,104976 t^{6}+314928 t^{5}+384912 t^{4}+\right.$ $244368 t^{3}+84612 t^{2}+15084 t+1080,104976 t^{6}+384912 t^{5}+587088 t^{4}+476784 t^{3}+$ $\left.217404 t^{2}+52756 t+5320\right\}$ has property $D\left(\left(18 t^{2}+16 t+3\right)^{2}\right)$ for $t \geq 0$.

10. Polynomials producing quadruples with property $D(k)$ where k is not a square

Theorem 10.1. The quadruple $\left\{t+1,9 t^{3}+33 t^{2}+42 t+18,9 t^{3}+39 t^{2}+57 t+\right.$ $\left.29,36 t^{3}+144 t^{2}+197 t+93\right\}$ has the property $D\left(4 t^{2}+10 t+7\right), t \geq 0$.
Proof. It is seen that
$(t+1) \cdot\left(9 t^{3}+33 t^{2}+42 t+18\right)+\left(4 t^{2}+10 t+7\right)=\left(3 t^{2}+7 t+5\right)^{2}$,
$(t+1) \cdot\left(9 t^{3}+39 t^{2}+57 t+29\right)+\left(4 t^{2}+10 t+7\right)=\left(3 t^{2}+8 t+6\right)^{2}$,
$(t+1) \cdot\left(36 t^{3}+144 t^{2}+197 t+93\right)+\left(4 t^{2}+10 t+7\right)=\left(6 t^{2}+15 t+10\right)^{2}$,
$\left(9 t^{3}+33 t^{2}+42 t+18\right) \cdot\left(9 t^{3}+39 t^{2}+57 t+29\right)+\left(4 t^{2}+10 t+7\right)=\left(9 t^{3}+36 t^{2}+49 t+23\right)^{2}$,
$\left(9 t^{3}+33 t^{2}+42 t+18\right) \cdot\left(36 t^{3}+144 t^{2}+197 t+93\right)+\left(4 t^{2}+10 t+7\right)=\left(18 t^{3}+69 t^{2}+\right.$
$91 t+41)^{2}$,
$\left(9 t^{3}+39 t^{2}+57 t+29\right) \cdot\left(36 t^{3}+144 t^{2}+197 t+93\right)+\left(4 t^{2}+10 t+7\right)=\left(18 t^{3}+75 t^{2}+\right.$ $106 t+52)^{2}$.
This theorem provides a generalization of the result contained in [20] concerning the quadruple $\{1,18,29,93\}$ with property $\mathrm{D}(7)$.
Theorem 10.2. The quadruple $\left\{1,3 t^{2}+12 t+13,3 t^{2}+20 t+26,12 t^{2}+64 t+77\right\}$ has property $D\left(13 t^{2}+36 t+23\right), t \geq 0$.
Proof. We have

1. $\left(3 t^{2}+12 t+13\right)+\left(13 t^{2}+36 t+23\right)=(4 t+6)^{2}$,
$1 .\left(3 t^{2}+20 t+26\right)+\left(13 t^{2}+36 t+23\right)=(4 t+7)^{2}$,
$1 .\left(12 t^{2}+64 t+77\right)+\left(13 t^{2}+36 t+23\right)=(5 t+10)^{2}$,
$\left(3 t^{2}+12 t+13\right) .\left(3 t^{2}+20 t+26\right)+\left(13 t^{2}+36 t+23\right)=\left(3 t^{2}+16 t+19\right)^{2}$,
$\left(3 t^{2}+12 t+13\right) .\left(12 t^{2}+64 t+77\right)+\left(13 t^{2}+36 t+23\right)=\left(6 t^{2}+28 t+32\right)^{2}$,
$\left(3 t^{2}+20 t+26\right) .\left(12 t^{2}+64 t+77\right)+\left(13 t^{2}+36 t+23\right)=\left(6 t^{2}+36 t+45\right)^{2}$.
Theorem 10.3. The quadruple $\left\{1,12 t^{2}+144 t+433,14 t^{2}+168 t+484,52 t^{2}+\right.$ $624 t+1833\}$ has property $D\left(t^{4}+24 t^{3}+182 t^{2}+456 t+192\right), t \geq 0$.
Theorem 10.4. The quadruple $\left\{1, \frac{t^{3}+11 t}{3}+6, \frac{4 t^{3}+44 t}{3}+17, \frac{10 t^{3}+110 t}{3}+45\right\}$ has property $D\left(\frac{t^{6}}{4}+\frac{11 t^{4}}{2}+\frac{14 t^{3}}{3}+\frac{121 t^{2}}{4}+\frac{154 t}{3}+19\right), t \geq 0$.
This generalizes a result in [18] concerning the quadruple $\{1,6,17,45\}$ with property D(19).
Theorem 10.5. The quadruple $\left\{2 t+3,19 t^{2}+48 t+30,57 t^{2}+150 t+99,152 t^{2}+\right.$ $394 t+255\}$ has property $D\left(361 t^{4}+1862 t^{3}+3601 t^{2}+3096 t+999\right), t \geq 0$.
Theorem 10.6. The quadruple $\left\{2 t+7,3 t^{2}+12 t+10,9 t^{2}+42 t+51,24 t^{2}+106 t+115\right\}$ has property $D\left(9 t^{4}+78 t^{3}+253 t^{2}+372 t+219\right), t \geq 0$.
Theorem 10.7. The quadruple $\left\{2 t+15, t^{2}+6 t+3,3 t^{2}+24 t+54,8 t^{2}+58 t+99\right\}$ has property $D\left(t^{4}+14 t^{3}+73 t^{2}+192 t+279\right), t \geq 0$.
Theorem 10.8. The quadruple $\left\{8 t+4,216 t^{2}+128 t+18,432 t^{2}+272 t+44,1296 t^{2}+\right.$ $792 t+120\}$ has property $D\left(11664 t^{4}+12960 t^{3}+5112 t^{2}+840 t+49\right), t \geq 0$.
Theorem 10.9. The quadruple $\left\{8 t+20,32 t^{2}+72 t+34,64 t^{2}+160 t+108,192 t^{2}+\right.$ $456 t+264\}$ has property $D\left(256 t^{4}+1024 t^{3}+1248 t^{2}+448 t+49\right), t \geq 0$.

11. Conclusion

In this paper we have provided several quadruples with property $D(k)$ in terms of polynomials which serve as a generalization of various specific cases. We have obtained expressions for various polynomials providing quadruples of regular and irregular types. These polynomials are expected to provide a basis for research workers in future to identify various interesting attributes of numbers with property D (k).

References

[1] Arkin, J., Hoggatt, V.E. and Strauss, E.G., On Euler's solution of a problem of Diophantus, Fibonacci Quarterly, 17 (1979), 333-339.
[2] Baker, A. and Davenport, H., The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quarterly Journal of Mathematics Oxford Ser., 20(2) (1969), 129-137.
[3] Dujella, A., Some polynomial formulas for Diophantine quadruples, Grazer Mathematische Berichte, 328 (1996), 25-30.
[4] Dujella, A., Complete solution of a family of simultaneous Pellian equations, Acta Mathematica et Informatica Universitatis Ostraviensis, 6 (1998), 59 67.
[5] Dujella, A., Some estimates of the number of Diophantine quadruples, Publicationes Mathematicae Debrecen, 53 (1998), 177-189.
[6] Dujella, A. and Fuchs, C., A polynomial variant of a problem of Diophantus and Euler, Rocky Mountain Journal of Mathematics, 33 (2003), 797-811.
[7] Dujella, A., Fuchs, C. and Tichy, R.F., Diophantine m-tuples for linear polynomials, Periodica Mathematica Hungarica, 45 (2002), 21-33.
[8] Dujella, A. and Jurasic, A. Some Diophantine triples and quadruples for quadratic polynomials, Journal of Combinatorial Number Theory, 3(2) (2011), 123-141.
[9] Dujella, A. and Ramasamy, A.M.S., Fibonacci numbers and sets with the property $\mathrm{D}(4)$, Bulletin of Belgian Mathematical Society Simon Stevin, 12 (2005), $401-412$.
[10] Filipin, A. and Fujita, Y., Any polynomial D(4)-quadruple is regular, Mathematical Communications, 13 (2008), 45-55.
[11] Gardner, M., Mathematical games, Scientific American, 216(4) (1967), 119.
[12] Jones, B.W., A variation on a problem of Davenport and Diophantus, Quarterly Journal of Mathematics Oxford, 27(2) (1976), 349-353.
[13] Jones, B.W., A second variation on a problem of Diophantus and Davenport, Fibonacci Quarterly 16 (1978), 155-165.
[14] Kanagasabapathy, P. and Ponnudurai, T., The simultaneous Diophantine equations $y^{2}-3 x^{2}=-2$ and $z^{2}-8 x^{2}=-7$, Quarterly Journal of Mathematics Oxford Ser., 26(2) (1975), 275-278.
[15] Mohanty, S.P. and Ramasamy, A.M.S., The simultaneous Diophantine equations $5 y^{2}-20=x^{2}$ and $2 y^{2}+1=z^{2}$, Journal of Number Theory, 18(3) (1984), 356-359.
[16] Mohanty, S.P. and Ramasamy, A.M.S., On $P_{r, k}$ sequences, Fibonacci Quarterly, 23(1) (1985), 36-44.
[17] Mohanty, S.P. and Ramasamy, A.M.S., The characteristic number of two simultaneous Pell's equations and its application, Simon Stevin, 59(2) (1985), 203-214.
[18] Ramasamy, A.M.S., A remarkable sequence, Banyan Mathematical Journal, 2(1995), $69-76$.
[19] Ramasamy, A.M.S., Sets, sequences and polynomials linked with a question of Diophantus, Bulletin of Kerala Mathematics Association, 4(1) (2007), 109 - 125.
[20] Ramasamy, A.M.S. and Saraswathy, D., A non-extendable Diophantine quadruple arising from a triple of Lucas numbers, Involve, 5(3) (2012), 257-271.
[21] Ramasamy, A.M.S., Contributions of Srinivasa Ramanujan to number theory, Bulletin of Kerala Mathematics Association, 13(2) (2016), 259-265.
[22] Ramasamy, A.M.S., Diophantine quadruples and near-Diophantine quintuples from $P_{3, k}$ sequences, Asian European Journal of Mathematics, 10(1) (2017), 1750010 (13 pages) DOI: http://dx.doi.org /10.1142 /S179355 711 7500103.
[23] Ramasamy, A.M.S., Diophantine quadruples of numbers whose elements are in proportion, Tamkang Journal of Mathematics, 48(3) (2017) (9 pages) DOI: 10.5556/j.tkjm.48.2017.1972.
[24] Roberts, J., Lure of the Integers, The Mathematical Association of America, Washington D.C., (1992), 31-35 .

