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Abstract: A general model in the elliptically contoured family of functions and
under the idea of a pathway model is introduced here. Through a pathway pa-
rameter b one will be able to go from one family of functions to two other families
of functions, thus three different families of functions. A standard form of the
model belongs to spherically symmetric family of functions. As particular cases
and applications, it is shown that some real multivariate extensions of the basic
models of generalized type-1 beta, type-2 beta, gamma, chisquare, Student-t, F,
Cauchy, Maxwell-Boltzmann, Raleigh, Gaussian and related densities are available
from the general model introduced. Reliability analysis concepts are introduced for
the multivariate cases and some properties of the general model are also discussed.
Then the model is extended to the complex multivariate case. In the complex case
also, various connections and applications are pointed out.
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1. Introduction
In this paper the following general notation will be used. Real scalar vari-

ables, mathematical as well as random, will be denoted by small letters x, y, ....
Vector /matrix variables, mathematical and random, will be denoted by capital
letters X, Y, .... Constant scalars will be denoted by a, b, ... and constant matrices
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by A,B, .... Variables in the complex domain will be denoted with a tilde such
as x̃, ỹ, X̃, Ỹ , .... Constants in the complex domain will be written without the
tilde. Let X be a p × 1 vector of real scalar variables x1, ..., xp, X

′ = (x1, ..., xp),
a prime denoting the transpose. Let f(X) be a real-valued scalar function of X
and integrable so that

∫
X
f(X)dX < ∞ where dX = dx1 ∧ ... ∧ dxp = dX ′ is

the wedge product of all differentials in X or X ′. Let A be a p × p real positive
definite constant matrix. Then X ′AX = c > 0 describes an ellipsoid, centered
at the origin X = O. If xj’s, j = 1, ..., p are real scalar random variables and if
the covariance matrix in X is Σ > O, that is, Cov(X) = Σ > O (positive defi-
nite), then a generalized distance of X from the origin or a generalized norm in

X is (Σ−
1
2X)′(Σ−

1
2X) = X ′Σ−1X, and X ′Σ−1X = c > 0 is known as the ellipsoid

of concentration for f(X) if f(X) is a multivariate statistical density. Consider
the following pathway form of an elliptically contoured multivariate or p-variate
density:

f1(X) = c1(X
′AX)γ[1− ab(X ′AX)δ]

η
b , a > 0, η > 0, δ > 0, b 6= 0 (1.1)

for 1 − ab(X ′AX)δ > 0, and zero elsewhere. For b > 0, (1.1) is in the form of a
generalized type-1 beta density for the positive definite quadratic form X ′AX. If
b in (1.1) is replaced by −b, with b > 0 then the model in (1.1) switches into the
model

f2(X) = c2(X
′AX)γ[1 + ab(X ′AX)δ]−

η
b , a > 0, η > 0, δ > 0, b > 0. (1.2)

For b→ 0 the models in (1.1) and (1.2) go to the model

f3(X) = c3(X
′AX)γe−aη(X

′AX)δ , a > 0, η > 0, δ > 0. (1.3)

Thus, one can go from (1.1) to (1.2) and (1.3) or from (1.2) to (1.1) and (1.3) or
all the three families of functions are available through the parameter b. Hence b
will be called the pathway parameter here. The model in (1.1) and its pathway
forms (1.2),(1.3) can act as a multivariate mathematical model or as a statistical
model. If fj(X), j = 1, 2, 3 are statistical densities then cj, j = 1, 2, 3 are the
normalizing constants there. In a physical situation, if (1.3) is the stable or idealized
situation then the unstable neighborhoods are described by (1.1) and (1.2) and
the transitional stages are also described by the pathway parameter b. Pathway
idea for the general matrix-variate case may be seen from Mathai (2005). Let

Y = A
1
2X where A

1
2 is the real positive definite square root of the real positive

definite constant matrix A. Then dY = |A| 12 dX where |(·)| = det(·) denotes the
determinant of (·) and the connection between the wedge product of differentials
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dX and dY or the Jacobian in the transformation Y = A
1
2X may be seen from

Mathai (1997). Under the above transformation the models in (1.1) to (1.3) change
to the following:

f4(Y ) = c4(y
2
1 + ...+ y2p)

γ[1− ab(y21 + ...+ y2p)
δ]
η
b (1.4)

f5(Y ) = c5(y
2
1 + ...+ y2p)

γ[1 + ab(y21 + ...+ y2p)
δ]−

η
b (1.5)

f6(Y ) = c6(y
2
1 + ...+ y2p)

γe−aη(y
2
1+...+y

2
p)
δ

(1.6)

for a > 0, b > 0, η > 0, δ > 0, in (1.4) 1 − ab(y21 + ... + y2p)
δ > 0, and cj|A|−

1
2 =

cj+3, j = 1, 3. How do we evaluate c5 to c6 when f4(Y ) to f6(Y ) are densities?
For example, if f4(Y ) is a density then

∫
Y
f4(Y )dY = 1. But f4(Y ) contains the

quanity Y ′Y = y21 + ... + y2p = s or it is a spherically symmetric distribution,
invariant under orthonormal transformations. We can go from the wedge product
dY to ds, where Y is p × 1 whereas s is a scalar quantity. This can be achieved
either through a general polar coordinate transformation or through Jacobians of
matrix transformations. To this end, we will take a result form Mathai (1997),
which will be stated as a lemma here.

Lemma 1.1. Let Z = (zij) be a p×n, n ≥ p matrix of distinct real scalar variables
zij’s and of full rank p. Let S = ZZ ′ so that S = (sij) is p×p and positive definite,
S = S ′ > O and of p(p+1)/2 distinct real variables sij’s. In Z there are pn distinct
real variables. Then a connection between dZ and dS is available after integrating
out over the Stiefel manifold and the connection is the following:

dZ =
π
np
2

Γp(
n
2
)
|S|

n
2
− p+1

2 dS (1.7)

where Γp(α) is the real matrix-variate gamma, given by,

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α− 1

2
)...Γ(α− p− 1

2
),<(α) >

p− 1

2
(1.8)

where <(·) means the real part of (·), and |S| is the determinant of S.

Now, apply the result (1.7) to the case s = Y ′Y by taking n as p and p as 1.
Then

dY =
π
p
2

Γ(p
2
)
s
p
2
−1ds. (1.9)

Then
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1 =

∫
Y

f4(Y )dY = c4
π
p
2

Γ(p
2
)

∫ ∞
s=0

sγ+
p
2
−1[1− absδ]

η
b ds (i)

= c4
π
p
2

Γ(p
2
)

1

δ
(ab)−

1
δ
(γ+ p

2
)Γ(1

δ
(γ + p

2
))Γ(η

b
+ 1)

Γ(1
δ
(γ + p

2
) + η

b
+ 1)

,<(γ) > −p
2
. (ii)

The integral in (i) is evaluated by using a type-1 beta integral. Hence for δ >
0, η > 0, a > 0

c1 = |A|
1
2 δ

Γ(p
2
)

π
p
2

(ab)
1
δ
(γ+ p

2
)

×
Γ(1

δ
(γ + p

2
) + η

b
+ 1)

Γ(1
δ
(γ + p

2
))Γ(η

b
+ 1)

,<(γ) > −p
2
. (1.10)

Evaluating c2 by using a type-2 beta integral and c3 by using a gamma integral we
have

c2 = |A|
1
2 δ

Γ(p
2
)

π
p
2

(ab)
1
δ
(γ+ p

2
) Γ(η

b
)

Γ(1
δ
(γ + p

2
))Γ(η

b
− 1

δ
(γ + p

2
))

(1.11)

for δ > 0, a > 0, η > 0,<(γ) > −p
2
, η
b
− 1

δ
(<(γ) + p

2
) > 0, and

c3 = |A|
1
2 δ

Γ(p
2
)

π
p
2

(aη)
1
δ
(γ+ p

2
) 1

Γ(1
δ
(γ + p

2
))
,<(γ) > −p

2
. (1.12)

2. Some Special Cases and Connection to Other Areas

Multivariate type-1,type-2, gamma and other models: ForX ′AX = Y ′Y =
y21+...+y2p, (1.4),(1.5) and (1.6) give a real multivariate version of the type-1,type-2,
and gamma densities as given in Mathai and Princy (2017a). This also includes real
multivariate versions of Gaussian for γ = 0, δ = 1; Student-t, Cauchy, F-density,
gamma, exponential, chisquare, Weibull for γ = δ−1, Maxwell-Boltzmann density
in physical sciences for δ = 1, γ = 1, Raleigh density for δ = 1, γ = 1

2
, stellar and

solar models (Mathai and Haubold, 1988). Exponentiation in type-2 beta form will
produce logistic, q-logistic (Mathai and Provost, 2006), Fermi-Dirac density and
related densities.

Random points in geometrical probability: The models (1.4)-(1.6) for γ =
0, δ = 1 are respectively the isotropic type-1 beta, type-2 beta and gamma dis-
tributed random points considered by Miles (1971) and Ruben (1979). They deal
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with random volumes of parallelotopes generated by such statistically indepen-
dently distributed isotropic random points. Ruben (1979) and Mathai (1982) also
deal with asymptotic normality of such random volumes. Models in (1.1)-(1.3)
describe more general situations of random points. General situations of random
volumes generated by random points, which need not be isotropic or statistically
independent, are considered in Mathai (1999a,b).

Multivariate reliability models: A popular reliability model in the real scalar
case is a type-1 beta form fx(x) = a1βx

α−1(1− a1x)β−1 for α = 1. A multivariate
form of this model for α = 1 is of the form

fX(X) = c[1− a(X ′AX)]β−1, X ′ = (x1, ..., xp), a > 0.

When extending real scalar variable case to the multivariate case, probability in-
equalities break down. Let X and T be p × 1 vectors, X ′ = (x1, ..., xp), T

′ =
(t1, ..., tp). If X is a vector random variable and T is a fixed vector then what is
the meaning of the probability statement Pr{X ≥ T}? If X ≥ T is interpreted as
xj ≥ tj, j = 1, ..., p, that is, element-wise bigger or equal, then further operations
on this inequality is limited. For a q × p matrix B, X ≥ T element-wise need not
imply that BX ≥ BT . Even if B is p × p and real positive definite still X ≥ T
element-wise need not imply BX ≥ BT . Also, note that X ≥ T element-wise
need not imply X ′X ≥ T ′T . Hence reliability concepts cannot be computed in the
multivariate case if X ≥ T is interpreted as element-wise bigger or equal when X
and T are vectors or general matrices of the same orders. In order to overcome
this difficulty, Mathai and Princy (2017b) interpreted X ≥ T to mean a norm of
X is bigger or equal to the corresponding norm in T or ‖X‖ ≥ ‖T‖. When X is
a real vector random variable then in order to take care of the covariance struc-
ture in X, a generalized norm can be taken. Then X ≥ T will be interpreted as
X ′Σ−1X ≥ T ′Σ−1T where Σ = Cov(X). In general one may take a real positive
definite matrix A > O and take X ≥ T to mean X ′AX ≥ T ′AT for a specific
A > O relevant to the problem under consideration. Consider the model in (1.1)
with b = 1, η = β − 1 so that (1.1) becomes

f1(X) = c1(X
′AX)γ[1− a(X ′AX)δ]β−1, 1− a(X ′AX)δ > 0, δ > 0, β > 0, a > 0.

(2.1)
In order to compute the survival function Pr{X ≥ T} we may compute Pr{X ′AX ≥
T ′AT}. For the model in (2.1)

Pr{X ′AX ≥ T ′AT} = |A|−
1
2

∫
Y ′Y≥d

c1(Y
′Y )γ[1− a(Y ′Y )δ]β−1dY
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where Y = A
1
2X,A

1
2T = U,U ′U = d and c1 is given in (1.10). Let s = Y ′Y . Then

from Lemma 1.1,

dY =
π
p
2

Γ(p
2
)
s
p
2
−1ds.

Then

Pr{X ≥ T} = Pr{X ′AX ≥ T ′AT}

= |A|−
1
2
π
p
2

Γ(p
2
)
c1

∫
s≥d

sγ+
p
2
−1[1− asδ]β−1ds. (i)

Let z = asδ. Then

Pr{X ≥ T} = c1|A|−
1
2
π
p
2

Γ(p
2
)

a−
1
δ
(γ+ p

2
)

δ

∫
z≥adδ

z
1
δ
(γ+ p

2
)−1[1− z]β−1ds.

Substituting for c1 we have the following for b = 1, η = β − 1

Pr{X ≥ T} =
Γ(1

δ
(γ + p

2
) + β)

Γ(1
δ
(γ + p

2
))Γ(β)

∫
z≥adδ

z
1
δ
(γ+ p

2
)−1[1− z]β−1dz. (ii)

For γ = −p
2

+ δ the integral in (ii) is available as

Pr{X ≥ T} =
Γ(1

δ
(γ + p

2
) + β)

Γ(1
δ
(γ + p

2
))Γ(β)

1

β
(1− adδ)β

=
Γ(1

δ
(γ + p

2
) + β)

Γ(1
δ
(γ + p

2
))Γ(β)

1

β
[1− a(T ′AT )δ]β (2.2)

for <(γ) > −p
2
, δ > 0, β > 0. From here one can derive all other reliability concepts

for X ≥ T interpreted as X ′AX ≥ T ′AT . If γ 6= −p
2

+ δ, or in the general case, we
may proceed as follows:

Pr{X ≥ T} =
Γ(1

δ
(γ + p

2
) + β)

Γ(1
δ
(γ + p

2
))Γ(β)

∫
z≥adδ

z
1
δ
(γ+ p

2
)−1(1− z)β−1dz. (iii)

Expanding (1 − z)β−1 = (1 − z)−(1−β) by using a binomial expansion we have the
following:

(1− z)−(1−β) =
∞∑
r=0

(1− β)r
r!

zr (iv)
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where, for example,

(a)r = a(a+ 1)...(a+ r − 1), (a)0 = 1, a 6= 0 (v)

is the Pochhammer symbol. Then the integral part reduces to the following:∫ 1

z=adδ
z

1
δ
(γ+ p

2
)+r−1dz =

[
z

1
δ
(γ+ p

2
)+r

1
δ
(γ + p

2
) + r

]1
adδ

=
1

1
δ
(γ + p

2
) + r

{1− (adδ)
1
δ
(γ+ p

2
)+r}

=
1

1
δ
(γ + p

2
)

[1
δ
(γ + p

2
)]r

[1
δ
(γ + p

2
) + 1]r

{1− [a(T ′AT )δ]
1
δ
(γ+ p

2
)[a(T ′AT )δ]r}. (vi)

Pr{X ≥ T} =
Γ(1

δ
(γ + p

2
) + β)

Γ(1
δ
(γ + p

2
) + 1)Γ(β)

{2F1(1− β,
1

δ
(γ +

p

2
);

1

δ
(γ +

p

2
) + 1; 1)

− [a(T ′AT )δ]
1
δ
(γ+ p

2
)
2F1(1− β,

1

δ
(γ +

p

2
);

1

δ
(γ +

p

2
) + 1; a(T ′AT )δ)}

for a(T ′AT )δ < 1. But the 2F1 with argument 1 can be opened up by using the
formula

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(2.3)

whenever the gammas are defined. Therefore

2F1(1− β,
1

δ
(γ +

p

2
);

1

δ
(γ +

p

2
) + 1; 1) =

Γ(1
δ
(γ + p

2
) + 1)Γ(β)

Γ(1
δ
(γ + p

2
) + β)

.

Then

Pr{X ≥ T} = 1−
Γ(1

δ
(γ + p

2
) + β)

Γ(1
δ
(γ + p

2
) + 1)Γ(β)

[a(T ′AT )δ]
1
δ
(γ+ p

2
)

× 2F1(1− β,
1

δ
(γ +

p

2
);

1

δ
(γ +

p

2
) + 1; a(T ′AT )δ). (2.4)

Observe that 0 < a(T ′AT )δ < 1 from the starting model itself.

General Maxwell-Boltzmann and Raleigh Densities: From (1.3) we have a
generalization of the Maxwell-Boltzmann and Raleigh densities for a multivariate
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case. For the real scalar variable case, the Maxwell-Boltzmann velocity density and
Raleigh density are the following, denoted by f7(x) and f8(x) respectively.

f7(x) = a1x
2e−a2x

2

, a1 > 0, a2 > 0, x ≥ 0 (2.5)

f8(x) = b1xe−b2x
2

, b1 > 0, b2 > 0, x ≥ 0. (2.6)

A multivariate version for (2.5) and (2.6), in the pattern of (1.3), are the following,
denoted by f9(X) and f10(X):

f9(X) = a3(X
′AX)e−a4(X

′AX), X ′ = (x1, ..., xp), a3 > 0, a4 > 0 (2.7)

f10(X) = b3(X
′AX)

1
2 e−b4(X

′AX), b3 > 0, b4 > 0 (2.8)

for −∞ < xj < ∞, j = 1, ..., p,X ′AX > 0. Then the standard forms are given by
the following:

f11(Y ) = a3|A|−
1
2 (y21 + ...+ y2p)e

−a4(y21+...+y2p) (2.9)

f12(Y ) = b3|A|−
1
2 (y21 + ...+ y2p)

1
2 e−b4(y

2
1+...+y

2
p) (2.10)

for −∞ < yj <∞, j = 1, ..., p. Much more general forms of (2.7) and (2.8) are the
density in (1.3) for general parameters.

3. Some Properties

What is the h-th moment of X ′AX in (1.1) for a general h? This can be
evaluated by replacing γ by γ + h and then taking the ratio of the normalizing
constant c1 in (1.10) because when E[X ′AX]h is taken, the only change is γ is
replaced by γ + h, where E(·) denotes the expected value of (·). Then

E[X ′AX]h =
Γ(1

δ
(γ + h+ p

2
))

Γ(1
δ
(γ + p

2
))

Γ(1
δ
(γ + p

2
) + η

b
+ 1)

Γ(1
δ
(γ + h+ p

2
) + η

b
+ 1)

1

(ab)
h
δ

(3.1)

for <(γ + h) > −p
2
. That is,

E[(ab)
1
δ (X ′AX)]h =

Γ(1
δ
(γ + h+ p

2
))

Γ(1
δ
(γ + p

2
))

Γ(1
δ
(γ + p

2
) + η

b
+ 1)

Γ(1
δ
(γ + h+ p

2
+ η

b
+ 1)

. (3.2)

For h = s−1, where s is a complex variable, E(X ′AX)h gives the Mellin transform
of the density of X ′AX. Then from (3.2) one can note that for δ = 1, (ab)(X ′AX)
is real scalar type-1 beta distributed with the parameters (γ + p

2
, η
b

+ 1). For a
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general case if u1 = (ab)
1
δ (X ′AX), δ > 0 and if the density of u1 is denoted by

fu1(u1), then for i =
√

(−1)

fu1(u1) =
Γ(1

δ
(γ + p

2
) + η

b
+ 1)

Γ(1
δ
(γ + p

2
))

1

2πi

∫ c+i∞

c−i∞

Γ( s
δ

+ 1
δ
(γ − 1 + p

2
))

Γ( s
δ

+ 1
δ
(γ − 1 + p

2
) + η

b
+ 1)

u−s1 ds

=
Γ(1

δ
(γ + p

2
) + η

b
+ 1)

Γ(1
δ
(γ + p

2
))

×H1,0
1,1

[
u1
∣∣
( 1
δ
(γ−1+ p

2
), 1
δ
),( 1

δ
(γ−1+ p

2
)+ η

b
+1, 1

δ
)

]
(3.3)

for 0 ≤ u1 ≤ 1 where the c in the contour is such that c > −(γ − 1 + p
2
) and H(·)

is the H-function. For the theory and properties of the H-function, see Mathai et
al. (2010). From the normalizing constant (1.11), for b < 0 case, the h-th moment

of u2 = (ab)
1
δX ′AX, is available as the following:

E[(ab)
1
δ (X ′AX)]h =

Γ(1
δ
(γ + h+ p

2
))

Γ(1
δ
(γ + p

2
))

Γ(η
b
− 1

δ
(γ + h+ p

2
))

Γ(η
b
− 1

δ
(γ + p

2
))

(3.4)

for <(γ+h) > −p
2
,<(γ+h) < −p

2
+ δη

b
, δ > 0, b > 0, η > 0. For δ = 1, the structure

in (3.4) is that of the h-th moment of a real scalar type-2 beta random variable
with the parameters (γ + p

2
, η
b
− (γ + p

2
) for real b > 0, η > 0. For a general δ, the

model in (3.4) is a H-function. Hence if the density of u2 is denoted as fu2(u2),
then

fu2(u2) =
1

Γ(1
δ
(γ + p

2
))Γ(η

b
− 1

δ
(γ + p

2
))

×H1,1
1,1

[
u2
∣∣
( 1
δ
(γ−1+ p

2
), 1
δ
),(1− η

b
+ 1
δ
(γ−1+ p

2
), 1
δ
)

]
(3.5)

for 0 ≤ u2 < ∞ where the c in the contour is such that −<(γ + p
2
) < c <

−<(γ)− p
2

+ ηδ
b
, δ > 0, b > 0, η > 0. Let u3 = (aη)

1
δX ′AX. Then from (1.12)

E[uh3 ] = E[(aη)
1
δ (X ′AX)]h =

Γ(1
δ
(γ + h+ p

2
))

Γ(1
δ
(γ + p

2
))

,<(γ + h) > −p
2
. (3.6)

Hence for a general δ, u3 is a real scalar generalized gamma random variable with
the parameters (γ + p

2
, 1, δ) with the exponent δ or the density of u3, denoted by

fu3(u3), is the following:

fu3(u3) =
δ

Γ(1
δ
(γ + p

2
))
u
γ+ p

2
−1

3 e−u
δ
3 , 0 ≤ u3 <∞. (3.7)
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Observe that (3.7) can create a density for δ < 0 also.

If the p×1 real vector X has the density in (1.1) or (1.2) or (1.3) what can we say
about the density of a positive definite quadratic form u = X ′BX,B > O,B 6= A?.
Let A

1
2X = Y . Then the densities in (1.1),(1.2) and (1.3) become spherically sym-

metric in Y ′Y and X ′BX becomes Y ′A−
1
2BA−

1
2Y . Since A−

1
2BA−

1
2 is symmetric,

there exists an orthonormal matrix Q,Q′Q = I,QQ′ = I,Q′A−
1
2BA−

1
2Q = D =

diag(λ1, ..., λp), where λ1, ..., λp are the eigenvalues of A−
1
2BA−

1
2 which are real and

positive. Then if Y = QZ then u = X ′BX = λ1z
2
1 + ...+ λpz

2
p and the densities in

(1.1) to (1.3) are spherically symmetric in Z ′Z. Since X ′BX is a linear function
of z2j ’s, it will be difficult to evaluate the density of u = X ′BX when B 6= kA
where k is a scalar constant. Even if b→ 0 and δ = 1 then u is a linear function of
chisquare variables but still the density of u is complicated, see for example Mathai
and Provost (1992).

4. Model through Entropy Optimization

In physical sciences, usually a model for a physical situation is derived by op-
timizing an appropriate measure of entropy or a measure of uncertainty in the
corresponding probability scheme. Discussion of entropy started with Shannon en-
tropy for a real scalar variable. Let x be a real scalar continuous variable with
density function f(x) ≥ 0,

∫
x
f(x)dx = 1. Then Shannon entropy is given by the

formula

S(f) = −c
∫
x

f(x) ln f(x) dx (4.1)

or it is the expected value of ln f(x) where c is a positive constant. Several types of
generalizations of the basic Shannon entropy are available in the literature, details
of these generalizations and their characterizations may be seen from Mathai and
Rathie (1975). A variant of one of the generalized entropies appearing in Mathai
and Rathie (1975) is used by Tsallis in (1988) to come up with Tsallis’ statistics and
developed the area of non-extensive statistical mechanics. Superstatistics of Beck
and Cohen (2003) also belongs to this area. Several generalizations were considered
by this author and his coworkers in recent years. Here we consider a new entropy
measure which when optimized will provide the model introduced in (1.1)-(1.3).
Let X be a vector or a general m× n matrix and let f(X) be a real-valued scalar
function of X. Let f(X) be such that f(X) ≥ 0 for all X and

∫
X
f(X)dX = 1

where dX stands for the wedge product of all differentials dxij’s in X = (xij). Then
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f(X) is a statistical density. Consider the following generalized entropy measure

Mb(f) =
1−

∫
X

[f(X)]1+
b
ηdX

b
, b 6= 0, η > 0. (4.2)

Observe that the numerator in Mb(f) is nothing but one minus the expected value

of [f(X)]
b
η or 1− E[f(X)]

b
η , η > 0. Then when b→ 0,

Mb(f)→ −1

η

∫
X

f(X) ln f(X)dX. (4.3)

This is of the form of Shannon entropy for the density f(X). Let us consider
the generalized entropy Mb(f) in (4.2) for a p × 1 real vector random variable
with density function f(X) or we are considering the special case of (4.2) for
m = 1, n = p. Consider the optimization of (4.2) in the p× 1 vector variable case
under the following restrictions, which are certain moments of the real positive
definite quadratic form X ′AX,A > O:

E[(X ′AX)δ+
γη
b ] = fixed over all functional f for δ > 0, η > 0, b 6= 0 (i)

E[(X ′AX)
γη
b ] = fixed over all functional f for η > 0, b 6= 0 (ii)

where γ is a fixed parameter. Observe that the restrictions (i) and (ii) say that
two moments of the quadratic form X ′AX,A > O are given quantities over all
functional f . When A = Σ−1,Σ = Cov(X) one has the ellipsoid of concentration
of f(X) in the quadratic form X ′AX and hence the restrictions may be taken as the
behavior of the ellipsoid of concentration in the density f(X). Then what is that
f for which Mb(f) is optimized over all possible density f? If we apply calculus of
variation in deriving f then the Euler equation in this case is ∂g

∂f
= 0 where

g = f 1+ b
η − λ1(X ′AX)

γη
b f − λ2(X ′AX)δ+

γη
b f (iii)

where λ1 and λ2 are Lagrangian multipliers. Then

∂g

∂f
= 0⇒ (1 +

b

η
)f

b
η = λ1(X

′AX)
γη
b [1− λ2

λ1
(X ′AX)δ]. (iv)

Then f can be written as the following:

f = λ3(X
′AX)γ[1− ab(X ′AX)δ]

η
b (4.4)

for b 6= 0, λ3 is a constant and λ2
λ1

is taken as ab where a > 0 is a scalar constant.
The model in (4.4) is nothing but our model in (1.1) with λ3 = c1. Thus, our
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model (1.1), from where (1.2) and (1.3) are available, is obtained by optimizing the
entropy Mb(f) of (4.2), which is a generalized Shannon entropy for a real matrix-
variate case of the density. Note that the measure in (4.2) can be the same in
the complex domain also. In this case, denoting the complex matrix with a tilde,
X̃ will be a m × n matrix in the complex domain but f̃(X̃) will be a real-valued
scalar function of X̃ such that f̃(X̃) ≥ 0 for all X̃ and

∫
X̃
f̃(X̃)dX̃ = 1 where

dX̃ = dX1∧dX2, X̃ = X1 + iX2, i =
√

(−1), X1, X2 are real m×n matrices. Then
the entropy measure corresponding to (4.2) in the complex case will be denoted
by M̃b(f̃). Then optimizing M̃b(f̃) under the restrictions (i) and (ii) by replacing
X ′AX by X̃∗AX̃ we obtain the model in the complex domain corresponding to
(1.1) to (1.3), which will be discussed in the next section, where X̃∗ denotes the
conjugate transpose of X̃ and A = A∗ > O is a Hermitian positive definite matrix.

5. The Proposed Model in the Complex Domain

Let X̃ be a p × 1 vector in the complex domain or X̃ ′ = (x̃1, ..., x̃p), x̃j =

xj1+ixj2, i =
√

(−1), xj1, xj2 real scalar variables. Let the conjugate transpose of X̃

be X̃∗ = (x̃∗1, ..., x̃
∗
p), x̃

∗
j = xj1 − ixj2. Consider the Hermitian form X̃∗AX̃,A = A∗

where A∗ is the conjugate transpose of the p× p constant matrix A. Consider the
model

f̃1(X̃) = c̃1(X̃
∗AX̃)γ[1− ab(X̃∗AX̃)δ]

η
b , η > 0, a > 0, A = A∗ > O, b 6= 0 (5.1)

for 1 − ab(X̃∗AX̃)δ > 0, δ > 0 and b > 0 where a > 0, η > 0, b > 0, δ > 0, γ
are scalar parameters. If f̃1(X̃) is treated as a statistical density then c̃1 is the
normalizing constant there. For b < 0 the model in (5.1) switches into the model

f̃2(X̃) = c̃2(X̃
∗AX̃)γ[1 + ab(X̃∗AX̃)δ]−

η
b , b > 0, η > 0, a > 0, δ > 0. (5.2)

When b→ 0, (5.1) and (5.2) go to the model

f̃3(X̃) = c̃3(X̃
∗AX̃)γe−aη(X̃

∗AX̃)δ , a > 0, η > 0, δ > 0. (5.3)

If f̃j(X̃), j = 1, 2, 3 are statistical densities then the normalizing constants c̃j, j =

1, 2, 3 can be evaluated by using the following procedure: Let A
1
2 be the Hermitian

positive definite square root of the Hermitian positive definite matrix A. Consider
the transformation Ỹ = A

1
2 X̃ then from Mathai (1997)

dỸ = |det(A
1
2 )|2dX̃ = |det(A)|dX̃ (5.4)
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where |det(·)| is the absolute value of the determinant of (·). Then the models in
(5.1)-(5.3) reduce to the following:

f̃4(Ỹ ) = c̃1|det(A)|−1[Ỹ ∗Ỹ ]γ[1− ab(Ỹ ∗Ỹ )δ]
η
b , 1− ab(Ỹ ∗Ỹ )δ > 0; (5.5)

f̃5(Ỹ ) = c̃2|det(A)|−1[Ỹ ∗Ỹ ]γ[1 + ab(Ỹ ∗Ỹ )δ]−
η
b ; (5.6)

f̃6(Ỹ ) = c̃3|det(A)|−1[Ỹ ∗Ỹ ]γe−aη(Ỹ
∗Ỹ ) (5.7)

where
Ỹ ∗Ỹ = |ỹ1|2 + ...+ |ỹp|2 = (y211 + y212) + ...+ (y2p1 + y2p2)

where the yij’s are real or ỹj = yj1 + iyj2, i =
√

(−1), yj1, yj2 real. In order to

integrate out f̃j(Ỹ ), j = 4, 5, 6 we will try to write dỸ in terms of ds̃ where s̃ = Ỹ ∗Ỹ
and observe that s̃ = s is real. To this end, we will use a result from Mathai (1997)
which will be stated here as a lemma.

Lemma 5.1. Let Z̃ be a p×n, n ≥ p matrix in the complex domain of full rank p.
Let S̃ = Z̃∗Z̃ which is a p× p matrix and Hermitian positive definite. Let dZ̃ and
dS̃ be the wedge product of differentials in the elements of Z̃ and S̃ respectively,
where there are pn distinct complex elements in Z̃ and p(p+ 1)/2 distinct elements
in S̃. Then, after integrating out over the Stiefel manifold

dZ̃ =
πnp

Γ̃p(n)
|det(S̃)|n−pdS̃ (5.8)

where, for example, Γ̃p(α) is the complex matrix-variate gamma given by

Γ̃p(α) = π
p(p−1)

2 Γ(α)Γ(α− 1)...Γ(α− p+ 1),<(α) > p− 1. (5.9)

With the help of (5.8) we can establish many results in the complex case. If
(5.4) is a density then

∫
Ỹ
f̃4(Ỹ )dỸ = 1. Then

1 = c̃1|det(A)|−1
∫
Ỹ

[Ỹ ∗Ỹ ]γ[1− ab(Ỹ ∗Ỹ )δ]
η
b dỸ (i)

= c̃1|det(A)|−1 πp

Γ(p)

∫
s

sγ+p−1[1− absδ]
η
b ds. (ii)

Observe that s is real and positive and Γ̃(p) = Γ(p). Now, integrating out (ii) with
the help of a real type-1 beta integral we have

1 = c̃1|det(A)|−1 πp

Γ(p)

1

δ
(ab)−

1
δ
(γ+p)Γ(1

δ
(γ + p))Γ(η

b
+ 1)

Γ(1
δ
(γ + p) + η

b
+ 1)

. (5.10)
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Therefore

c̃1 = |det(A)|Γ(p)

πp
δ(ab)

1
δ
(γ+p) Γ(1

δ
(γ + p) + η

b
+ 1)

Γ(1
δ
(γ + p))Γ(η

b
+ 1)

(5.11)

for A = A∗ > O, δ > 0, a > 0, b > 0,<(γ) > −p, η > 0. Similarly

c̃2 = |det(A)|Γ(p)

πp
δ(ab)

1
δ
(γ+p) Γ(η

b
)

Γ(1
δ
(γ + p))Γ(η

b
− 1

δ
(γ + p))

(5.12)

with the same conditions on the parameters above except that −p < <(γ) < ηδ
b
−p,

and

c̃3 = |det(A)|Γ(p)

πp
δ(aη)

1
δ
(γ+p) 1

Γ(1
δ
(γ + p))

,<(γ) > −p, δ > 0, η > 0, a > 0. (5.13)

5.1. Special Cases and Applications in Other Areas

Statistical models in the complex case Observe that (5.1) and (5.5) give gen-
eralized multivariate type-1 beta model in the elliptically contoured form and in
the spherically symmetric form respectively. Similarly (5.2) and (5.6) give type-2
beta form, (5.3) and (5.7) give the gamma form in complex domain. Observe that
the type-2 beta forms in (5.2) and (5.6) also provide complex multivariate ana-
logues of Student-t, F, Cauchy and related models. Also, (5.3) and (5.7) provide
multivariate analogues of Gaussian, gamma, generalized gamma, chisquare, expo-
nential and related models. For γ = 0 and for a general δ, one has a generalization
of the complex Gaussian model in (5.3) and (5.7). Complex Gaussian is the case
δ = 1, γ = 0, a = 1, η = 1, A = Σ−1,Σ = Σ∗ > O where Σ the covariance matrix of
the p× 1 complex vector variable X̃.

Complex Maxwell-Boltzmann and Raleigh Densities (5.3) and (5.7) for
δ = 1, a = 1 and γ = 1 give a complex multivariate version of Maxwell-Boltzmann
density with the normalizing constant in (5.13). A complex multivariate Raleigh
case is available from (5.3) and (5.7) for δ = 1, a = 1, γ = 1

2
with the corresponding

normalizing constant in (5.13).

Random Volumes Models in (5.1),(5.2),(5.3) provide elliptically contoured com-
plex version of random points of generalized type-1 beta, type-2 beta types for b = 1
in (5.1) and (5.2), and gamma type from (5.3). The corresponding standard forms
are available from (5.5) and (5.6) for b = 1, and (5.7). These random points in
the complex domain and the corresponding random volumes do not seem to have
been discussed in the literature. Also, reliability concepts for the complex case can
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be described by using the concept Pr{X̃ ≥ T̃} implies Pr{X̃∗AX̃ ≥ T̃ ∗AT̃} for
A = A∗ > O. Reliability concepts in the complex domain do not seem to have
been discussed in the literature.
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