South East Asian J. of Mathematics and Mathematical Sciences Vol. 15, No. 3 (2019), pp. 107-114

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

ON bg^{μ} -CLOSED MAPS AND bg^{μ} -HOMEOMORPHISMS IN SUPRA TOPOLOGICAL SPACES

K. Krishnaveni and K. Janaki*

Department of Mathematics(PG), PSGR Krishnammal College for women, Coimbatore - 641 004, Tamil Nadu, INDIA

E-mail : krishnavenikaliswami@gmail.com

*Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, Tamil Nadu, INDIA

E-mail : janakinewk@gmail.com

(Received: Aug. 28, 2019 Accepted: Oct. 17, 2019 Published: Dec. 31, 2019)

Abstract: The aim of this paper, is to introduce a new class of set namely bg^{μ} - closed maps and bg^{μ} - homeomorphisms in supra topological spaces and study some of their properties. Using these new types of maps, several properties have been obtained.

Keywords and Phrases: bg^{μ} - closed map; bg^{μ} - homeomorphism and ${}^{*}bg^{\mu}$ - homeomorphism.

2010 Mathematics Subject Classification: 54C05, 57S05.

1. Introduction

In 1983, Mashhour et al [7] introduced the concept of supra topological spaces and studied S- continuous maps and S^* - continuous maps. In 2010, Sayed et al [9] introduced and investigated several properties of supra b-open sets and supra b-continuity. In this paper, we introduce the concept of bg^{μ} -closed maps and study its basic properties. Also, we introduce the concept of bg^{μ} -homeomorphisms and investigate several properties for these classes of functions in supra topological spaces.

2. Preliminaries

Definition 2.1. [7], [9] A subfamily of μ of X is said to be a supra topology on X, if

(i) X, $\phi \epsilon \mu$

(ii) if $A_i \in \mu$ for all $i \in J$ then $\cup A_i \in \mu$.

The pair (X,μ) is called supra topological space. The elements of μ are called supra open sets in (X,μ) and complement of a supra open set is called a supra closed set.

Definition 2.2. [7], [9]

(i) The supra closure of a set A is denoted by cl^μ(A) and is defined as cl^μ(A) =∩ {B: B is a supra closed set and A⊆B}.
(ii) The supra interior of a set A is denoted by int^μ(A) and defined as int^μ(A) = ∪ {B: B is a supra open set and A⊇B}.

Definition 2.3. [7] Let (X,τ) be a topological spaces and μ be a supra topology on (X,τ) . We call μ a supra topology associated with τ if $\tau \subset \mu$.

Definition 2.4. [9] Let (X,μ) be a supra topological space. A set A is called a supra b-open set if $A \subseteq cl^{\mu}(int^{\mu}(A)) \cup int^{\mu}(cl^{\mu}(A))$. The complement of a supra b-open set is called a supra b-closed set.

Definition 2.5. [8] A subset A of a supra topological space (X,μ) is called g^{μ} -closed set if $cl^{\mu}(A) \subseteq \bigcup$, whenever $A \subseteq \bigcup$ and \bigcup is supra open in (X,μ) .

The complement of g^{μ} -closed set is called g^{μ} -open set.

Definition 2.6. A subset A of a supra topological space (X,μ) is called bg^{μ} -closed set if $cl^{\mu}(A) \subseteq \bigcup$, whenever $A \subseteq \bigcup$ and \bigcup is b^{μ} -open in (X,μ) .

The complement of bg^{μ} -closed set is called bg^{μ} -open set.

Definition 2.7. [5] A subset A of a supra topological space (X,μ) is called bT^{μ} closed set if $bcl^{\mu}(A) \subseteq \bigcup$, whenever $A \subseteq \bigcup$ and U is T^{μ} -open in (X,μ) . The complement of supra bT^{μ} -closed set is called bT^{μ} -open set.

Definition 2.8. [5] Let (X,τ) and (Y,σ) be two supra topological spaces. A function $f:(X,\tau) \to (Y,\sigma)$ is called bT^{μ} -Continuous if $f^{-1}(V)$ is bT^{μ} -closed in (X,μ) for every supra closed set V of (Y,σ) .

Definition 2.9. [3] A subset A of (X,μ) is called T^{μ} -closed set if $bcl^{\mu}(A) \subseteq \bigcup$, whenever $A \subseteq \bigcup$ and \bigcup is gb^{μ} -open in (X,μ) . The complement of T^{μ} - closed set is called T^{μ} -open set. **Definition 2.10.** [5] Let (X,τ) and (Y,σ) be two supra topological spaces. A function $f:(X,\tau) \to (Y,\sigma)$ is called bT^{μ} -irresolute if $f^{-1}(V)$ is bT^{μ} -closed in (X,μ) for every bT^{μ} -closed set V of (Y,σ) .

Definition 2.11. Let (X,τ) and (Y,σ) be two supra topological spaces. A function $f:(X,\tau) \to (Y,\sigma)$ is called bg^{μ} -Continuous if $f^{-1}(V)$ is bg^{μ} -closed in (X,μ) for every supra closed set V of (Y,σ) .

Definition 2.12. Let (X,τ) and (Y,σ) be two supra topological spaces. A function $f:(X,\tau) \to (Y,\sigma)$ is called bg^{μ} -irresolute if $f^{-1}(V)$ is bg^{μ} -closed in (X,μ) for every bg^{μ} -closed set V of (Y,σ) .

Definition 2.13. [8] Let $f : (X,\tau) \to (Y,\sigma)$ where μ and λ are supra topological spaces associated with τ and σ , respectively. Then f is called supra M-closed if the image of every supra closed set of X is supra closed set in Y.

Definition 2.14. [6] A map $f:(X,\tau) \to (Y,\sigma)$ is said to be bT^{μ} -closed map $(bT^{\mu}$ open map) if the image f(A) is bT^{μ} -closed $(bT^{\mu}$ -open) in (Y,σ) for each supra closed
(supra open) set A in (X,σ) .

Definition 2.15. [6] A bijection $f:(X,\tau) \to (Y,\sigma)$ is called bT^{μ} -homeomorphism if f is both bT^{μ} -continuous and bT^{μ} closed map.

Definition 2.16. [8] A map $f : (X,\tau) \to (Y,\sigma)$ is said to be g^{μ} -closed map $(g^{\mu}$ open map) if the image f(A) is g^{μ} -closed $(g^{\mu}$ -open) in (Y,σ) for each supra closed
(supra open) set A in (X,σ) .

Definition 2.17. [8] A bijection $f:(X,\tau) \to (Y,\sigma)$ is called g^{μ} -homeomorphism if f is both g^{μ} -continuous and g^{μ} closed map.

3. Basic Properties of bg^{μ} - Closed Maps

Definition 3.1. A map $f:(X,\tau) \to (Y,\sigma)$ is said to be bg^{μ} -closed map (bg^{μ} -open map) if the image f(A) is bg^{μ} -closed (bg^{μ} -open) in (Y,σ) for each supra closed (supra open) set A in (X,τ) .

Theorem 3.2. Every supra M-closed map is bg^{μ} -closed map.

Proof. Let $f : (X,\tau) \to (Y,\sigma)$ be supra M-closed map. Let V be supra closed set in (X,τ) , Since f is supra M-closed map then f(V) is supra closed set in (Y,σ) . We know that every supra closed set is supra bg^{μ} -closed, then f(V) is supra bg^{μ} -closed in (Y,σ) . Therefore f is supra bg^{μ} -closed map.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.3. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}, \phi, \{b\}, c\}$

 $\{a,c\}\}$. The bg^{μ} -closed sets of (Y, σ) are $\{Y, \phi, \{a\}, \{b\}, \{c\}, \{b,c\}, \{a,c\}\}$. Let $f:(X,\tau) \to (Y,\sigma)$ be a function defined by f(a) = a, f(b) = b, f(c) = c. Let $V = \{a,c\}$ in supra closed set of $(X,\tau), f(V) = f\{a,c\} = \{a,c\}$ is bg^{μ} -closed in (Y,σ) but not supra closed in (Y,σ) .

Theorem 3.4. Every bg^{μ} -closed map is bT^{μ} -closed map.

Proof. Let $f : (X,\tau) \to (Y,\sigma)$ be a bT^{μ} -closed map. Let V be supra closed set in (X,τ) Since f is supra bg^{μ} -closed map then f(V) is bT^{μ} -closed set in $(Y\sigma)$. We know that every bg^{μ} -closed set is bT^{μ} -closed, then f(V) is bT^{μ} -closed in (Y,σ) . Therefore f is bT^{μ} -closed map.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.5. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}, \{c, d\}, \{a, b, d\}, \{b, c, d\}\}$ and $\sigma = \{X, \phi, \{a, c\}, \{c, d\}\}$. The bT^{μ} -closed sets are $\{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{c, d\}, \{a, c\}, \{a, d\}, \{b, d\}, \{a, c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}$ and the bg^{μ} -closed sets are $\{X, \phi, \{a\}, \{c\}, \{a, b\}, \{c, d\}\}$. Let $f:(X, \tau) \to (Y, \sigma)$ be a function defined by

f(a) = a, f(b) = b, f(c) = c. Let $V = \{a, c\}$ in supra closed set of (X, τ) , $f(V) = f\{a, c\} = \{a, c\}$ is bT^{μ} -closed but not bg^{μ} -closed.

Theorem 3.6. Every bg^{μ} -closed map is g^{μ} -closed map.

Proof. Let $f:(X,\tau) \to (Y,\sigma)$ be A g^{μ} -closed map. Let V be supra closed set in (X,τ) , Since f is supra bg^{μ} -closed map then f(V) is g^{μ} -closed set in (Y,σ) . We know that every bg^{μ} -closed set is g^{μ} -closed, then f(V) is g^{μ} -closed in (Y,σ) . Therefore f is g^{μ} -closed map.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.7. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{c\}, \{a, b\}, \{b, c\}\}$. The g^{μ} -closed sets of (Y, σ) are $\{Y, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ and bg^{μ} -closed sets of (Y, σ) are $\{Y, \phi, \{a\}, \{c\}, \{a, b\}\}$. Let $f:(X, \tau) \to (Y, \sigma)$ be a function defined by

f(a) = a, f(b) = b, f(c) = c. Let $V = \{a, c\}$ in supra closed set of $(X, \tau), f(V) = f\{a, c\} = \{a, c\}$ is g^{μ} -closed but not bg^{μ} -closed.

Theorem 3.8. A mapping $f:(X,\tau) \to (Y,\sigma)$ is bg^{μ} -closed if and only if $bg - cl^{\mu}f(A) \subseteq f(cl^{\mu}(A))$ for every subset A of (X,τ) . **Proof.** Suppose that f is bg^{μ} -closed and $A \subseteq X$. Then $f(cl^{\mu}(A))$ is bg^{μ} -closed in (Y,σ) . We have $A \subseteq (cl^{\mu}(A))$. Thus $f(A) \subseteq f(cl^{\mu}(A))$. Then $bg - cl^{\mu}f(A) \subseteq bg - (cl^{\mu}f(cl^{\mu}(A))) = f(cl^{\mu}(A))$. Conversely, let A be any closed set $in(X,\tau)$. Then $A = cl^{\mu}(A)$. Thus $f(A) = f(cl^{\mu}(A))$. But $bg - cl^{\mu}f(A) \subseteq f(cl^{\mu}(A)) = f(A)$. Also $f(A) \subseteq bg - cl^{\mu}(f(A))$. Thus f(A) is bg^{μ} -closed and hence f is bg^{μ} -closed.

Theorem 3.9. A mapping $f:(X,\tau) \to (Y,\sigma)$ is bg^{μ} -open if and only if $bg - int^{\mu}f(A) \subseteq f(int^{\mu}(A))$ for every subset A of (X,τ) . **Proof.** Suppose that f is bg^{μ} -open and $A \subseteq X$. Then $f(int^{\mu}(A))$ is bg^{μ} -open in (Y,σ) . We have $A \subseteq (int^{\mu}(A))$. Thus $f(A) \subseteq f(int^{\mu}(A))$. Then $bg - int^{\mu}f(A) \subseteq bg - (int^{\mu}f(int^{\mu}(A))) = f(int^{\mu}(A))$.

Conversely, let A be any open set $in(X,\tau)$. Then $A = int^{\mu}(A)$. Thus $f(A) = f(int^{\mu}(A))$. But $bg - int^{\mu}f(A) \subseteq f(int^{\mu}(A)) = f(A)$. Also $f(A) \subseteq bg - int^{\mu}(f(A))$. Thus f(A) is bg^{μ} -open and hence f is bg^{μ} -open.

Remark 3.10. The composition of two bg^{μ} -closed maps need not be bg^{μ} -closed map. It is show by the following example

Example 3.11. Let $X = Y = Z = \{a, b, c\}$. Let $\tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}, \sigma = \{Y, \phi, \{a\}, \{b, c\}, \{a, c\}\}$ and $\eta = \{Z, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. The bg^{μ} -closed sets of (Y, σ) are $\{Y, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ and bg^{μ} -closed sets of (Z, η) are $\{Z, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ and $g : (Y, \tau) \to (Z, \zeta)$ be the identity function. Then $(gof)\{a, c\} = g(f\{a, c\}) = g(\{a, c\}) = \{a, c\}$ is not supra bg^{μ} -closed map in (Z, ζ) .

Theorem 3.12. If $f: X \to Y$ is a supra closed map and $g: Y \to Z$ is bg^{μ} -closed map then the composition gof $: X \to Z$ is supra bg^{μ} -closed map.

Proof. Let $f: X \to Y$ is a closed map and $g: Y \to Z$ is a supra bg^{μ} -closed map. Let V be any supra closed set in (X,τ) . Since $f: X \to Y$ is closed map, f(V) is closed in Y and since $g: Y \to Z$ is supra bg^{μ} -closed map, g(f(V)) is supra bg^{μ} -closed map in Z. This implies gof $: X \to Z$ is supra bg^{μ} -closed map.

Remark 3.13. If $f: X \to Y$ is a supra bg^{μ} -closed map and $g: Y \to Z$ is supra M closed map then the composition need not be supra bg^{μ} -closed map. It can be seen by the following example.

Example 3.14. Let $X = Y = Z = \{a, b, c\}$. Let $\tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}, \sigma = \{Y, \phi, \{a\}, \{b, c\}, \{a, c\}\}$ and $\zeta = \{Z, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. The bg^{μ} -closed sets of (Y, σ) are $\{Y, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ and bg^{μ} -closed sets of (Z, ζ) are $\{Z, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}\}$. $f : (X, \tau) \to (Y, \sigma)$ be the function defined by f(a) = a, f(b) = b, f(c) = c and $f : (Y, \tau) \to (Z, \zeta)$ be the function defined by g(a) = a, g(b) = b, g(c) = c. Here f is supra bg^{μ} -closed map, since $gof(\{a, c\}) = \{a, c\}$ is not supra bg^{μ} -closed map in (Z, ζ) .

Theorem 3.15. For any bijection $f : (X, \tau) \to (Y, \sigma)$ the following are statement are equivalent

(i) $f^{-1}: (Y, \sigma) \to (X, \tau)$ is bg^{μ} -continuous.

(ii) f is bg^{μ} -open map.

(iii) f is bg^{μ} -closed map.

Proof. $(i) \Rightarrow (ii)$ Let U be an supra open set of (X,τ) . By assumption $(f^{-1})^{-1} = f(U)$ is bg^{μ} -open in (Y,σ) and so f is bg^{μ} -open.

 $(ii) \Rightarrow (iii)$ Let F be a supra closed set of (X,τ) . Then F^c is supra open in (X,τ) . By assumption, $f(F^c)$ is bg^{μ} -open in (Y,σ) and therefore f(F) is bg^{μ} -closed in (Y,σ) . Hence f is bg^{μ} -closed.

 $(iii) \Rightarrow (i)$ Let F be a supra closed set of (X,τ) . By assumption, f(F) is bg^{μ} - closed in (Y,σ) . But $f(F)=(f^{-1})^{-1}(F)$ and therefore f^{-1} is bg^{μ} -continuous on (Y,σ) .

4. bg^{μ} - Homeomorphism

Definition 4.1. A bijection $f:(X,\tau) \to (Y,\sigma)$ is called bg^{μ} -homeomorphism if f is both bg^{μ} -continuous and bg^{μ} closed map.

Example 4.2. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}, \{a, c\}\}$. The bg^{μ} -closed sets of (X, τ) are $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ and bg^{μ} -closed sets of (Y, σ) are $\{Y, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$. Define $f : (X, \tau) \to (Y, \sigma)$ be the identity maps. Then f is bg^{μ} -homeomorphism.

Theorem 4.3. Let $f:(X,\tau) \to (Y,\sigma)$ be a bijective, bg^{μ} -continuous map. Then the following are equivalent

(i) f is bg^{μ} -open map.

(ii) f is bg^{μ} -homeomorphism.

(iii) f is bg^{μ} -closed map.

Proof. $(i) \Rightarrow (ii)$ Given $f : (X, \tau) \to (Y, \sigma)$ be a bijective bg^{μ} -continuous and bg^{μ} -open. Then by definition, f is an bg^{μ} -homeomorphism.

 $(ii) \Rightarrow (iii)$ Given f is bg^{μ} -open and bijective. By theorem 3.15(ii), f is a bg^{μ} -closed map.

 $(iii) \Rightarrow (i)$ Given f is bg^{μ} -closed and bijective. By theorem 3.15(iii), f is a bg^{μ} -open map.

Remark 4.4. The following example shows that the composition of two bg^{μ} - homeomorphism is need not be a bg^{μ} - homeomorphism.

Example 4.5. Let $X = Y = Z = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}, \sigma = \{Y, \phi, \{a\}, \{b, c\}, \{a, c\}\}$ and $\eta = \{Z, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}.$ The bg^{μ} -closed sets of (X, τ) are $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}\}, bg^{\mu}$ -closed sets of (Y, σ)

are $\{Y, \phi, \{a\}, \}$

 $\{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ and bg^{μ} -closed sets of (Z,η) are $\{Z, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}\}$. Then both f and g are bg^{μ} -homeomorphism, but their composition gof: $f:(X,\tau) \rightarrow (Z,\eta)$ is not bg^{μ} -homeomorphism, because for the supra closed set $\{a, c\}$ of (X,τ) $(gof) \{a, c\} = g(f \{a, c\}) = g(\{a, c\}) = \{a, c\}$, which is not bg^{μ} -closed in (Z,η) . Therefore gof is not bg^{μ} -closed and so gof is not bg^{μ} -homeomorphism.

Definition 4.6. A bijection $f:(X,\tau) \to (Y,\sigma)$ is called $*bg^{\mu}$ -homeomorphism if both f and f^{-1} are bg^{μ} -irresolute.

Example 4.7 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}, \{a, c\}\}$. The bg^{μ} -closed sets of (X, τ) are $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ and bg^{μ} -closed sets of (Y, σ) are $\{Y, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$. Define $f : (X, \tau) \to (Y, \sigma)$ be the identity by f(a) = a, f(b) = b, f(c) = c. Then f is ${}^*bg^{\mu}$ -homeomorphism.

Theorem 4.8. Every ${}^{*}bg^{\mu}$ -homeomorphism is bg^{μ} -irresolute. **Proof.** Let f be a ${}^{*}bg^{\mu}$ -homeomorphism. By the definition of ${}^{*}bg^{\mu}$ -homeomorphism, f is bg^{μ} -irresolute.

Remark 4.9. Every bg^{μ} -irresolute map need not be a bg^{μ} -homeomorphism.

Example 4.10. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}, \{a, c\}\}$. The bg^{μ} -closed sets of (X, τ) are $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}\}$ and bg^{μ} -closed sets of (Y, σ) are $\{Y, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity by f(a) = a, f(b) = c, f(c) = b. Then f is bg^{μ} -irresolute, but not $*bg^{\mu}$ -homeomorphism. Since $f(\{a, c\}) = \{a, b\}$ which is not in bg^{μ} -closed in (Y, σ) .

References

- M. Abo-Elhamayel and T. M. Al-shami, Supra homeomorphism in supra topological ordered spaces, Facta Universitatis, Series: Mathematics and Informatics, 31 (5) (2016) 1091-1106.
- [2] D. Andrijevic, On b- open sets, Mat. Vesnik, 48, no. 1-2 (1996), 59-64.
- [3] I. Arockiarani and M. Trinita Pricilla, On supra T-closed sets, International Journal of Mathematics Archive -2(8), (2011) 1376-1380.
- [4] P. Krishna and Dr. J. Antony Rex Rodrigo, On R-Closed maps and R-Homeomorphism in topological spaces, IOSR Journal Of Mathematics, volume 4, Issue 1(2012), pp 13-19.

- [5] K. Krishnaveni and M. Vigneshwaran, On bT^{μ} closed sets in supra topological spaces, International Journal Of Mathematical Archive- 4(2), (2013), 260-265.
- [6] K. Krishnaveni and M. Vigneshwaran, On bT^μ Closed maps and bT^μ Homeomorphism in supra topological spaces, Journal Of Mathematical Archive, volume 1, No.9, (2013).
- [7] A. S. Mashhour, A. A. Allam, F. S. Mohamoud and F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl. Math., No.4, 14 (1983), 502-510.
- [8] Ravi. O, Ramkumar. G, Kamaraj. M, On supra g-closed sets, International Journal of Advance in Pure and Applied Mathematics, 1(2)(2011), 52-66.
- [9] O. R. Sayed and Takashi Noiri, On b-open sets and supra b-continuity on topological spaces, European Journal of Pure and applied Mathematics, 3(2) (2010), 295-302.
- [10] M. E. El-Shafei, M. Abo-Elhamayel and T. M. Al-shami, On supra R-open sets and some applications on topological spaces, Journal of Progressive Research in Mathematics, 8 (2) (2016), 1237-1248.
- [11] T. M. Al-shami, Some results related to supra topological spaces, Journal of Advanced Studies in Topology, 7 (4) (2016), 283-294
- [12] A. Vadivel and K. Vairamanickam, $rg\alpha$ Homeomorphism in topological spaces, Int. Journal Of Math. Analysis, Vol. 4, no.18 (2010), 881-890.