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1. Introduction

In 1983, Mashhour et al [7] introduced the concept of supra topological spaces
and studied S- continuous maps and S*- continuous maps. In 2010, Sayed et al
9] introduced and investigated several properties of supra b-open sets and supra
b-continuity. In this paper, we introduce the concept of bg"-closed maps and study
its basic properties. Also, we introduce the concept of bg#-homeomorphisms and
investigate several properties for these classes of functions in supra topological
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spaces.
2. Preliminaries

Definition 2.1. [7/, [9] A subfamily of p of X is said to be a supra topology on X,
i
f
(i) X, ¢ ep
(i) if A; € p for all i e Jthen U A; € p.

The pair (X,u) is called supra topological space. The elements of j are called
supra open sets in (X,u) and complement of a supra open set is called a supra
closed set.

Definition 2.2. /7], [9]

(i) The supra closure of a set A is denoted by cl*(A) and is defined as
cl*(A) =N {B: B is a supra closed set and ACB}.

(i) The supra interior of a set A is denoted by int* (A) and defined as
intt(A) = U {B: B is a supra open set and ADB}.

Definition 2.3. [7] Let (X,7) be a topological spaces and p be a supra topology on
(X,7). We call i a supra topology associated with T if T C p.

Definition 2.4. [9] Let (X,u) be a supra topological space. A set A is called a
supra b-open set if A C cl*(int*(A)) U intt(cl*(A)). The complement of a supra
b-open set is called a supra b-closed set.
Definition 2.5. [8] A subset A of a supra topological space (X,u) is called g*-closed
set if cl*(A) C |, whenever A C | and | is supra open in (X,pu).

The complement of gt-closed set is called g*-open set.
Definition 2.6. A subset A of a supra topological space (X,p) is called bgt-closed
set if cl*(A) C |, whenever A C|J and | is b*-open in (X,u).

The complement of bg*-closed set is called bgt-open set.
Definition 2.7. [5] A subset A of a supra topological space (X,u) is called OT*-

closed set if bel*(A) C |, whenever A C |J and U is T"-open in (X,u). The
complement of supra bT*-closed set is called bT*"-open set.

Definition 2.8. [5] Let (X,7) and (Y,0) be two supra topological spaces. A function
[(X,7)—= (Y,0)is called bT"-Continuous if f~ (V) is bT*-closed in (X,u) for every
supra closed set 'V of (Y,0).

Definition 2.9. [3] A subset A of (X,u) is called T"-closed set if belt(A) C |,
whenever A C |J and | is gb*-open in (X,u). The complement of TH- closed set
1s called T*-open set.
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Definition 2.10. [5] Let (X,7) and (Y,0) be two supra topological spaces. A
function f :(X,7) — (Y,0) is called bT*-irresolute if f~1(V) is bT"-closed in (X 1)
for every bT*-closed set 'V of (Y,0).

Definition 2.11. Let (X,7) and (Y,0) be two supra topological spaces. A function
[(X,7) = (Y,0) is called bg"-Continuous if f~1(V) is bg"-closed in (X,u) for every
supra closed set V of (Y,0).

Definition 2.12. Let (X,7) and (Y,0) be two supra topological spaces. A function
f:(X,7)— (Y,0) is called bg"-irresolute if f~(V) is bg"-closed in (X,u) for every
bg*-closed set V of (Y,0).

Definition 2.13. /8] Let f :(X,7) — (Y,0) where p and A are supra topological
spaces associated with T and o, respectively. Then fis called supra M-closed if the
image of every supra closed set of X is supra closed set in Y.

Definition 2.14. [6/ A map [ :(X,7) — (Y,0) is said to be bT*-closed map (bT*-
open map) if the image f(A) is bT*-closed (bT*-open) in (Y,o) for each supra closed
(supra open) set A in (X,0).

Definition 2.15. [6] A bijection [ :(X,7) — (Y,0) is called bT*-homeomorphism
iof s both bTH-continuous and bT* closed map.

Definition 2.16. [8/ A map f :(X,7) — (Y,0) is said to be g"-closed map (g"-
open map) if the image f(A) is g'-closed (g"-open) in (Y,o) for each supra closed
(supra open) set A in (X,0).

Definition 2.17. [8] A bijection f :(X,7) — (Y,0) is called g"-homeomorphism if
f is both g*-continuous and g* closed map.

3. Basic Properties of bg" - Closed Maps

Definition 3.1. A map [ :(X,;7) — (Y,0) is said to be bg"-closed map (bg"-open
map) if the image f(A) is bgt-closed (bg"-open) in (Y,o) for each supra closed
(supra open) set A in (X,T).

Theorem 3.2. Every supra M-closed map is bg*-closed map.

Proof. Let f :(X,7) — (Y,0) be supra M-closed map. Let V be supra closed set
in (X,7), Since f is supra M-closed map then (V) is supra closed set in (Y,o0). We

know that every supra closed set is supra bgt-closed, then f(V) is supra bg*-closed
in (Y,o0). Therefore f is supra bg"-closed map.

The converse of the above theorem need not be true. It is shown by the following
example.

Example 3.3. Let X =Y = {a,b,c}, 7 = {X,¢,{b}} and o = {Y, ¢, {a}, {b,c},
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{a,c}}. The bgt-closed sets of (Y, o) are {Y,¢,{a},{b},{c},{b,c},{a,c}}. Let
f:{(X,7) = (Y,0) be a function defined by f(a) = a, f(b) = b, f(c) = c. Let V =
{a,c} in supra closed set of (X,7), f(V) = Ka,c} = {a,c} is bg"-closed in (Y,0)
but not supra closed in (Y,0).

Theorem 3.4. FEvery bgt-closed map is bT"-closed map.

Proof. Let f :(X,7) — (Y,0) be a bT*-closed map. Let V be supra closed set in
(X,7) Since f is supra bg”-closed map then f(V) is bT*-closed set in (Yo). We know
that every bg#-closed set is bT*-closed, then f(V) is bT*-closed in (Y,o). Therefore
f is OT"-closed map.

The converse of the above theorem need not be true. It is shown by the following
example.

Example 3.5. Let X = Y = {a,b,¢c}, 7 ={X,¢,{a,b},{c,d},{a,b,d},{b,c,d}}
and 0 ={X,¢,{a,c},{c,d}}. The bT"-closed sets are { X, ¢,{a}, {b}, {c}, {d},
{a,0}, {bch, {e.d}, {arch, {a.d}, {b.d}, {a,c,d}, {abic}, {ab.d}, {b,c,d}}
and the bg"-closed sets are {X, ¢, {a},{c},{a,b},{c,d}}. Let f:(X;7) — (Y,0) be
a function defined by

fla) = a, f(b) = b, f(c) = c. Let V = {a,c} in supra closed set of (X,7), f(V) =
Ha,c} ={a,c} is bTH-closed but not bgt-closed.

Theorem 3.6. Fvery bgt-closed map is g"-closed map.

Proof. Let f :(X,7) — (Y,0) be A g'-closed map. Let V be supra closed set in
(X,7), Since f is supra bg”-closed map then f(V) is g#-closed set in (Y,0). We know
that every bgt-closed set is g#-closed, then f(V) is g#-closed in (Y,o). Therefore f
is g#-closed map.

The converse of the above theorem need not be true. It is shown by the following
example.

Example 3.7. Let X = Y = {a,b,c}, 7 = {X,0,{a,c}} and 0 = {Y,¢,{c},
{a,b}, {b,c}}. The g*-closed sets of (Y,0) are {Y,¢,{a},{b},{c},{a,b},{a,c}}
and bgt-closed sets of (Y,o) are {Y,¢,{a},{c},{a,b}}. Let f:(X;7) = (Y,0) be a
function defined by

fla) = a, f(b) = b, f(c) = c. Let V = {a,c} in supra closed set of (X,7),

f(V) = Ra,c} ={a,c} is g"-closed but not bgt-closed.

Theorem 3.8. A mapping f :(X,7) = (Y,0) is bg"-closed if and only if

bg — cl* f(A) C f(cl*(A)) for every subset A of (X,T).

Proof. Suppose that f is bg#-closed and A C X. Then f(cl*(A)) is bg-closed in
(Y,0). We have A C (cl*(A)). Thus f(A) C f(cl*(A)). Then

bg — cl"f(A) C bg — (cl" f(cl*(A))) = [(cl*(A)).
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Conversely, let A be any closed set in(X,7). Then A = ¢l*(A). Thus f(A) =
F(el(A)). But by — cl" f(A) C f(cl*(A)) = F(A). Also f(4) C bg — d(f(4)).
Thus f(A) is bg”-closed and hence f is bg"-closed.

Theorem 3.9. A mapping [ :(X,7) — (Y,0) is bg"-open if and only if
bg —intt f(A) C f(intt(A)) for every subset A of (X,T).
Proof. Suppose that f is bg"-open and A C X. Then f(int*(A)) is bg'-open in
(Y,0). We have A C (int*(A)). Thus f(A) C f(int*(A)). Then
by — int# f(A) C by — (int# f(int*(A))) = f(int#(4))

Conversely, let A be any open set in(X,7). Then A = int*(A). Thus f(A) =
flint*(A)). But bg—int* f(A) C f(int*(A)) = f(A). Also f(A) C bg—int'(f(A)).
Thus f(A) is bgH-open and hence f is bgH-open.

Remark 3.10. The composition of two bg*-closed maps need not be bgt-closed
map. It is show by the following example

Example 3.11. Let X = Y = Z = {a,b,c}. Let 7 = {X, ¢,{b}, {a,b}, {b,c},
{o,c}}, 0 = {(Y,6,{a}, (b ek {a b} and n = {Z,6,4a}, {0}, {a.b}. {bc}.
{a,c}}. The bg*-closed sets of (Y,o) are {Y,¢,{a},{b},{c},{b,c},{a,c}} and
bgt-closed sets of (Z;m) are {Z,¢,{a},{b},{c},{b,c}}. [ :(X,;7) — (Y,0) and
g (Y1) = (Z,() be the identity function. Then (gof){a,c} = g(f{a,c}) =
g({a,c}) = {a,c} is not supra bgt-closed map in (Z,).

Theorem 3.12. If f :X — Y is a supra closed map and g :Y — Z is bgt-closed
map then the composition gof :X — Z is supra bg"-closed map.

Proof. Let f :X — Y is a closed map and g :Y — Z is a supra bg”-closed map. Let
V be any supra closed set in (X,7). Since f :X — Y is closed map, f(V') is closed
in Y and since g:Y — Z is supra bg”-closed map, g(f(V')) is supra bg-closed map
in Z. This implies gof :X — Z is supra bg"-closed map.

Remark 3.13. If f :X — Y is a supra bg"-closed map and g :Y — Z is supra M
closed map then the composition need not be supra bg"-closed map. It can be seen
by the following example.

Example 3.14. Let X = Y = 7 = {a,b,c}. Let 7 = {X,¢,{b}, {a,b}, {b,c},
{a,cty, 0 = {Y,¢.{a} {b,c} {a,c}} and ¢ = {Z,¢,{a}, {b}, {a,b}, {b,c},
{a,c}}. The bg"-closed sets of (Y,o) are {Y,¢,{a},{b},{c},{b,c},{a,c}} and
bgt-closed sets of (Z,() are {Z,¢p,{a},{b},{c},{b,c}}. f:(X,7) = (Y,0) be
the function defined by f(a) = a, f(b) = b,f(c) = c and f : (Y,7) — (Z,() be the
function defined by g(a) = a, g(b) = b, g(c) = c. Here fis supra bgt-closed map
and g is supra M closed map, but its composition is not supra bgt-closed map, since
gof{a, c}) ={a,c} is not supra bg"-closed map in (Z,).
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Theorem 3.15. For any bijection f: (X, 1) — (Y, 0) the following are statement
are equivalent

(1) f71:(Y,0) = (X, 7) is bg"-continuous.

(i) f is bg"-open map.

(#ii) f is bg*-closed map.

Proof. (i) = (ii) Let U be an supra open set of (X,7). By assumption (f~)~! =
f(U) is bgt-open in (Y,o) and so f is bg-open.

(73) = (i7i) Let F be a supra closed set of (X,7). Then F° is supra open in (X,7).
By assumption, f(F¢) is bgt-open in (Y,o0) and therefore f(F) is bg”-closed in (Y,0).
Hence f is bg*-closed.

(17i) = (i) Let F be a supra closed set of (X,7). By assumption, f(F) is bg” - closed
in (Y,0). But {(F)=(f"1)"}(F) and therefore f~! is bg"-continuous on (Y,o).

4. bg* - Homeomorphism
Definition 4.1. A bijection f :(X,7) — (Y,0) is called bg"-homeomorphism if f
18 both bg*-continuous and bg* closed map.

Example 4.2. Let X = Y = {a,b,c}, 7 = {X,¢,{b}, {a,b}, {b,c}, {a,c}} and
o=A{Y,¢,{a}, {b,c}, {a,c}}. The bg"-closed sets of (X,7) are {X,p,{a}, {b},
(e} {ab}. {boc. {mc}} and by'-closed sets of (Y.0) are {Y.6. {a}. (b} {c}.
{b,¢}, {a,c}}. Define f :(X,;7) — (Y,0) be the identity maps. Then f is bg"-
homeomorphism.

Theorem 4.3. Let f :(X,7) — (Y,0) be a bijective, bg"-continuous map. Then
the following are equivalent

(i) f is bg"-open map.

(ii) fis bg"-homeomorphism.

(#i) f is bg*-closed map.

Proof. (i) = (ii) Given f :(X,7) — (Y,0) be a bijective bg#-continuous and bg-
open. Then by definition, f is an bg#-homeomorphism.

(1) = (uii) Given f is bg"-open and bijective. By theorem 3.15(ii), f is a bg#-closed
map.

(13i) = (i) Given f is bg*-closed and bijective. By theorem 3.15(iii), f is a bg"-open
map.

Remark 4.4. The following example shows that the composition of two bgH -
homeomorphism is need not be a bg" - homeomorphism.
Example 4.5. Let X = Y =7 ={a,b,c}, 7 ={X,0,{b},{a,b},{b,c},{a,c}},

o={Y,¢,{a},{b,c},{a,c}} and n = {Z,¢,{a},{b},{a,b},{b,c},{a,c}}. The
bgt-closed sets of (X,7) are {X,p,{a},{b},{c},{a,b}}, bgt-closed sets of (Y,o)
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are {Y, 6, {a}.
{b},{c},{b,c},{a,c}} and bg"-closed sets of (Zn) are {Z, &,{a},{b},{c},{b,c}}.
Then both f and g are bg"-homeomorphism, but their composition gof: f :(X,7) —
(Z,m) is not bg"-homeomorphism, because for the supra closed set {a,c} of (X,7)
(gof){a,c} = g(f{a,c}) = g({a,c}) = {a,c}, which is not bg"-closed in (Z,n).
Therefore gof is not bgt-closed and so gof is not bg"-homeomorphism.

Definition 4.6. A bijection [ :(X,7) — (Y,0) is called *bg"-homeomorphism if
both f and f~1 are bgt-irresolute.

Example 4.7 Let X = Y = {a,b,c}, 7 = {X,¢,{b},{a,b},{b,c},{a,c}} and
o={Y,0,{a}, {b,c}, {a,c}}. The bg"-closed sets of (X,7) are {X,,{a}, {b},
{c}, {a,b}, {b, ¢}, {a,c}} and bg*-closed sets of (Y,o) are {Y,¢,{a}, {b}, {c},
{b,c}, {a,c}}. Define f:(X,7) — (Y,0) be the identity by f(a) = a, f(b) = b, f(c)

= ¢. Then f is *bg"-homeomorphism.

Theorem 4.8. Fvery *bg"-homeomorphism is bgt-irresolute.
Proof. Let f be a *bg"-homeomorphism. By the definition of *bg*-homeomorphism,
f is bg'-irresolute.

Remark 4.9. FEvery bg"-irresolute map need not be a *bg"-homeomorphism.

Example 4.10. Let X = Y = {a,b,c}, 7 ={X, ¢, {b},{a,b},{b,c},{a,c}} and
o ={Y,¢,{a},{b,c},{a,c}}. The bg"-closed sets of (X,7) are {X,¢,{a}, {b},
{c}, {a,b}, {b,¢c}, {a,c}} and bg"-closed sets of (Y,o) are {Y,p,{a}, {b}, {c},
{b,c}, {a,c}}. Define f :(X;7) = (Y,0) be the identity by f(a) = a, f(b) = c,
f(c) = b. Then fis bg"-irresolute, but not *bgt-homeomorphism. Since f({a,c}) =
{a,b} which is not in bg"-closed in (Y,o).
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