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1. Introduction and Preliminaries

Pochhammer symbol
In our investigations, we shall use the following standard notations:

N := {1, 2, 3, · · · } ;N0 := N
⋃
{0} ;Z−0 := Z−

⋃
{0} = {0,−1,−2,−3, · · · } .

The symbols C, R, N, Z, R+ and R− denote the sets of complex numbers, real
numbers, natural numbers, integers, positive and negative real numbers respec-
tively. The Pochhammer symbol (α)p (α, p ∈ C) [20, p.22, Eq.(1), p.32, Q.N.(8)
and Q.N.(9), see also [29] p.23, Eq.(22) and Eq.(23)] is defined by

(α)p :=
Γ(α + p)

Γ(α)
=
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=



1 ;(p = 0;α ∈ C\{0}),
α(α + 1) · · · (α + n− 1) ;(p = n ∈ N;α ∈ C),
(−1)nk!
(k−n)! ;(α = −k; p = n;n, k ∈ N0; 0 ≤ n ≤ k),

0 ;(α = −k; p = n;n, k ∈ N0;n > k),
(−1)n
(1−α)n

;(p = −n;n ∈ N;α ∈ C\Z).

It being understood conventionally that(0)0 = 1 and assumed tacitly that the
Gamma quotient exists.

Generalized hypergeometric function of one variable
A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z] is
accomplished by introducing any arbitrary number of numerator and denominator
parameters. Thus, the resulting series

pFq

 (αp);
z

(βq);

 = pFq

 α1, α2, . . . , αp;
z

β1, β2, . . . , βq;

 =
∞∑
n=0

(α1)n(α2)n . . . (αp)n
(β1)n(β2)n . . . (βq)n

zn

n!
,

(1.1)
is known as the generalized hypergeometric series, or simply, the generalized hy-
pergeometric function. Here p and q are positive integers or zero and we assume
that the variable z, the numerator parameters α1, α2, . . . , αp and the denominator
parameters β1, β2, . . . , βq take on complex values, provided that

βj 6= 0,−1,−2, . . . ; j = 1, 2, . . . , q.

Supposing that none of the numerator and denominator parameters is zero or a
negative integer, we note that the pFq series defined by equation (1.1):

(i) converges for |z| <∞, if p ≤ q,

(ii) converges for |z| < 1, if p = q + 1,

(iii) diverges for all z, z 6= 0, if p > q + 1,

(iv) converges absolutely for |z| = 1, if p = q + 1 and R(ω) > 0,

(v) converges conditionally for |z| = 1 (z 6= 1), if p = q + 1 and −1 < R(ω) 5 0,

(vi) diverges for |z| = 1, if p = q + 1 and R(ω) 5 −1,

where, by convention, a product over an empty set is interpreted as 1 and

ω :=

q∑
j=1

βj −
p∑
j=1

αj, (1.2)
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R(ω) being the real part of complex number ω.

Double hypergeometric function of Kampé de Fériet
Just as the Gaussian 2F1 function was generalized to pFq by increasing the

number of the numerator and denominator parameters, the Appell’s four double
hypergeometric functions F1, F2, F3, F4 [ 29, p.53, Eq.(4), Eq.(5), Eq.(6) and Eq.(7)]
and their seven confluent forms Φ1,Φ2,Φ3,Ψ1,Ψ2,Ξ1,Ξ2 given by Humbert ([12,
14], see also [13, pp.75-76]) were unified and generalized by Kampé de Fériet [15]
who defined a general hypergeometric function of two variables.

The notation introduced by Kampé de Fériet for his double hypergeometric
function [5, p.150, Eq.(26)] of superior order was subsequently abbreviated by
Burchnall and Chaundy [8, p.112]. We recall here the definition of a more general
double hypergeometric function (than the one defined by Kampé de Fériet) in a
slightly modified notation of Srivastava and Panda [30, p.423, Eq.(26)]:

F p: q; k
`: m; n

 (ap) : (bq) ; (ck) ;
x, y

(α`) : (βm) ; (γn) ;

 =
∞∑

r,s=0

p∏
j=1

(aj)r+s
q∏
j=1

(bj)r
k∏
j=1

(cj)s

∏̀
j=1

(αj)r+s
m∏
j=1

(βj)r
n∏
j=1

(γj)s

xr

r!

ys

s!
,

(1.3)
where, for convergence [30, p.424, Eq.(27)]

(i) p+ q < `+m+ 1, p+ k < `+ n+ 1, |x| <∞, |y| <∞, or (1.4)

(ii) p+ q = `+m+ 1, p+ k = `+ n+ 1 and (1.5)

{
|x|1/(p−`) + |y|1/(p−`) < 1, if p > `,

max {|x|, |y|} < 1, if p ≤ `.
(1.6)

For absolutely and conditionally convergence of double series (1.3), we refer to a
research paper of Hài et al. [11, pp.106-107, Th.(1), Th.(2) and Th.(3)].

Multiple hypergeometric function of Srivastava-Daoust
The following generalization of the hypergeometric function in several variables

has been given by Srivastava and Daoust ([26, pp.199-200, Eq.(2.1),[28]]) which
is referred to, in the literature as the generalized Lauricella function of several
variables (see also [27, p.454, Eq.(4.1)]):

SA: B
(1);...; B(n)

C: D(1);...; D(n)

 [(aA) : ϑ(1), ..., ϑ(n)] : [(b
(1)

B(1)) : ϕ(1)]; ...; [(b
(n)

B(n)) : ϕ(n)];
x1, ..., xn

[(cC) : ψ(1), ..., ψ(n)] : [(d
(1)

D(1)) : δ(1)]; ...; [(d
(n)

D(n)) : δ(n)];
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=
∞∑

m1=0

...
∞∑

mn=0

∏A
j=1 Γ[aj +

∑n
i=1miϑ

(i)
j ]
∏B(1)

j=1 Γ[b
(1)
j +m1ϕ

(1)
j ]∏C

j=1 Γ[cj +
∑n

i=1miψ
(i)
j ]
∏D(1)

j=1 Γ[d
(1)
j +m1δ

(1)
j ]
×

×
...
∏B(n)

j=1 Γ[b
(n)
j +mnϕ

(n)
j ]xm1

1

...
∏D(n)

j=1 Γ[d
(n)
j +mnδ

(n)
j ]m1!

...
xmn
n

mn!
(1.7)

=

∏A
j=1 Γ[aj]

∏B(1)

j=1 Γ[b
(1)
j ]...

∏B(n)

j=1 Γ[b
(n)
j ]∏C

j=1 Γ[cj]
∏D(1)

j=1 Γ[d
(1)
j ]...

∏D(n)

j=1 Γ[d
(n)
j ]
×

×FA: B(1);...; B(n)

C: D(1);...; D(n)

 [(aA) : ϑ(1), ..., ϑ(n)] : [(b
(1)

B(1)) : ϕ(1)]; ...; [(b
(n)

B(n)) : ϕ(n)];
x1, ..., xn

[(cC) : ψ(1), ..., ψ(n)] : [(d
(1)

D(1)) : δ(1)]; ...; [(d
(n)

D(n)) : δ(n)];


(1.8)

=

∏A
j=1 Γ[aj]

∏B(1)

j=1 Γ[b
(1)
j ]...

∏B(n)

j=1 Γ[b
(n)
j ]∏C

j=1 Γ[cj]
∏D(1)

j=1 Γ[d
(1)
j ]...

∏D(n)

j=1 Γ[d
(n)
j ]
×

×
∞∑

m1,m2,...,mn=0

Ω(m1,m2, ...,mn)
xm1
1

m1!

xm2
2

m2!
· · · x

mn
n

mn!
, (1.9)

where

Ω(m1,m2, ...,mn) :=

∏A
j=1(aj)m1ϑ

(1)
j +···+mnϑ

(n)
j

∏B(1)

j=1 (b
(1)
j )

m1ϕ
(1)
j
...
∏B(n)

j=1 (b
(n)
j )

mnϕ
(n)
j∏C

j=1(cj)m1ψ
(1)
j +···+mnψ

(n)
j

∏D(1)

j=1 (d
(1)
j )

m1δ
(1)
j
...
∏D(n)

j=1 (d
(n)
j )

mnδ
(n)
j

(1.10)
and the coefficients

ϑ
(i)
j , j = 1, 2, ..., A; ϕ

(i)
j , j = 1, 2, ..., B(i); ψ

(i)
j , j = 1, 2, ..., C; δ

(i)
j , j = 1, 2, ..., D(i);

for all i ∈
{

1, 2, ..., n
}

are real and positive,
then, with the positive constants ϑ′s, ϕ′s, ψ′s and δ′s equated to one,
F 1:1;...;1
0:1;...;1 will correspond to Lauricella’s F

(n)
A -function,

F 0:2;...;2
1:0;...;0 will correspond to Lauricella’s F

(n)
B -function,

F 2:0;...;0
0:1;...;1 will correspond to Lauricella’s F

(n)
C -function and
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F 1:1;...;1
1:0;...;0 will correspond to Lauricella’s fourth function F

(n)
D [16, p.113];

while F 0:B(1);...;B(n)

0:D(1);...;D(n) will yield the product

B(1)FD(1)

 (b
(1)

B(1));
x1

(d
(1)

D(1));

 ...B(n)FD(n)

 (b
(n)

B(n));
xn

(d
(n)

D(n));

 (1.11)

of n generalized hypergeometric functions with different arguments.
The multiple hypergeometric functions (1.7), (1.8) and (1.9) are the generalizations
of Fox-Wright hypergeometric function of one variable pΨq and pΨ

∗
q [31, 32].

Let

Ei =

(
µ
1+

∑D(i)

j=1 δ
(i)
j −

∑B(i)

j=1 ϕ
(i)
j

i

) ∏C
j=1

(∑n
`=1 µ` ψ

(`)
j

)ψ(i)
j ∏D(i)

j=1 (δ
(i)
j )δ

(i)
j

∏A
j=1

(∑n
`=1 µ` ϑ

(`)
j

)ϑ(i)
j ∏B(i)

j=1 (ϕ
(i)
j )ϕ

(i)
j

, (1.12)

∆i = 1 +
C∑
j=1

ψ
(i)
j +

D(i)∑
j=1

δ
(i)
j −

A∑
j=1

ϑ
(i)
j −

B(i)∑
j=1

ϕ
(i)
j ; i = 1, 2, ..., n. (1.13)

Case I. The multiple power series in (1.7) is convergent for all finite complex values
or real values of x1, x2, ..., xn, when ∆i > 0, i = 1, 2, ..., n.
Case II. The multiple power series in (1.7) is convergent when ∆1 = ∆2 = ... =
∆n = 0; |x1| < %1, |x2| < %2, ..., |xn| < %n;
where

%i = min
µ1,...,µn>0

{Ei}, i = 1, 2, ..., n. (1.14)

Case III. The multiple power series in (1.7) would diverge except when, trivially,
x1 = x2 = ... = xn = 0 when ∆i < 0, i = 1, 2, ..., n.

Further analysis of Case II
When

ϑ
(1)
j = ϑ

(2)
j = ... = ϑ

(n)
j = ϑj, 1 ≤ j ≤ A, (1.15)

ψ
(1)
j = ψ

(2)
j = ... = ψ

(n)
j = ψj, 1 ≤ j ≤ C, (1.16)
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Gi =

∏C
j=1(ψ

(i)
j )ψ

(i)
j
∏D(i)

j=1 (δ
(i)
j )δ

(i)
j∏A

j=1(ϑ
(i)
j )ϑ

(i)
j
∏B(i)

j=1 (ϕ
(i)
j )ϕ

(i)
j

, i = 1, 2, ..., n, (1.17)

fi ≡ 1 +
C∑
j=1

ψ
(i)
j +

D(i)∑
j=1

δ
(i)
j −

A∑
j=1

ϑ
(i)
j −

B(i)∑
j=1

ϕ
(i)
j , i = 1, 2, ..., n (1.18)

and

Ω =
A∑
j=1

ϑj −
C∑
j=1

ψj. (1.19)

Case II(a). The multiple power series in (1.7) is convergent when f1 = f2 =
... = fn = 0; Ω > 0 and(

|x1|
G1

) 1
Ω

+ ...+

(
|xn|
Gn

) 1
Ω

< 1. (1.20)

Case II(b). The multiple power series in (1.7) is convergent when f1 = f2 =
... = fn = 0; Ω ≤ 0 and

max

(
|x1|
G1

,
|x2|
G2

, ...,
|xn|
Gn

)
< 1. (1.21)

Series rearrangement technique is based upon certain interchanges of the order
of a double (or multiple) summation. Several hypergeometric generating relations
have been established using series rearrangement technique.

Here, we consider some well known results.
Cauchy’s double series identity [29, p.100, Eq.(1), Eq.(3)]

∞∑
m=0

∞∑
n=0

Φ(m,n) =
∞∑
m=0

m∑
n=0

Φ(m− n, n), (1.22)

∞∑
m=0

∞∑
n=0

Φ(m,n) =
∞∑
m=0

[m
2
]∑

n=0

Φ(m− 2n, n), (1.23)

provided that the associated double series are absolutely convergent.
Series rearrangement technique for the multiple series [29, p.102, Eq.(16)] is given
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by:

∞∑
n=0

∞∑
k1,...,kr=0

Φ(k1, ..., kr;n) =
∞∑
n=0

m1k1,...,mrkr≤n∑
k1,...,kr=0

Φ(k1, ..., kr;n−m1k1 − ...−mrkr),

(1.24)
where m1,m2, ...,mr are positive integers and the associated series are absolutely
convergent.

Srivastava’s multiple series identity [23, p.4, Eq.(12)]

∞∑
m=0

f(m)
(x1 + x2 + · · ·+ xn)m

m!
=

∞∑
m1,m2,··· ,mn=0

f(m1+m2+· · ·+mn)
x1

m1

m1!

x2
m2

m2!
· · · xn

mn

mn!
,

(1.25)
provided that the multiple series involved are absolutely convergent.

Shively’s pseudo-Laguerre Polynomials
In 1953, Shively defined pseudo-Laguerre polynomials Rn(a, x) [22, p.54, see

also [20], p.298, Eq.(1)] in the form

Rn(a, x) =
22n(a

2
)n(a+1

2
)n

n!(a)n
1F1

 − n;
x

a+ n;

 . (1.26)

Bedient’s polynomials
In 1958-59, Bedient’s polynomials Rm(α, β; y) [7, p.15, Eq.(2.5), see also [20],

p.297, Eq.(1)] are defined by

Rm(α, β ; y) =
(α)m(2y)m

m!
3F2

 −m
2
, −m+1

2
, β − α;

1
y2

β, 1− α−m ;

 , (1.27)

other Bedient’s polynomials Gm(γ, δ; y) [7, p.44, Eq.(3.4), see also [20], p.297,
Eq.(2)] are defined by

Gm(γ, δ ; y) =
(γ)m(δ)m(2y)m

(γ + δ)m m!
3F2

 −m
2
, −m+1

2
, 1− γ − δ −m;

1
y2

1− γ −m, 1− δ −m ;

 .
(1.28)
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Gauss’ classical summation theorem
Gauss’ classical summation theorem [20, p.49, Th.(18)] is given by

2F1

 α, β;
1

γ;

 =
Γ(γ) Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
, (1.29)

where Re(γ − α− β) > 0 and γ ∈ C\Z−0 .
A particular case of Gauss’ classical summation theorem [20, p.49, Ex.] is given by

2F1

 −`
2
, −`+1

2
;

1
b+ 1

2
;

 =
2`(b)`
(2b)`

, (1.30)

where ` = 0, 1, 2, ... and b+ 1
2
6= 0,−1,−2, ...

Special functions has gained much importance in almost all fields of Science and
Engineering. This branch of applied mathematics is rapidly developing with large
number of applications in the real world. Many authors such as Agarwal [1, p.2316,
Eq.(6), Eq.(10) and p.2317, Eq.(14)], Agarwal et al. [2, p.406, Eq.(2.1), Eq.(2.2),
Eq.(2.3)], see also [3,4, p.3699, Eq.(21), Eq.(22), Eq.(23) and Eq.(24)], Baleanu and
Agarwal [6, p.3, Eq.(12), Eq.(16)], Ruzhansky et al. [21], Srivastava and Agarwal
[24, p.339, Eq.(2.13), Eq.(2.14) and p.340, Eq.(2.17), Eq.(2.18)] etc have studied
this branch of applied mathematics and its applications. Likewise the concept of
the generating functions was introduced by Laplace in 1812. Since, then the theory
of generating functions has been developed in different directions and found wide
applications in many branches of mathematics and mathematical physics.

Linear generating function
Two functions F (x, t) and G(x, t) of two independent variables x and t are called
generating functions of the sets {fn(x)} and {gn(x)} respectively, if it is possible
to represent F (x, t) and G(x, t) in the following series expansions of t

F (x, t) =
∞∑
n=0

bn fn(x)tn; t 6= 0, (1.31)

G(x, t) =
+∞∑

n=−∞

cn gn(x)tn; t 6= 0, (1.32)

where the coefficients bn and cn are independent of x and t and may contain some
parameters related with fn(x), gn(x) respectively.
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Motivated by the work collected in beautiful monographs of Rainville [20, Ch.(8),
pp.129-146], McBride [17, Ch.(1), pp.1-24; Ch.(5), pp.72-76], Erdélyi et al. [10,
Ch.(19), pp.245-278], the papers of Srivastava et al. [25, p.350, Eq.(2.3) and p.351,
Eq.(2.8)], Choi et al. [9, p.28, Eq.(2.1), Eq.(2.2) and p.29, Eq.(2.3), Eq.(2.4)] and
the papers of Qureshi et al. [18, p.34, Eq.(2.1), Eq.(2.2), Eq.(2.3), p.35, Eq.(2.4),
[19], p.63, Eq.(2.1), p.64, Eq.(2.2), Eq.(2.3) and Eq.(2.4)], we obtain a generating
relation in this paper.

The present article is organized as follows. In section 2, we obtain a generating
relation. In section 3, we have given the proof of hypergeometric generating relation
using series rearrangement technique. In section 4, we discuss some applications.

2. Main Hypergeometric Generating Relations
When the values of numerator, denominator parameters and arguments leading

to the results which do not make sense are tacitly excluded. Then

FA+D+G+K:Q;S;U
B+E+H+L:R;J ;W

 [(aA) : 1, 2, 1], [(dD) : 1, 2, 2], [(gG) : 0, 1, 1], [(kK) : 0, 2, 1]:

[(bB) : 1, 2, 1], [(eE) : 1, 2, 2], [(hH) : 0, 1, 1], [(`L) : 0, 2, 1]:

[(qQ) : 1]; [(sS) : 1]; [(uU) : 1];
λt, µt2, yt

[(rR) : 1]; [(jJ) : 1]; [(wW ) : 1];


=

∞∑
m=0

∏A
i=1(ai)m

∏D
i=1(di)m

∏Q
i=1(qi)m λm∏B

i=1(bi)m
∏E

i=1(ei)m
∏R

i=1(ri)m m!
×

× FG+K+R+1:S;D+U
L+Q+H :J ;E+W

 [−m : 2, 1], [(kK) : 2, 1], [1− (rR)−m : 2, 1], [(gG) : 1, 1]:

[(`L) : 2, 1], [1− (qQ)−m : 2, 1], [(hH) : 1, 1]:

[(sS) : 1] ; [(dD) +m : 1], [(uU) : 1];
µ
λ2 , (−1)(Q+R+1) y

λ

[(jJ) : 1] ; [(eE) +m : 1], [(wW ) : 1];

 tm,

(2.1)
where λ 6= 0,

=
∞∑
p=0

∏A
i=1(ai)p

∏D
i=1(

di
2

)p
∏D

i=1(
1+di
2

)p
∏G

i=1(gi)p
∏K

i=1(ki)p
∏U

i=1(ui)p 2(2D−2E)p yp∏B
i=1(bi)p

∏E
i=1(

ei
2

)p
∏E

i=1(
1+ei
2

)p
∏H

i=1(hi)p
∏L

i=1(`i)p
∏W

i=1(wi)p p!
×
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× FE+W+H+1:S;Q+L
D+U+G :J ;R+K

 [−p : 2, 1], [1− (eE)− 2p : 2, 1],

[1− (dD)− 2p : 2, 1],

[1− (wW )− p : 2, 1], [1− (hH)− p : 1, 1]:[(sS) : 1]; [(qQ) : 1],

[1− (uU)− p : 2, 1], [1− (gG)− p : 1, 1]: [(jJ) : 1]; [(rR) : 1],

[1− (`L)− p : 1];
µ (−1)(G+H)

y2 , (−1)(D+E+G+H+K+L+U+W+1) λ
y

[1− (kK)− p : 1];

 tp.

(2.2)
Convergence conditions
Suppose

∆1 = 1 +B + E +R− A−D −Q, (2.3)

∆2 = 1 + 2B + 2E +H + 2L+ J − 2A− 2D −G− 2K − S, (2.4)

∆3 = 1 +B + 2E +H + L+W − A− 2D −G−K − U. (2.5)

(i) When ∆1 > 0, ∆2 > 0, ∆3 > 0, then the triple series in left hand side of
equations (2.1) and (2.2) is convergent for all finite (real and complex) values
of λ, µ, y and t.

(ii) When ∆1 = ∆2 = ∆3 = 0, then the triple series in left hand side of equations
(2.1) and (2.2) is convergent for appropriately constrained values of |λt|, |µt2|
and |yt|,

provided that in each hypergeometric function, denominator parameters are neither
zero nor negative integers.

3. Proof of Main Generating Relations
Let

Ψ = FA+D+G+K:Q;S;U
B+E+H+L:R;J ;W

 [(aA) : 1, 2, 1], [(dD) : 1, 2, 2], [(gG) : 0, 1, 1], [(kK) : 0, 2, 1]:

[(bB) : 1, 2, 1], [(eE) : 1, 2, 2], [(hH) : 0, 1, 1], [(`L) : 0, 2, 1]:
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[(qQ) : 1]; [(sS) : 1]; [(uU) : 1];
λt, µt2, yt

[(rR) : 1]; [(jJ) : 1]; [(wW ) : 1];

 (3.1)

=
∞∑
m=0

∞∑
n=0

∞∑
p=0

[(aA)]m+2n+p[(dD)]m+2n+2p[(gG)]n+p[(kK)]2n+p[(qQ)]m[(sS)]n
[(bB)]m+2n+p[(eE)]m+2n+2p[(hH)]n+p[(`L)]2n+p[(rR)]m[(jJ)]n

×

× [(uU)]p(λt)
m(µt2)n(yt)p

[(wW )]p m! n! p!
, (3.2)

where [(aA)]m = (a1)m(a2)m...(aA)m =
∏A

i=1(ai)m.
Then

Ψ =
∞∑
m=0

∞∑
n=0

∞∑
p=0

(a1)m+2n+p...(aA)m+2n+p(d1)m+2n+2p...(dD)m+2n+2p(g1)n+p...(gG)n+p
(b1)m+2n+p...(bB)m+2n+p(e1)m+2n+2p...(eE)m+2n+2p(h1)n+p...(hH)n+p

×

×(k1)2n+p...(kK)2n+p(q1)m...(qQ)m(s1)n...(sS)n(u1)p...(uU)p λ
mµnyp tm+2n+p

(`1)2n+p...(`L)2n+p(r1)m...(rR)m(j1)n...(jJ)n(w1)p...(wW )p m! n! p!
.

(3.3)
Replacing m by m − 2n − p in equation (3.3) and applying series identity (1.24),
we get

Ψ =
∞∑
m=0

2n+p≤m∑
n,p=0

(a1)m...(aA)m(d1)m+p...(dD)m+p(g1)n+p...(gG)n+p(k1)2n+p...(kK)2n+p
(b1)m...(bB)m(e1)m+p...(eE)m+p(h1)n+p...(hH)n+p(`1)2n+p...(`L)2n+p

×

×(q1)m−2n−p...(qQ)m−2n−p(s1)n...(sS)n(u1)p...(uU)p(−m)2n+p λ
m−2n−pµnyp tm

(r1)m−2n−p...(rR)m−2n−p(j1)n...(jJ)n(w1)p...(wW )p(−1)p m! n! p!

=
∞∑
m=0

(a1)m...(aA)m(d1)m...(dD)m(q1)m...(qQ)m λm

(b1)m...(bB)m(e1)m...(eE)m(r1)m...(rR)mm!
×

×

(
2n+p≤m∑
n,p=0

(d1 +m)p...(dD +m)p(g1)n+p...(gG)n+p(k1)2n+p...(kK)2n+p
(e1 +m)p...(eE +m)p(h1)n+p...(hH)n+p(`1)2n+p...(`L)2n+p

×

×
(q1 +m)−(2n+p)...(qQ +m)−(2n+p)(s1)n...(sS)n(u1)p...(uU)p(−m)2n+p µ

nyp(−1)p

(r1 +m)−(2n+p)...(rR +m)−(2n+p)(j1)n...(jJ)n(w1)p...(wW )p λ2n+p n! p!

)
tm

=
∞∑
m=0

∏A
i=1(ai)m

∏D
i=1(di)m

∏Q
i=1(qi)m λm∏B

i=1(bi)m
∏E

i=1(ei)m
∏R

i=1(ri)m m!
×
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×

(
2n+p≤m∑
n,p=0

(−m)2n+p (d1 +m)p...(dD +m)p(g1)n+p...(gG)n+p(k1)2n+p...(kK)2n+p
(e1 +m)p...(eE +m)p(h1)n+p...(hH)n+p(`1)2n+p...(`L)2n+p

×

×
(1− r1 −m)(2n+p)...(1− rR −m)(2n+p)(s1)n...(sS)n
(1− q1 −m)(2n+p)...(1− qQ −m)(2n+p)(j1)n...(jJ)n

×

× (u1)p...(uU)p µ
nyp(−1)(Q+R+1)p

(w1)p...(wW )p λ2n+p n! p!

)
tm. (3.4)

Now using the definition (1.8) of hypergeometric function of Srivastava-Daoust, we
get the generating relation (2.1).
Similarly, when we replace p by p−m−2n in equation (3.3) and after simplification,
we get right hand side of (2.2).

4. Some Applications
In generating relation (2.2), put λ = 0, µ = −1, A = B = 0, y = 2x and after

simplification, we get

FD+G+K:S;U
E+H+L:J ;W

 [dD) : 2, 2], [(kK) : 2, 1], [(gG) : 1, 1]:[(sS) : 1]; [(uU) : 1];
−t2, 2xt

[(eE) : 2, 2], [(`L) : 2, 1], [(hH) : 1, 1]:[(jJ) : 1]; [(wW ) : 1];


=
∞∑
p=0

∏D
i=1(

di
2

)p
∏D

i=1(
1+di
2

)p
∏G

i=1(gi)p
∏K

i=1(ki)p
∏U

i=1(ui)p∏E
i=1(

ei
2

)p
∏E

i=1(
1+ei
2

)p
∏H

i=1(hi)p
∏L

i=1(`i)p
∏W

i=1(wi)p p!
(2(2D−2E+1)x)p×

× ρFυ

 −p
2
, −p+1

2
, 1−(eE)−2p

2
, 2−(eE)−2p

2
, 1− (hH)− p,

1−(dD)−2p
2

, 2−(dD)−2p
2

, 1− (gG)− p,

(sS), 1−(wW )−p
2

, 2−(wW )−p
2

;
(−1)(G+H+1)4(E−D+W−U)

x2

(jJ), 1−(uU )−p
2

, 2−(uU )−p
2

;

 tp,
(4.1)

where ρ = 2E + 2W +H + S + 2 , υ = 2D + 2U +G+ J and (bB) = b1, b2, ..., bB.
In generating relation (4.1), put D = E = K = L = H = U = W = 0, G =

1, g1 = β, S = 1, s1 = γ − β, J = 1, j1 = γ and applying Binomial theorem
and using the definition of Bedient polynomials Rp(β, γ;x) (1.27), we get a known
result [20, p.297, Eq.(4)]

(1− 2xt)−β 2F1

 β , γ − β ;
−t2

1−2xt
γ ;

 =
∞∑
p=0

Rp(β, γ; x) tp. (4.2)
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In generating relation (4.1), put D = E = K = L = S = J = U = W = 0, G =
2, g1 = α, g2 = β, H = 1, h1 = α + β and using the definition of Bedient
polynomials Gp(α, β;x) (1.28) and multiple series identity of Srivastava (1.25), we
get a known result [20, p.298, Eq.(6)]

2F1

 α , β ;
2xt− t2

α + β;

 =
∞∑
p=0

Gp(α, β; x) tp. (4.3)

In generating relation (4.1), put D = E = K = L = 0 and after simplification, we
get

FG:S;U
H:J ;W

 (gG): (sS); (uU);
−t2, 2xt

(hH): (jJ); (wW );

 =
∞∑
p=0

∏G
i=1(gi)p

∏U
i=1(ui)p∏H

i=1(hi)p
∏W

i=1(wi)p

(2x)p

p!
×

× ηFθ


−p
2
, −p+1

2
, 1− (hH)− p, 1−(wW )−p

2
, 2−(wW )−p

2
, (sS);

(−1)(G+H+1)4(W−U)

x2

1− (gG)− p, 1−(uU )−p
2

, 2−(uU )−p
2

, (jJ);

 tp,

(4.4)
where η = H + S + 2W + 2 and θ = G+ J + 2U.
In generating relation (2.1), put λ = 2, µ = 1, y = −x, A = B = D = E = G =
J = K = L = Q = R = S = U = W = 0, H = 1, h1 = 1+a

2
, we get

∞∑
m=0

(2t)m

m!

∞∑
n,p=0

t2n(−xt)p

(1+a
2

)n+pn! p!
=

∞∑
m=0

2m

m!

(
∞∑

n,p=0

(−m)2n+p x
p

(1+a
2

)n+p n! p! 4n 2p

)
tm. (4.5)

Now using Srivastava’s multiple series identity (1.25) in the left hand side of equa-
tion (4.5), we get

e2t 0F1

 − ;
t2 − xt

1+a
2

;

 =
∞∑
m=0

(2t)m

m!

∞∑
p=0

(−m)p x
p

(1+a
2

)p 2p p!
2F1

 −m+p
2

, −m+p+1
2

;
1

1+a
2

+ p;

 .
(4.6)

Using summation theorem (1.30) and the definition of pseudo-Laguerre polynomials
Rm(a, x) defined by Shively (1.26) in equation (4.6) and after simplification, we get
the known result [20, p.298, Eq.(4)]

e2t 0F1

 − ;
t2 − xt

1+a
2

;

 =
∞∑
m=0

Rm(a, x)

(1+a
2

)m
tm. (4.7)
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5. Conclusion
We conclude our present investigation by observing that the generating rela-

tion deduced above is quite significant and can lead to yield numerous generating
relations and generating functions involving various special functions by suitable
specializations of arbitrary parameters. Moreover, presented generating relation is
expected to find some applications in probability theory, quantum physics, multi-
variate statistics, number theory. It may also be potentially useful to non-specialists
who are interested in Applied Mathematics or Mathematical Physics.

Acknowledgment: The authors are very thankful to the referees for their valuable
suggestions about the convergence conditions (2.3), (2.4), (2.5) of main hypergeo-
metric generating relations (2.1), (2.2) and citations of some additional references.
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Kampé de Fériet’s function, Publ. Inst. Math. (Beograd) (N.S.), 9 (23)
(1969), 199-202.

[27] Srivastava, H.M. and Daoust, M.C., Certain generalized Neumann expansions
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