South East Asian J. of Mathematics and Mathematical Sciences Vol. 15, No. 3 (2019), pp. 01-10

> ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

ON MULTISET RELATIONS AND FACTOR MULTIGROUPS

J. A. Awolola

Department of Mathematics/Statistics/Computer Science, University of Agriculture, Makurdi, NIGERIA

E-mail : remsonjay@yahoo.com, awolola.johnson@uam.edu.ng

(Received: Aug. 13, 2019 Accepted: Nov. 14, 2019 Published: Dec. 31, 2019)

Abstract: Crisp congruence relations on groups are very well known. This paper attempts to define factor multigroups by using the proposed multiset relations in this study and prove some basic properties.

Keywords and Phrases: Multiset, multiset relation, multiset congruence, factor multigroup.

2010 Mathematics Subject Classification: 54A40, 03E72, 20N25, 06D72.

1. Introduction

The notion of multisets was formulated by N. G. Bruijn in a private communication to Knuth [19] as a mathematical structure that violates basic set conditions. It is a collection of objects in which repetition is significant. Since then, multisets have been applied to various fields of mathematics and computer science. Nazmul et al. [20] introduced the concept of multigroups with multiset settings different from the earlier definitions given by [3] and [21] and obtained equivalents of some basic results in group theory. This has been investigated further by [1],[2],[4],[5],[6],[7],[8],[9],[10],[11],[16],[17] and [18]. In [22], a new fashion of multigroups was developed with some properties considered. The concept of multiset relations on set was defined by Girish and John [12]. They have also generalized the concept by considering multiset relations on multisets and developed multiset topologies (see [13]). In [14], multiset relations are applied to consider rough multiset relations. Since multigroups are a generalization of groups and there exist close relationships between the normal subgroups and the relation of congruency in a group, we have been motivated to define factor multigroups using the proposed multiset relations in this paper and derive some basic results.

2. Preliminaries

In this section, we review briefly some definitions and results that are required in this paper.

Definition 2.1. [15] A multiset \mathcal{A} is a countable set ξ together with a function $\mathcal{M}_{\mathcal{A}}: \xi \longrightarrow \mathbb{N} \cup \{0\}$ that defines the multiplicity of the elements of ξ in \mathcal{A} . The usual set operations can be carried over to multisets. Let \mathcal{A}_1 and \mathcal{A}_2 be multisets over ξ . Then

- (i) $\mathcal{A}_1 \subseteq \mathcal{A}_2$ if $\mathcal{M}_{\mathcal{A}_1}(a) \leq \mathcal{M}_{\mathcal{A}_2}(b)$.
- (ii) Let $\mathcal{A} = \mathcal{A}_1 \bigcap \mathcal{A}_2$ such that $\forall a \in \xi, \ \mathcal{M}_{\mathcal{A}}(a) = \mathcal{M}_{\mathcal{A}_1}(a) \bigwedge \mathcal{M}_{\mathcal{A}_2}(a)$.
- (ii) Let $\mathcal{A} = \mathcal{A}_1 \bigcup \mathcal{A}_2$ such that $\forall a \in \xi, \ \mathcal{M}_{\mathcal{A}}(a) = \mathcal{M}_{\mathcal{A}_1}(a) \bigvee \mathcal{M}_{\mathcal{A}_2}(a)$.

Definition 2.2. [12] A submultiset R of $\mathcal{A} \times \mathcal{A}$ is said to be a multiset relation on \mathcal{A} if every member of R has a multiplicity $\mathcal{M}_1(a, b) \cdot \mathcal{M}_2(a, b)$.

Definition 2.3. [20] Let G be any group. By a multigroup we mean a multiset \mathcal{A} over G satisfying the following conditions:

- (i) $\mathcal{M}_{\mathcal{A}}(ab) \geq \mathcal{M}_{\mathcal{A}}(a) \bigwedge \mathcal{M}_{\mathcal{A}}(b) = min\{\mathcal{M}_{\mathcal{A}}(a), \mathcal{M}_{\mathcal{A}}(b)\}, \ \forall \ a, b \in G,$
- (*ii*) $\mathcal{M}_{\mathcal{A}}(a^{-1}) \geq \mathcal{M}_{\mathcal{A}}(a), \ \forall \ a \in G.$

It is immediate from the definition that $\mathcal{M}_{\mathcal{A}}(e) \geq \mathcal{M}_{\mathcal{A}}(a)$ and $\mathcal{M}_{\mathcal{A}}(a^{-1}) = \mathcal{M}_{\mathcal{A}}(a)$, where e is the identity element of G.

Definition 2.4. [20] A multigroup H over G is called a normal multigroup if $\mathcal{M}_H(ab) = \mathcal{M}_H(ba), \ \forall \ a, b \in G.$

Definition 2.5. [20] If a multiset is a multigroup over G/H, then it is called factor multigroup. Analogously, if it is a normal multigroup over G/H, then it is called normal factor multigroup.

3. Multiset relation and multiset congruence

In this section, we define the proposed multiset relations and outline some results.

Definition 3.1. Let G be a group and H be a normal multigroup over G. A

multiset relation η can be defined on G by

$$\mathcal{M}_{\eta}(a,b) = \begin{cases} \geq \mathcal{M}_{H}(e), & \text{if } a = b = e, \\ \mathcal{M}_{H}(e), & \text{if } a = b, \\ \mathcal{M}_{H}(a) \bigwedge \mathcal{M}_{H}(b), & \text{if } a \neq b, \forall a, b \in G. \end{cases}$$

Definition 3.2. Let G be a group and η_1 and η_2 be multiset relations on G. Then the composition $\eta_1 \circ \eta_2$ is defined as follows:

$$\mathcal{M}_{\eta_1 \circ \eta_2}(a,c) = \bigvee_{b \in G} \{ \mathcal{M}_{\eta_1}(a,b) \bigwedge \mathcal{M}_{\eta_2}(b,c) \}$$

Definition 3.3. Let G be a group. A binary function $\mathcal{M}_{\eta} : G \times G \longrightarrow \mathbb{N} \cup \{0\}$ is called a multiset congruence on G if the following conditions are satisfied for all $a, b, c, d \in G$:

(C1) $\mathcal{M}_{\eta}(e, e) \geq \mathcal{M}_{\eta}(a, a)$

(C2)
$$\mathcal{M}_{\eta}(a,b) = \mathcal{M}_{\eta}(b,a)$$

(C3)
$$\mathcal{M}_{\eta\circ\eta}(a,c) \leq \mathcal{M}_{\eta}(a,c)$$

(C4)
$$\mathcal{M}_{\eta}(ac, bd) \ge \mathcal{M}_{\eta}(a, b) \bigwedge \mathcal{M}_{\eta}(c, d)$$

Proposition 3.1. Let G be a group and H be a normal multigroup over G. Then the multiset relation η defined on G is a multiset congruence. **Proof.** Let $a, b, c, d \in G$.

(C1):
$$\mathcal{M}_{\eta}(e, e) \geq \mathcal{M}_{H}(e) = \mathcal{M}_{\eta}(a, a).$$

(C2):

$$\mathcal{M}_{\eta}(a,b) = \mathcal{M}_{H}(a) \bigwedge \mathcal{M}_{H}(b)$$
$$= \mathcal{M}_{H}(b) \bigwedge \mathcal{M}_{H}(a)$$
$$= \mathcal{M}_{\eta}(b,a)$$

(C3):

$$\mathcal{M}_{\eta\circ\eta}(a,c) = \bigvee_{b\in G} \{\mathcal{M}_{\eta}(a,b) \bigwedge \mathcal{M}_{\eta}(b,c)\}$$

$$= \bigvee_{b\in G} \{\left(\mathcal{M}_{H}(a) \bigwedge \mathcal{M}_{H}(b)\right) \bigwedge \left(\mathcal{M}_{H}(b) \bigwedge \mathcal{M}_{H}(c)\right)\}$$

$$\leq \left(\bigvee_{b\in G} \{\mathcal{M}_{H}(a) \bigwedge \mathcal{M}_{H}(b)\}\right) \bigwedge \left(\bigvee_{b\in G} \{\mathcal{M}_{H}(b) \bigwedge \mathcal{M}_{H}(c)\}\right)$$

$$\leq \bigvee_{b\in G} \{\mathcal{M}_{H}(a)\} \bigwedge \bigvee_{b\in G} \{\mathcal{M}_{H}(c)\}$$

$$= \mathcal{M}_{H}(a) \land \mathcal{M}_{H}(c)$$

$$= \mathcal{M}_{\eta}(a,c)$$

(C4):

$$\mathcal{M}_{\eta}(ac, bd) = \mathcal{M}_{H}(ac) \bigwedge \mathcal{M}_{H}(bd)$$

$$\geq \left(\mathcal{M}_{H}(a) \bigwedge \mathcal{M}_{H}(c) \right) \bigwedge \left(\mathcal{M}_{H}(b) \bigwedge \mathcal{M}_{H}(d) \right)$$

$$= \left(\mathcal{M}_{H}(a) \bigwedge \mathcal{M}_{H}(b) \right) \bigwedge \left(\mathcal{M}_{H}(c) \bigwedge \mathcal{M}_{H}(d) \right)$$

$$= \mathcal{M}_{\eta}(a, b) \bigwedge \mathcal{M}_{\eta}(c, d)$$

Therefore η is a multiset congruence on G.

Proposition 3.2. Let G be a group and H be a normal multigroup over G, then the function $\mathcal{M}_E : G/H \longrightarrow \mathbb{N} \cup \{0\}$ defined by $\mathcal{M}_E(aH) = \mathcal{M}_\eta(a,h) \forall h \in H$ such that $\mathcal{M}_H(h) > \mathcal{M}_H(a) \forall a \neq e \in G$ is a factor multigroup over G/H. **Proof.** For every $aH, bH \in G/H$, we have

$$\mathcal{M}_{E}(aHbH) = \mathcal{M}_{\eta}(ab, h)$$

$$= \mathcal{M}_{H}(ab) \bigwedge \mathcal{M}_{H}(h)$$

$$= \mathcal{M}_{H}(ab)$$

$$\geq \mathcal{M}_{H}(a) \bigwedge \mathcal{M}_{H}(b)$$

$$= \left(\mathcal{M}_{H}(a) \bigwedge \mathcal{M}_{H}(h) \right) \bigwedge \left(\mathcal{M}_{H}(b) \bigwedge \mathcal{M}_{H}(h) \right)$$

$$= \mathcal{M}_{\eta}(a, h) \bigwedge \mathcal{M}_{\eta}(b, h)$$

$$= \mathcal{M}_{E}(aH) \bigwedge \mathcal{M}_{E}(bH)$$

and

$$\mathcal{M}_{E}(a^{-1}H) = \mathcal{M}_{\eta}(a^{-1},h)$$

$$= \mathcal{M}_{H}(a^{-1}) \bigwedge \mathcal{M}_{H}(h)$$

$$= \mathcal{M}_{H}(a^{-1})$$

$$\geq \mathcal{M}_{H}(a)$$

$$= \mathcal{M}_{H}(a) \bigwedge \mathcal{M}_{H}(h)$$

$$= \mathcal{M}_{\eta}(a,h) = \mathcal{M}_{E}(aH)$$

Thus E is a factor multigroup over G/H.

Proposition 3.3. The function $\mathcal{M}_E : G/H \longrightarrow \mathbb{N} \cup \{0\}$ defined by $\mathcal{M}_E(aH) = \mathcal{M}_\eta(a,h) \ \forall \ h \in H \text{ with } \mathcal{M}_H(h) > \mathcal{M}_H(a) \ \forall \ a \neq e \in G \text{ is a normal factor multigroup over } G/H.$

Proof. Since H is a multigroup over G, then

$$\mathcal{M}_{E}(aH, bH) = \mathcal{M}_{\eta}(ab, h)$$

$$= \mathcal{M}_{H}(ab) \bigwedge \mathcal{M}_{H}(h)$$

$$= \mathcal{M}_{H}(ab) = \mathcal{M}_{H}(ba)$$

$$= \mathcal{M}_{H}(ba) \bigwedge \mathcal{M}_{H}(h)$$

$$= \mathcal{M}_{\eta}(ba, h)$$

$$= \mathcal{M}_{E}(bH, aH)$$

Hence E is a normal factor multigroup over G/H.

Proposition 3.4. If *E* is a factor multigroup over G/H and $\mathcal{M}_H(h) > \mathcal{M}_H(a)$ $\forall a \neq e \in G$, then $\mathcal{M}_E(a^n H) \geq \mathcal{M}_E(aH)$. **Proof.** Let $aH \in G/H$. Then

$$\mathcal{M}_{E}(a^{n}H) = \mathcal{M}_{\eta}(a^{n},h)$$

$$= \mathcal{M}_{H}(a^{n-1}a) \bigwedge \mathcal{M}_{H}(h)$$

$$= \mathcal{M}_{H}(a^{n-1}a)$$

$$\geq \mathcal{M}_{H}(a^{n-1}) \bigwedge \mathcal{M}_{H}(a)$$

$$\geq \mathcal{M}_{H}(a) \bigwedge \mathcal{M}_{H}(a) \bigwedge \dots \bigwedge \mathcal{M}_{H}(a) \quad (by \ recursion)$$

$$= \mathcal{M}_{H}(a)$$

$$= \mathcal{M}_{H}(a) \bigwedge \mathcal{M}_{H}(h)$$

$$= \mathcal{M}_{\eta}(a,h) = \mathcal{M}_{E}(aH)$$

Hence the proof.

Proposition 3.5. Let *E* be a factor multigroup over *G*/*H* and let $aH \in G/H$ with $\mathcal{M}_H(h) > \mathcal{M}_H(a) \ \forall \ a \neq e \in G$. Then $\mathcal{M}_E(aHbH) = \mathcal{M}_E(bH) \ \forall \ bH \in G/H$ if and only if $\mathcal{M}_E(aH) = \mathcal{M}_E(H)$.

Proof. If $\mathcal{M}_E(aHbH) = \mathcal{M}_E(bH) \forall bH \in G/H$, then bH = H. Conversely, assume $\mathcal{M}_E(aH) = \mathcal{M}_E(H)$. Since *E* is a multigroup over *G/H*, then

$$\mathcal{M}_{E}(aHbH) \geq \mathcal{M}_{E}(aH) \bigwedge \mathcal{M}_{E}(bH)$$

$$= \mathcal{M}_{E}(H) \bigwedge \mathcal{M}_{E}(bH)$$

$$= \mathcal{M}_{\eta}(e,h) \bigwedge \mathcal{M}_{\eta}(b,h)$$

$$= \mathcal{M}_{H}(h) \bigwedge \left(\mathcal{M}_{H}(b) \bigwedge \mathcal{M}_{H}(h) \right)$$

$$= \mathcal{M}_{H}(h) \bigwedge \mathcal{M}_{H}(b)$$

$$= \mathcal{M}_{\eta}(b,h)$$

$$= \mathcal{M}_{E}(bH)$$

and, on the other hand, $\mathcal{M}_E(bH) \geq \mathcal{M}_E(H) \bigwedge \mathcal{M}_E(bH) = \mathcal{M}_E(aHbH)$. This completes the proof.

Proposition 3.6. Let E and F be two normal factor multigroups over G/H. Then $E \bigcap F$ is a normal factor multigroup over G/H. **Proof.** For every $aH, bH \in G/H$,

$$\mathcal{M}_{E \cap F}(aHbH) = \mathcal{M}_{E}(aHbH) \bigwedge \mathcal{M}_{F}(aHbH)$$

$$\geq \left(\mathcal{M}_{E}(aH) \bigwedge \mathcal{M}_{E}(bH) \right) \bigwedge \left(\mathcal{M}_{F}(aH) \bigwedge \mathcal{M}_{F}(bH) \right)$$

$$= \left(\mathcal{M}_{E}(aH) \bigwedge \mathcal{M}_{F}(aH) \right) \bigwedge \left(\mathcal{M}_{E}(bH) \bigwedge \mathcal{M}_{F}(bH) \right)$$

$$= \mathcal{M}_{E \cap F}(aH) \bigwedge \mathcal{M}_{E \cap F}(bH)$$

and

$$\mathcal{M}_{E \cap F}(a^{-1}H) = \mathcal{M}_{E}(a^{-1}H) \bigwedge \mathcal{M}_{F}(a^{-1}H)$$

$$\geq \mathcal{M}_{E}(aH) \bigwedge \mathcal{M}_{F}(aH) = \mathcal{M}_{E \cap F}(aH)$$

Hence $E \cap F$ is a multigroup over G/H.

$$\mathcal{M}_{E \cap F}(aHbH) = \mathcal{M}_{E}(aHbH) \bigwedge \mathcal{M}_{F}(aHbH)$$
$$= \mathcal{M}_{E}(bHaH) \bigwedge \mathcal{M}_{F}(bHaH) = \mathcal{M}_{E \cap F}(bHaH)$$

Thus $E \cap F$ is a normal multigroup over G/H.

Proposition 3.7. Let *E* be a normal factor multigroup over *G*/*H* such that $\mathcal{M}_H(h) > \mathcal{M}_H(a) \ \forall \ a \neq e \in G$. Then the function $\mathcal{M}_\delta : G/H \times G/H$ defined by $\mathcal{M}_\delta(aH, bH) = \mathcal{M}_E(aHb^{-1}H)$ is a multiset congruence on *G*/*H*. **Proof.** Let $aH, bH \in G/H$. Then

(C1): $\mathcal{M}_{\delta}(eH, eH) \geq \mathcal{M}_{E}(H) = \mathcal{M}_{\delta}(aH, aH)$

(C2):

$$\mathcal{M}_{\delta}(aH, bH) = \mathcal{M}_{E}(aHb^{-1}H)$$
$$= \mathcal{M}_{E}((ba^{-1})^{-1}H)$$
$$= \mathcal{M}_{E}(ba^{-1}H)$$
$$= \mathcal{M}_{E}(bHa^{-1}H)$$
$$= \mathcal{M}_{\delta}(bH, aH)$$

(C3):

$$\mathcal{M}_{\delta\circ\delta}(aH, bH) = \bigvee_{b\in G/H} \{\mathcal{M}_{\delta}(aH, bH) \bigwedge \mathcal{M}_{\delta}(bH, cH)\}$$

$$= \bigvee_{b\in G/H} \{\mathcal{M}_{E}(aHb^{-1}H) \bigwedge \mathcal{M}_{E}(bHc^{-1}H)\}$$

$$= \bigvee_{b\in G} \{\mathcal{M}_{H}(ab^{-1}H) \bigwedge \mathcal{M}_{E}(bc^{-1}H)\}$$

$$= \bigvee_{b\in G} \{\mathcal{M}_{H}(ab^{-1}, h) \bigwedge \mathcal{M}_{H}(bc^{-1}, h)\}$$

$$= \bigvee_{b\in G} \{\left(\mathcal{M}_{H}(ab^{-1}) \bigwedge \mathcal{M}_{H}(h)\right) \land \left(\mathcal{M}_{H}(bc^{-1}) \bigwedge \mathcal{M}_{H}(h)\right)\}$$

$$= \bigvee_{b\in G} \{\left(\mathcal{M}_{H}(ab^{-1}) \bigwedge \mathcal{M}_{H}(bc^{-1})\right) \land \mathcal{M}_{H}(h)\}$$

$$= \bigvee_{b \in G} \left\{ \left(\mathcal{M}_{H}(ab^{-1}) \bigwedge \mathcal{M}_{H}(bc^{-1}) \right) \right\}$$

$$\leq \bigvee_{b \in G} \left\{ \mathcal{M}_{H}(ac^{-1}) \right\}$$

$$= \mathcal{M}_{H}(ac^{-1}) \bigwedge \mathcal{M}_{H}(h)$$

$$= \mathcal{M}_{\eta}(ac^{-1}, h)$$

$$= \mathcal{M}_{E}(aHc^{-1}H) = \mathcal{M}_{\delta}(aH, cH)$$

(C4):

$$\begin{aligned} \mathcal{M}_{\delta}(acH, bdH) &= \mathcal{M}_{E}(ac(bd)^{-1}H) \\ &= \mathcal{M}_{\eta}(ac(bd)^{-1}, h) \\ &= \mathcal{M}_{H}(ac(bd)^{-1}) \bigwedge \mathcal{M}_{H}(h) \\ &= \mathcal{M}_{H}(acd^{-1}b^{-1}) \\ &= \mathcal{M}_{H}(b^{-1}acd^{-1}) \\ &\geq \mathcal{M}_{H}(b^{-1}a) \bigwedge \mathcal{M}_{H}(cd^{-1}) \\ &= \mathcal{M}_{H}(ab^{-1}) \bigwedge \mathcal{M}_{H}(cd^{-1}) \\ &= \left(\mathcal{M}_{H}(ab^{-1}) \bigwedge \mathcal{M}_{H}(h)\right) \bigwedge \left(\mathcal{M}_{H}(cd^{-1}) \bigwedge \mathcal{M}_{H}(h)\right) \\ &= \mathcal{M}_{\eta}(ab^{-1}, h) \bigwedge \mathcal{M}_{\eta}(cd^{-1}, h) \\ &= \mathcal{M}_{E}(ab^{-1}H) \bigwedge \mathcal{M}_{E}(cd^{-1}H) \\ &= \mathcal{M}_{E}(aHb^{-1}H) \bigwedge \mathcal{M}_{\delta}(cH, dH) \end{aligned}$$

Thus δ is a multiset congruence on G/H.

References

- [1] Awolola, J. A. and Ibrahim, A. M., Some results on multigroups, Quasigroups and Related Systems, 24(2)(2016), 169-177.
- [2] Awolola, J. A. and Ejegwa, P. A., On some algebraic properties of order of an element of a Multigroup, Quasigroups and Related Systems, 25(1) (2017), 21-26.

- [3] Dresher, M. and Ore, O, Theory of Multigroups, American journal of Mathematics, 60(3) (1938), 705-733.
- [4] Ejegwa, P. A. and Ibrahim, A. M., Some homomorphic properties of multigroups, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 83(1)(2017), 67-76.
- [5] Ejegwa, P. A. and Ibrahim, A. M., On comultisets and factor multigroups, Theory and Applications of Mathematics and Computer Science, 7(2) (2017), 124-140.
- [6] Ejegwa, P. A. and Ibrahim, A. M., Some group's analogous results in multigroup setting, Annals of Fuzzy Mathematics and Informatics, 17(3) (2019), 231-245.
- [7] Ejegwa, P. A. and Ibrahim, A. M., Homomorphism of cuts of multigroups, Gulf Journal of Mathematics, 6(1) (2016), 61-73.
- [8] Ejegwa, P. A. and Ibrahim, A. M., Direct product of multigroups and its generalization, International Journal of Mathematical Combinatorics, 4(2017), 1-18.
- [9] Ejegwa, P. A., Normal submultigroups and comultisets of a multigroup, Qausigroups and Related Systems, 25(2) (2017), 231-244.
- [10] Ejegwa, P. A., Upper and lower cuts of multigroups, Prajna International Mathematical Sciences and Applications, 1(1) (2017), 19-26.
- [11] Ejegwa, P. A., Some properties of multigroups, Palestine Journal of Mathematics, 9(1) (2017), 31-47.
- [12] Girish, K. P. and Sunil, J. J. Relations and functions in multiset context, Information Sciences, 179(2009), 643-656.
- [13] Girish, K. P. and Sunil, J. J. Multiset topologies induced by multiset relations, Information Sciences, 3(2012), 298-313.
- [14] Girish, K. P. and Sunil, J. J. On rough multiset relations, Int. J. Granular Computing, Rough sets and Systems, 3(4) (2015), 306-326.
- [15] Ibrahim, A. M., Awolola, J. A, and A. J. Alkali, An extension of the concept of *n*-level sets to multisets, Annals of Fuzzy Mathematics and Informatics, 11(6) (2016), 855-862.

- [16] Ibrahim, A. M. and Ejegwa, P. A., Characteristic submultigroups of a multigroup, Gulf Journal of Mathematics, 5(4) (2016), 1-8.
- [17] Ibrahim, A. M. and Ejegwa, P. A., Multigroup action on multiset, Annals of Fuzzy Mathematics and Informatics, 14(5) (2016), 512-526.
- [18] Ibrahim, A. M. and Ejegwa, P. A., A survey on the concept of multigroups, Journal of the Nigerian Association of Mathematical Physics, 38 (2016), 1-8.
- [19] Knuth, D., The art of computer programming, Semi Numerical Algorithms, Second Edition, 2, Addison-Wesley, Reading, Massachusetts.
- [20] Nazmul, S. K., Majumdar, P. and Samanta, S. K., On multisets and multigroups, Ann. Fuzzy Math. Inform., 6(3) (2013), 643-656.
- [21] Schein, B. M., Multigroup, Journal of Algebra, 111(1987), 114-132.
- [22] Tripathy, B. C., Debnath, S. and Rakshit, D., On multiset group, Proyecciones Journal of Mathematics, 37(3) (2018), 479-489.