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Abstract: In this paper, the asymptotic stability for neutral delay differential sys-
tem with nonlinear Uncertainties is investigated. Many works have been reported
using a variety of methods. However, more focus on the use of the Lyapunov-
Krasovskii theory to derive sufficient stability conditions in the form of linear matrix
inequalities. These stability conditions are formulated as linear matrix inequali-
ties (LMIs) which can be easily solved by various convex optimization algorithms.
Here we present the basic concepts involved in stability and also we reported and
developed to analyze the asymptotic stability of Neutral Time Delay-differential
systems.
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1. Introduction
Dynamical systems with time delays have been of considerable interest for the

fast few decades. In particular, the interest in stability analysis of various neutral
differential systems has been growing rapidly due to their successful applications
in practical fields such as circuit theory, bio engineering, population dynamics,
automatic control and so on. Current efforts on the problem of stability of time
delay systems of neutral type can be divided into two categories, namely delay
independent criteria and delay dependent criteria. A number of delay indepen-
dent sufficient conditions for the asymptotic stability of neutral delay differential
systems have been presented by various researchers [1]-[8]. The Lyapunov func-
tional technique combined with matrix inequality technique and a new operator
are used in to investigate the problem of robust stability for neutral systems and
time delay systems. By using descriptor model transformation and decomposition
technique, some delay-dependent stability criteria are obtained. In the stability
conditions are developed by descriptor model transformation technique, and the
nonlinear uncertainties are handled by the S-procedure. However, these results are
only concerned with the asymptotic stability, without providing any conditions for
exponential stability and any information about the decay rates.

Throughout this paper, the notation ∗ represents the elements below the main
diagonal of a symmetric matrix. AT means the transpose of A. We say X > T if X-
Y is positive definite, where X and Y are symmetric matrices of same dimensions.
‖ · ‖ refers to the Euclidean norm of vectors.

To know about the formation of LMI and its stability, consider the linear system

ẋ(t) = Ax(t), (1)

where A ∈ Rn∗n and x(t) ∈ Rn. Assume that (1) has equilibrium X=0.

2. System Description and Preliminaries
Consider a neutral delay differential system of the form:

ẋ(t) =Ax(t) +Bx(t− h(t)) + Cẋ(t− h(t)) + f1(t, x(t))

x(s) =φ(s), ẋ(s) = ϕ(s), s ∈ [−h, 0], (2)

x(t) ∈ Rn is the state and φ(·) and ϕ(·) are continuous vector valued initial func-
tions, A, B and C are real constant matrices and h(t) denotes time varying delay
and it is assumed to satisfy 0 ≤ h(t) ≤ hM and 0 ≤ ḣ(t) ≤ d ≤ 1, where hM
and d are positive constants, where f1(t, x(t)) in the non linear uncertainity which
satisfies the condition

‖f1(t, x(t))‖ < α1‖x(t)‖.
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Definition 2.1. Stability: Let X(t) be a solution of the functional differential
equation f(t, xt). The stability of the solution concerns the systems behavior when
the system trajectory X(t) deviates from y(t). Let us assume that the functional
differential equation x=f(t, x(t)) admits the solution. X(t)=0, which will be referred
to as the trivial solution. For the system, ẋ = f(t, xt) the trivial solution X(t)=0
is said to be stable. If for any t0 ∈ R and δ > 0, there exists a δ = δ(t0, ε) > 0 such
that ‖X(t0)‖c < δ implies ‖X(t)‖ < ε for t ≥ t0.

Definition 2.2. Asymptotically stable: Let X=0 be an equilibrium point of
Ẋ = f(X), let V : Rn → R be a continuously differentiable function such that:

(i) V (0) = 0,

(ii) V (X(t)) > 0,

(iii) V̇ (X(t)) < 0.

This leads to the celebrated theorem of Lyapunov of (1).

Lemma 2.3. (Schur complement [1]) Let M, P, Q be given matrices such that
Q > 0, then (

P MT

M −Q

)
< 0↔ P +MTQ−1M < 0.

Lemma 2.4. For any vectors a, b ∈ Rn and scalar ε > 0, we have

2aT b ≤ εaTa+ ε−1bT b. (3)

Theorem 2.5.(Lyapunov second Theorem) Given system (1) with equilibrium
X=0, if there exists an Lyapunov function V, then X=0 is Lyapunov stable. Fur-
thermore, if V̇ (X(t)) < 0, then X=0 is asymptotically stable.
The power of Theorem 1.3 is that one can make conclusions about trajectories of a
system (1) without actually solving the differential equation. For the system (1), a
common choice of Lyapunov function candidate is the quadratic form.
By choosing Lyapunov function V (X) = XTPX,P > 0, where X=x(t).
Then derivative analysis is

V̇ =ẊTPX +XTPẊ

=XTATPX +XTPAX

=XT (ATP + PA)X. (4)
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The quadratic form of this derivative proves, if the central quantity satisfies

ATP + PA < 0 (5)

V̇ (X) < 0. (6)

Which is asymptotically stable.

Example 2.1. Consider the Linear system Ẋ(t) =

[
−1 4
0 −3

]
x(t).

Using MATLAB LMI Control toolbox the above LMI ATP +PA < 0, one can get

the following Positive definite matrix P =

[
1
2

1
2

1
2

5
6

]
> 0.

For this P,

ATP + PA =

[
−1 0
0 −1

]
. (7)

Which is negative definite, this implies that the system is asymptotically stable
in the sense of Lyapunov. It is well known that time-delay is usually a cause of
instability and oscillations of recurrent neural networks (RNNs).
Therefore, the problem of stability with time-delay is of importance in both theory
and practical applications with the help of the LMI approach.
By inspired of this we continued here by short noted the results of the researchers
who worked on the delay differential system of stability by using Lyapunov-Krasovsii
function to frame LMI’s.

Here we can prove the stability of the system by help of this above stability
concept.

3. Global Stability Results
In this section, we will perform stability analysis of neutral system with time

varying delay described by (1). We can rewrite system (1) to the following descrip-
tor system:

ẋ(t) = y(t),

y(t) = Ax(t) +Bx(t− h(t)) + Cy(t− h(t)) + f1(t, x(t)).

Theorem 3.1. System (1) is asymptotically stable with convergence rate α > 0 if
there exist some positive definite matrices Pi > 0; i=1, 2, 3, 4 and real matrices
Nj > 0; j=1, 2, 3 such that the following LMI condition is satisfied,

Ξ1 =

[
Ω π
∗ ∆

]
< 0,
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where

Ω =


ϕ11 ϕ12 ϕ13 ϕ14

∗ ϕ22 ϕ23 ϕ24

∗ ∗ ϕ33 ϕ34

∗ ∗ ∗ ϕ44

 , π =


π11 π22 0 0
0 0 π33 0
0 0 0 π44
0 0 0 0

 , and

∆ =


∆11 0 0 0
0 ∆ 0 0
0 0 ∆33 0
0 0 0 ∆44

 ,
are the coefficient matrix of [xT (t)xT (t− h)yT (t)].

Proof: This theorem can be prove by considering the Lyapunov functions are
V = V1 + V2 + V3 + V4 are as follows.
We define Lyapunov functions as follows

V1(t) = xTP1x(t), V2(t) =

∫ t

t−h
xT (t+ s)P2x(t+ s)ds,

V3(t) =

∫ t

t−h
Y T (t+ s)P3Y (t+ s)ds, V4(t) = hM

∫ 0

−hM

∫ 0

t+β

ẋT (t+ s)P4ẋ(t+ s)dβ.

Here we using lemma 2.4, we have

V̇ =
[
xT (t)(AP1 + ATP1 + 2αP1 + P2 + P5) + 2xTP1Bx(t− h) + 2xTP1Cy(t− h)

+ 2xTPf1(t, x(t))− (1− h)xT (t− h)P2x(t− h)− yT (t)By(t) + h2My
T (t)P4y(t)

− (1− ḣ)yT (t− h)P3y(t− h)− xTP4x(t) + 2xTP4x(t− h)

− xT (t− h)P4x(t− h)
]
.

By previous lemma we have

hM

∫ t

t−hM
ẋT (s)P4x(s)ds ≤ [x(t)− x(t− h)]TP4[x(t)− x(t− h)].

From the above system we have

2[yTNT
1 + xTNT

2 + xT (t− h)NT
3 ]× [−y(t) + A+B + Cx(t− h) + f1] = 0.
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We have

V̇ =[xT (t)(AP1 + ATP1 + 2αP1 + P2 + P5) + 2xTP1Bx(t− h)

+ 2xTP1Cy(t− h) + 2xTPf1(t, x(t))− (1− h)xT (t− h)P2x(t− h)

− yT (t)By(t) + h2My
T (t)P4y(t)− (1− ḣ)yT (t− h)P3y(t− h)

− xTP4x(t) + 2xTP4x(t− h)− xT (t− h)P4x(t− h)− 2yTNT
1 y(t)

+ 2yTNT
1 y(t)Ax(t) + 2yTNT

1 y(t)Bx(t− h) + 2yTNT
1 Cx(t− h) + yTNT

1 y(t)

+ 2xTNT
2 Ax(t) + 2xTNT

2 Bx(t− h) + 2xTNT
2 Cx(t− h)

+ α2
1x

Tx(t){β1 + β2 + β3 + β4)],

where ξT = [xT (t) xT (t− h) yT ].
Then

V̇ ≤ ξT Ω ξ,

and

Ω =


ϕ11 ϕ12 ϕ13 ϕ14

∗ ϕ22 ϕ23 ϕ24

∗ ∗ ϕ33 ϕ34

∗ ∗ ∗ ϕ44

 < 0. (8)

By applying Lemma 2.3 in R with some effort, we get Ξ1 < 0. Therefore, by
Lyapunov-Kraspvskii stability theorem V̇ (X) < 0.
Hence we concluded that the system is asymptotic stable.

4. Conclusion
We have presented a sufficient condition to guarantee the asymptotic stability

for neutral delay differential system with uncertainties. Based on the Lyapunov-
Krasovskii functional theory, the delay dependent criterion have been derived to
guarantee the asymptotic stability of neutral delay differential system with uncer-
tainties.
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