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1. Introduction

A single valued function f (z) is said to belong to class I if f (z) is entire
transcendental and class II if it is regular in the complex plane punctured at a,
b (a 6= b) and has an essential singularity at b and a singularity at a and if f (z)
omits the values a and b except possible at a.
To normalise the functions in class II we take a = 0 and b =∞.

The iterations of the complex function f (z) are defined by

f0 (z) = z and fn+1 (z) = f (fn (z)) ; n = 0, 1, 2, ... .
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A point α is called a fix point of f (z) of order n if α is a solution of fn (z) = z
and a fix point of exact order n if α is a solution of fn (z) = z but not a solution
of fk (z) = z, k = 1, 2, 3, ..., n− 1.

Baker [1] proved the following theorem for functions of class I.

Theorem 1.1. [1] If f (z) belongs to class I, then f (z) has fix points of exact order
n except for at most one value of n.

Bhattacharyya [5] extended this theorem to functions in class II.

Theorem 1.2. [5] If f (z) belongs to class II, then f (z) has an infinity of fix points
of exact order n, for every positive integer n.

In [8] Lahiri and Banerjee generalised the theorem in another direction. They
introduced the concept of relative fix points defined as follows.

Let f (z) and g (z) be functions of complex variable z.
Let

f1 (z) = f (z)

f2 (z) = f (g (z)) = f (g1 (z))

f3 (z) = f (g (f (z))) = f (g (f1 (z)))
...

fn (z) = f (g (f (g... (f (z) or g (z) according as n is odd or even) ...)))

= f (gn−1 (z)) = f (g (fn−2 (z)))

and so

g1 (z) = g (z)

g2 (z) = g (f (z)) = g (f1 (z))

g3 (z) = g (f2 (z)) = g (f (g1 (z)))
...

gn (z) = g (fn−1 (z)) = g (f (gn−2 (z))) .

Clearly fn (z) and gn (z) are functions in class II, if f (z) and g (z) are so.
A point α is called a fix point of f (z) of order n with respect to g (z), if

fn (α) = α and a fix point of exact order n if fn (α) = α but fk (α) 6= α,
k = 1, 2, 3, ..., n− 1. Such points α are also called relative fix points.

Theorem 1.3. [8] If f (z) and g (z) belong to class II, then f (z) has an infinity

of relative fix points of exact order n for every positive integer n, provided T (r,gn)
T (r,fn)

is bounded.
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In [3] Banerjee and Mandal proved the result of Lahiri and Banerjee [8] by intro-
ducing the idea of relative fix point of exact factor order n.
A point α is called a relative fix point of f (z) of exact factor order n if fn (α) = α
but fk (α) 6= α and gk (α) 6= α for all divisors k (< n) of n.

Theorem 1.4. [3] If f (z) and g (z) belong to class II, then f (z) has an infinity
of relative fix points of exact factor order n for every positive integer n, provided
T (r,fn−1)
T (r,fn)

is bounded.

Banerjee and Mondal [2] introduced the idea of generalised iteration as follows.
Let f (z) and g (z) be two entire functions and α ∈ (0, 1] be any number. Then

the generalised iteration of f (z) with respect to g (z) is defind as follows.

f1 (z) = (1− α) z + αf (z)

f2 (z) = (1− α) g1 (z) + αf (g1 (z))

f3 (z) = (1− α) g2 (z) + αf (g2 (z))
...

fn (z) = (1− α) gn−1 (z) + αf (gn−1 (z))

and

g1 (z) = (1− α) z + αg (z)

g2 (z) = (1− α) f1 (z) + αg (f1 (z))

g3 (z) = (1− α) f2 (z) + αg (f2 (z))
...

gn (z) = (1− α) fn−1 (z) + αg (fn−1 (z)) .

Clearly if f (z) and g (z) are functions in class II, then so also are fn (z) and gn (z) .
Note 1.1. The generalised iteration reduces to relative itaration if α = 1.
A point β is called a generalised fix point of f (z) of order n if fn (β) = β and a
generalised fix point of exact order n if fn (β) = β but fk (β) 6= β, k = 1, 2, 3, ..., n−
1. β is called a generalised fix point of f (z) of exact factor order n if fn (β) = β
but fk (β) 6= β and gk (β) 6= β for all divisors k (< n) of n.

Theorem 1.5. [4] If f (z) and g (z) belong to class II, then f (z) has an infinity of

generalised fix points of exact order n for every positive integer n, provided T (r,gn)
T (r,fn)

is bounded.

Theorem 1.6. [4] If f (z) and g (z) belong to class II, then f (z) has an infinity of
generalised fix points of exact factor order n for every positive integer n, provided
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T (r,gn)
T (r,fn)

is bounded.
Now we introduce the generalised iteration of three functions.

Let f (z) , g (z) and h (z) be three entire functions and α ∈ (0, 1] be any number.
Then the generalised iteration of f (z) with respect to g (z) is defined as follows.

f1 (z) = (1− α) z + αf (z)

f2 (z) = (1− α) g1 (z) + αf (g1 (z))

f3 (z) = (1− α) g2 (z) + αf (g2 (z))

f4 (z) = (1− α) g3 (z) + αf (g3 (z))
...

fn (z) = (1− α) gn−1 (z) + αf (gn−1 (z)) .

Similarly

g1 (z) = (1− α) z + αg (z)

g2 (z) = (1− α)h1 (z) + αg (h1 (z))

g3 (z) = (1− α)h2 (z) + αg (h2 (z))

g4(z) = (1− α)h3 (z) + αg (h3 (z))
...

gn (z) = (1− α) fn−1 (z) + αg (fn−1 (z))

and

h1 (z) = (1− α) z + αh (z)

h2 (z) = (1− α) f1 (z) + αh (f1 (z))

h3 (z) = (1− α) f2 (z) + αh (f2 (z))

h4(z) = (1− α) f3 (z) + αh (f3 (z))
...

hn (z) = (1− α) fn−1 (z) + αh (fn−1 (z)) .

Note 1.2. The generalised iteration reduces to relative iteration if α = 1. Clearly
if f (z) , g (z) and h (z) are functions in class II, then so also are fn (z) , gn (z) and
hn (z) .
Now we introduce the following definition.

Definition 1.7. A point β is called generalised fix point of f (z) of order n if
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fn (β) = β and a generalised fix point of f (z) of exact order n if fn (β) = β but
fk(β) 6= β, k = 1, 2, ..., n−1. β is called a generalised fix point of f (z) with respect
to g (z) and h (z) of exact factor order n if fn (β) = β but fk (β) 6= β, gk (β) 6= β
and hk (β) 6= β for all divisors k (k < n) of n.

Example 1.8. Let f (z) = 2z+2, g (z) = 2z−2, h (z) = 2z+1 and α ∈ (0, 1]. Then
z = −2α4+7α3+6α2+3α

α4+4α3+6α2+4α
is generalised fix point of exact order 4 and also generalised

fix point of exact factor order 4 of f (z) .
Let f (z) be meromorphic in r0 ≤ |z| <∞, r0 > 0.
From the first fundamental theorem we have

m (r, a, f) +N (r, a, f) = T (r, f) +O (log r) , (1)

where r0 ≤ |z| <∞, r0 > 0.
Suppose that f (z) is non-constant. Let a1,a2,...,aq; q ≥ 2 be distinct finite

complex numbers, δ > 0 and suppose that |aµ − aυ| ≥ δ for 1 ≤ µ ≤ υ ≤ q. Then

m (r, f) +

q∑
υ=1

m (r, aυ, f) ≤ 2T (r, f)−N1 (r) + S (r) , (2)

where

N1 (r) = N

(
r,

1

f ′

)
+ 2N (r, f)−N (r, f ′) ,

and

S (r) = m

(
r,
f ′

f

)
+

q∑
υ=1

m

(
r,

f ′

f − aυ

)
+O (log r) .

Adding N (r, f) +
∑q

υ=1N (r, aυ, f) to both sides of (2) and using (1), we obtain

(q − 1)T (r, f) ≤ N (r, f) +

q∑
υ=1

N (r, aυ, f) + S1 (r) , (3)

where S1 (r) = O (log T (r, f)) and N corresponds to distinct roots.
Again if fn has an essential singularity at ∞, we have log r

T (r,fn)
→ 0 as r →∞.

2. Lemmas
The following lemmas will be needed in the sequel.

Lemma 2.1. If f, g and h are functions in class II, then for any r0 > 0 and M ,
a positive constant T (r,f(g))

T (r,g)
> M , T (r,g(h))

T (r,h)
> M and T (r,h(f))

T (r,f)
> M for all large r,

except a set of r intervals of total finite length.



48 South East Asian J. of Mathematics and Mathematical Sciences

This follows from the lemma of Lahiri and Banerjee [8].

Lemma 2.2. If n is any positive integer and f (z) , g (z) and h (z) are functions
in class II, then for any r0 > 0 and M1, a positive constant

T (r, fn+p)

T (r, fn)
> M1,

T (r, gn+p)

T (r, fn)
> M1 and

T (r, hn+p)

T (r, fn)
> M1

according as p = 3m or 3m− 1 or 3m− 2; m ∈ N, for all large r except a set of r
intervals of total finite length.
Proof. For j = 1, 2, ..., n and for all large r, by using Lemma 2.1, we get

T (r, fj+1) ≤ T (r, (1− α) gj) + T (r, αf (gj)) +O (1)

≤ T (r, gj) + T (r, f (gj)) +O (1)

= T (r, f (gj))

[
1 +

T (r, gj)

T (r, f (gj))
+

O (1)

T (r, f (gj))

]
= (1 +O (1))T (r, f (gj)) . (4)

Again f (gj (z)) = 1
α
fj+1 (z)− 1−α

α
gj (z) and so for large r

T (r, f (gj)) ≤ T (r, fj+1) + T (r, gj) +O (1) .

Therefore

T (r, fj+1) ≥ T (r, f (gj))− T (r, gj) +O (1)

= T (r, f (gj))

[
1− T (r, gj)

T (r, f (gj))
+

O (1)

T (r, f (gj))

]
= (1 +O (1))T (r, f (gj)) . (5)

From (4) and (5) for all large r, we have

T (r, fj+1) = (1 +O (1))T (r, f (gj)) . (6)

Similarly for large r, we have

T (r, gj+1) = (1 +O (1))T (r, g (hj)) (7)

and

T (r, hj+1) = (1 +O (1))T (r, h (fj)) . (8)
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Case I. When p = 3m,m ∈ N. For all large r except a set of r intervals of total
finite length, we have from (6), (7) and (8) by using Lemma 2.1

T (r, fn+p)

T (r, fn)
= (1 +O (1))

T (r, f (gn+p−1))

T (r, fn)

= (1 +O (1))
T (r, f (gn+p−1))

T (r, gn+p−1)

T (r, gn+p−1)

T (r, fn)

= (1 +O (1))
T (r, f (gn+p−1))

T (r, gn+p−1)

(1 +O (1))T (r, g (hn+p−2))

T (r, fn)

= (1 +O (1))
T (r, f (gn+p−1))

T (r, gn+p−1)

T (r, g (hn+p−2))

T (r, fn)

= (1 +O (1))
T (r, f (gn+p−1))

T (r, gn+p−1)

T (r, g (hn+p−2))

T (r, hn+p−2)

T (r, hn+p−2)

T (r, fn)
...

= (1 +O (1))
T (r, f (gn+p−1))

T (r, gn+p−1)

T (r, g (hn+p−2))

T (r, hn+p−2)

T (r, h (fn+p−3))

T (r, fn+p−3)

...
T (r, h (fn))

T (r, fn)

> (1 +O (1))Mp

= M1 say, where M1 = (1 +O (1))Mp, a positive constant

i.e,
T (r, fn+p)

T (r, fn)
> M1

for all large r except a set of r intervals of total finite length.
Case II. When p = 3m− 1, m ∈ N. For all large r except a set of r intervals of
total finite length, we have from (6), (7) and (8) by using Lemma 2.1

T (r, gn+p)

T (r, fn)
= (1 +O (1))

T (r, g (hn+p−1))

T (r, fn)

= (1 +O (1))
T (r, g (hn+p−1))

T (r, hn+p−1)

T (r, hn+p−1)

T (r, fn)

= (1 +O (1))
T (r, g (hn+p−1))

T (r, hn+p−1)

(1 +O (1))T (r, h (fn+p−2))

T (r, fn)

= (1 +O (1))
T (r, g (hn+p−1))

T (r, hn+p−1)

T (r, h (fn+p−2))

T (r, fn)
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= (1 +O (1))
T (r, g (hn+p−1))

T (r, hn+p−1)

T (r, h (fn+p−2))

T (r, fn+p−2)

T (r, fn+p−2)

T (r, fn)
...

= (1 +O (1))
T (r, g (hn+p−1))

T (r, hn+p−1)

T (r, h (fn+p−2))

T (r, fn+p−2)

T (r, f (gn+p−3))

T (r, gn+p−3)

...
T (r, h (fn))

T (r, fn)

> (1 +O (1))Mp

= M1 say, where M1 = (1 +O (1))Mp, a positive constant

i.e,

T (r, gn+p)

T (r, fn)
> M1

for all large r except a set of r intervals of total finite length.
Case III. When p = 3m − 2,m ∈ N. For all large except a set of r interval of
total finite length, we have from (6), (7) and (8) by using Lemma 2.1

T (r, hn+p)

T (r, fn)
= (1 +O (1))

T (r, h (fn+p−1))

T (r, fn)

= (1 +O (1))
T (r, h (fn+p−1))

T (r, fn+p−1)

T (r, fn+p−1)

T (r, fn)

= (1 +O (1))
T (r, h (fn+p−1))

T (r, fn+p−1)

(1 +O (1))T (r, f (gn+p−2))

T (r, fn)

= (1 +O (1))
T (r, h (fn+p−1))

T (r, fn+p−1)

T (r, f (gn+p−2))

T (r, fn)

= (1 +O (1))
T (r, h (fn+p−1))

T (r, fn+p−1)

T (r, f (gn+p−2))

T (r, gn+p−2)

T (r, gn+p−2)

T (r, fn)
...

= (1 +O (1))
T (r, h (fn+p−1))

T (r, fn+p−1)

T (r, f (gn+p−2))

T (r, gn+p−2)

T (r, g (hn+p−3))

T (r, hn+p−3)

...
T (r, h (fn))

T (r, fn)

> (1 +O (1))Mp

= M1 say, where M1 = (1 +O (1))Mp, a positive constant
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i.e,
T (r, hn+p)

T (r, fn)
> M1

for all large r except a set of r intervals of total finite length.

Lemma 2.3. If n is any positive integer and f (z) , g (z) and h (z) are functions
in class II, then for any r0 > 0 and M1, a positive constant

T (r, gn+p)

T (r, gn)
> M1,

T (r, hn+p)

T (r, gn)
> M1 and

T (r, fn+p)

T (r, gn)
> M1

according as p = 3m or 3m− 1 or 3m− 2;m ∈ N, for all large r except a set of r
intervals of total finite length.

Lemma 2.4. If n is any positive integer and f (z) , g (z) and h (z) are functions
in class II, then for any r0 > 0 and M1, a positive constant

T (r, hn+p)

T (r, hn)
> M1,

T (r, fn+p)

T (r, hn)
> M1 and

T (r, gn+p)

T (r, hn)
> M1

according as p = 3m or 3m− 1 or 3m− 2;m ∈ N, for all large r except a set of r
intervals of total finite length.

3. Theorem
Theorem 3.1. If f (z), g (z) and h (z) belong to class II, then f (z) has infinity of

generalised fix points of exact order n for every positive integer n, provided T (r,gn)
T (r,fn)

and T (r,hn)
T (r,fn)

are bounded.
Proof. We consider the function

φ (z) =
fn (z)

z
, r0 < |z| <∞ .

Then
T (r, φ) = T (r, fn) +O (log r) . (9)

We assume that f (z) has only a finite number of generalised fix points of exact
order n. From (3) by taking q = 2, a1 = 0, a2 = 1, we obtain

T (r, φ) ≤ N (r,∞, φ) +N (r, 0, φ) +N (r, 1, φ) + S1 (r, φ) , (10)

where S1 (r, φ) = O (log T (r, φ)) outside a set of r intervals of finite length [7].
Now we have

N (r, 0, φ) =

∫ r

r0

n (t, 0, φ)

t
dt
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where n (t, 0, φ) is the number of roots of φ (z) = 0 in r0 < |z| ≤ t, each multiple
root taken once at a time. The distinct roots of φ (z) = 0 in r0 < |z| ≤ t are the
roots of fn (z) = 0 in r0 < |z| ≤ t. Now fn (z) has a singularity at z = 0, an essential
singularity at z = ∞, and fn (z) 6= 0,∞. So n (t, 0, φ) = 0. So N (r, 0, φ) = 0. By
similar argument N (r,∞, φ) = 0. So

T (r, φ) ≤ N (r, 1, φ) + S1 (r, φ)

We now calculate N (r, 1, φ) . If φ (z) = 1, then fn (z) = z.

So

N (r, 1, φ) = N (r, 0, fn − z)

≤
n−1∑
j=1

N (r, 0, fj − z) +O (log r) ,

the term O (log r) arises due to the assumption that f (z) has only a finite number
of generalised fix points of exact order n.

Now from (10), we have

T (r, φ) ≤
n−1∑
j=1

N (r, 0, fj − z) +O (log r) +O (log T (r, φ))

≤
n−1∑
j=1

T (r, fj) +O (log T (r, φ)) +O (log r)

= T (r, fn) [
T (r, fj3)

T (r, fn)
+
T (r, fj6)

T (r, fn)
+ ...+

T (r, fj3s)

T (r, fn)

+{T (r, fj1)

T (r, gn)
+
T (r, fj4)

T (r, gn)
+ ...+

T
(
r, fj3p−2

)
T (r, gn)

}T (r, gn)

T (r, fn)

+{T (r, fj2)

T (r, hn)
+
T (r, fj5)

T (r, hn)
+ ...+

T
(
r, fj3q−1

)
T (r, hn)

}T (r, hn)

T (r, fn)

+
O
(

log{T (r, fn)
(

1 + O(log r)
T (r,fn)

)
}
)

T (r, fn)
+
O (log r)

T (r, fn)
],

where j1, j4, ..., j3p−2; j2, j5, ..., j3q−1;

j3, j6, ..., j3s are divisors of n and are strictly less than n and are
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of the forms 3p− 2, 3q − 1 and 3s (p, q, s ∈ N)

< T (r, fn) [
n− 1

6n
+
n− 1

6n
+
n− 1

6n
], for all large r by Lemma 2.2

and since
T (r, gn)

T (r, fn)
,
T (r, hn)

T (r, fn)
are bounded

<
1

2
T (r, fn) .

Therefore T (r, φ) < 1
2
T (r, fn) , for all large r. This contradicts (9).

Hence f (z) has infinitely many generalised fix points of exact order n.
This proves the theorem.

Theorem 3.2. If f (z), g (z) and h (z) belong to class II, then f (z) has an infinity
of generalised fix points of exact factor order n, for any positive integer n, provided
T (r,gn)
T (r,fn)

and T (r,hn)
T (r,fn)

are bounded.

Proof. As in Theorem 3.1, we assume that f (z) has only a finite number of
generalised fix points of exact factor order n.
Considering the function

w (z) =
fn (z)

z
, r0 < |z| <∞ .

We have
T (r, w) = T (r, fn) +O (log r) . (11)

Now N (r, 0, w) = 0 and N (r,∞, w) = 0.
We consider following three cases to calculate N (r, 1, w) .
Case I. When n = 3m,m ∈ N.

N(r, 1, w) = N (r, 0, fn − z)

≤
n−2∑

j/n,j=1

[N (r, 0, fj − z) +N (r, 0, gj − z) +N (r, 0, hj − z) +O (log r)]

≤
n−2∑

j/n,j=1

[T (r, fj) + T (r, gj) + T (r, hj)] +O (log r)

= T (r, fn) [
T (r, fj3)

T (r, fn)
+
T (r, fj6)

T (r, fn)
+ ...+

T (r, fj3s)

T (r, fn)
+
T (r, gj1)

T (r, fn)

+
T (r, gj4)

T (r, fn)
+ ...+

T
(
r, gj3p−2

)
T (r, fn)

+
T (r, hj2)

T (r, fn)
+
T (r, hj5)

T (r, fn)
+ ...
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+
T
(
r, hj3q−1

)
T (r, fn)

] + T (r, gn) [
T (r, fj2)

T (r, gn)
+
T (r, fj5)

T (r, gn)
+ ...+

T
(
r, fj3q−1

)
T (r, gn)

+
T (r, gj3)

T (r, gn)
+
T (r, gj6)

T (r, gn)
+ ...+

T (r, g3s)

T (r, gn)
+
T (r, hj1)

T (r, gn)
+
T (r, hj4)

T (r, gn)

+...+
T
(
r, hj3p−2

)
T (r, gn)

] + T (r, hn) [
T (r, fj1)

T (r, hn)
+
T (r, fj4)

T (r, hn)
+ ...+

T
(
r, fj3p−2

)
T (r, hn)

+
T (r, gj2)

T (r, hn)
+
T (r, gj5)

T (r, hn)
+ ...+

T
(
r, gj3q−1

)
T (r, hn)

+
T (r, hj3)

T (r, hn)
+
T (r, hj6)

T (r, hn)

+...+
T (r, hj3s)

T (r, hn)
] +O (log r) , where j1, j4, ..., j3p−2; j2, j5, ..., j3q−1;

j3, j6, ..., j3s are divisors of n and are strictly less than n and are

of the forms 3p− 2, 3q − 1 and 3s (p, q, s ∈ N)

<
n− 1

6n
T (r, fn) +

n− 1

6n
T (r, gn) +

n− 1

6n
T (r, hn) +O (log r) , for

all large r, by Lemma 2.2, Lemma 2.3 and Lemma 2.4.

Case II. When n = 3m+ 1,m ∈ N.

N(r, 1, w) = N (r, 0, fn − z)

≤
n−1∑

j/n,j=1

[N (r, 0, fj − z) +N (r, 0, gj − z) +N (r, 0, hj − z)] +O (log r)

≤
n−2∑

j/n,j=1

[T (r, fj) + T (r, gj) + T (r, hj)] +O (log r)

= T (r, fn) [
T (r, fj1)

T (r, fn)
+
T (r, fj4)

T (r, fn)
+ ...+

T
(
r, fj3p−2

)
T (r, fn)

+
T (r, gj2)

T (r, fn)

+
T (r, gj5)

T (r, fn)
+ ...+

T
(
r, gj3q−1

)
T (r, fn)

] + T (r, gn) [
T (r, gj1)

T (r, gn)
+
T (r, gj4)

T (r, gn)

+...+
T
(
r, gj3p−2

)
T (r, gn)

+
T (r, hj2)

T (r, gn)
+
T (r, hj5)

T (r, gn)
+ ...+

T
(
r, hj3q−1

)
T (r, gn)

]

+T (r, hn) [
T (r, hj1)

T (r, hn)
+
T (r, hj4)

T (r, hn)
+ ...+

T
(
r, hj3p−2

)
T (r, hn)

+
T (r, fj2)

T (r, hn)

+
T (r, fj5)

T (r, hn)
+ ...+

T
(
r, fj3q−1

)
T (r, hn)

] +O (log r) , where j1, j4, ..., j3p−2
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and j2, j5, ..., j3q−1 are divisors of n and are strictly less than n

and are of the forms 3p− 2 and 3q − 1 (p, q,∈ N)

<
n− 1

6n
T (r, fn) +

n− 1

6n
T (r, gn) +

n− 1

6n
T (r, hn) +O (log r) .

Case III. When n = 3m+ 2,m ∈ N, we have

N (r, 1, w) = N (r, 0, fn − z)

≤
n−2∑

j/n,j=1

[N (r, 0, fj − z) +N (r, 0, gj − z) +N (r, 0, hj − z)] +O (log r)

≤
n−2∑

j/n,j=1

[T (r, fj) + T (r, gj) + T (r, hj)] +O (log r)

= T (r, fn) [
T (r, fj2)

T (r, fn)
+
T (r, fj5)

T (r, fn)
+ ...+

T
(
r, fj3q−1

)
T (r, fn)

+
T (r, hj1)

T (r, fn)

+
T (r, hj4)

T (r, fn)
+ ...+

T
(
r, hj3p−2

)
T (r, fn)

] + T (r, gn) [
T (r, fj1)

T (r, gn)
+
T (r, fj4)

T (r, gn)

+...+
T
(
r, fj3p−2

)
T (r, gn)

+
T (r, gj2)

T (r, gn)
+
T (r, gj5)

T (r, gn)
+ ...+

T
(
r, gj3q−1

)
T (r, gn)

]

+T (r, hn) [
T (r, gj1)

T (r, hn)
+
T (r, gj4)

T (r, hn)
+ ...+

T
(
r, gj3p−2

)
T (r, hn)

+
T (r, hj2)

T (r, hn)

+
T (r, hj5)

T (r, hn)
+ ...+

T
(
r, hj3q−1

)
T (r, hn)

] +O (log r) , where j1, j4, ..., j3p−2

and j2, j5, ..., j3q−1 are divisors of n and are strictly less than n

and are of the form 3p− 2 and 3q − 1 , (p, q ∈ N)

<
n− 1

6n
T (r, fn) +

n− 1

6n
T (r, gn) +

n− 1

6n
T (r, hn) +O (log r) .

Therefore in any case

N (r, 1, w) <
n− 1

6n
T (r, fn) +

n− 1

6n
T (r, gn) +

n− 1

6n
T (r, hn) +O (log r) .
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Since T (r,gn)
T (r,fn)

and T (r,hn)
T (r,fn)

are bounded, we have

T (r, w) ≤ N (r, 1, w) + S1 (r)

<
n− 1

6n
T (r, fn) +

n− 1

6n
T (r, gn) +

n− 1

6n
T (r, hn) +O (log r)

+O (log T (r, w))

= T (r, fn) [
n− 1

6n
+
n− 1

6n

T (r, gn)

T (r, fn)
+
n− 1

6n

T (r, hn)

T (r, fn)
+
O (log r)

T (r, fn)

+
O (log T (r, w))

T (r, fn)
]

≤ T (r, fn) [
n− 1

6n
+
n− 1

6n
+
n− 1

6n
+
O (log r)

T (r, fn)

+
O (log (T (r, fn) +O (log r)))

T (r, fn)
]

= T (r, fn) [
(n− 1)

2n
+
O (log r)

T (r, fn)
+
O
(

log
(
T (r, fn)

(
1 + O(log r)

T (r,fn)

)))
T (r, fn)

]

<
1

2
T (r, fn) , for all large r.

Therefore, T (r, w) < 1
2
T (r, fn) for all large r. This contradicts (11).

Hence f (z) has infinitely many generalised fix points of exact factor order n.
This proves the theorem.
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