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1. Introduction

A single valued function f(z) is said to belong to class I if f(z) is entire
transcendental and class II if it is regular in the complex plane punctured at a,
b(a # b) and has an essential singularity at b and a singularity at a and if f (z)
omits the values a and b except possible at a.
To normalise the functions in class II we take a = 0 and b = oo.

The iterations of the complex function f (z) are defined by

fo(z) =zand fou1(2) = f(fu(2)); n=0,1,2,..
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A point « is called a fix point of f(z) of order n if « is a solution of f, (z) = z
and a fix point of exact order n if « is a solution of f,, (z) = z but not a solution

of fu(2) =2, k=1,2,3,...,n— 1.
Baker [1] proved the following theorem for functions of class I.
Theorem 1.1. [1] If f (2) belongs to class I, then f (z) has fix points of exact order

n except for at most one value of n.
Bhattacharyya [5] extended this theorem to functions in class II.

Theorem 1.2. [5] If f (z) belongs to class 11, then f (z) has an infinity of fix points
of exact order n, for every positive integer n.

In [8] Lahiri and Banerjee generalised the theorem in another direction. They
introduced the concept of relative fix points defined as follows.

Let f(z) and g (2) be functions of complex variable z.
Let

fiz) = f(?)
f(z) = f(9(2)=[(91(2))
f3(z) = f(g

fan(z) = f(g(f(g...(f(2) or g(z) according as n is odd or even)...)))

and so

92(2) = g(f(2)=9g(fi(2))
= =g(f(91(2)))

gn(2) = g(fa-1(2) =9 ([ (9n—2(2))).

Clearly f,, (z) and g, (z) are functions in class II, if f (z) and ¢ (z) are so.

A point « is called a fix point of f(z) of order n with respect to g (z), if
fn(a) = a and a fix point of exact order n if f,(a) = a but fr(a) # «,
k=1,2,3,...,n— 1. Such points « are also called relative fix points.

Theorem 1.3. [8] If f(2) and g(z) belong to class II, then f(z) has an infinity

T(r,gn)
T(r,fn)

of relative fix points of exact order n for every positive integer n, provided
15 bounded.
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In [3] Banerjee and Mandal proved the result of Lahiri and Banerjee [8] by intro-
ducing the idea of relative fix point of exact factor order n.
A point « is called a relative fix point of f (2) of exact factor order n if f, (o) = «
but fi () # a and g () # «a for all divisors k (< n) of n.

Theorem 1.4. [3] If f(2) and g(z) belong to class II, then f(z) has an infinity
of relative fix points of exact factor order n for every positive integer n, provided

Tg(f?;)l) is bounded.
Banerjee and Mondal [2] introduced the idea of generalised iteration as follows.
Let f(z) and g (z) be two entire functions and a € (0, 1] be any number. Then

the generalised iteration of f (z) with respect to g (z) is defind as follows.

filz) = (I1—-a)z+af(2)
fo(2) = (1-0a)gi(2) +af (g (2))
(

f3(2) L —a)g:(2) +af(92(2))

fn(z) = (1=a)gn1(2) +af (gn-1(2))

and

g1(z) = (1—a)z+ag(z)
92(2) = (1—a)fi(z)+ag(fi(z)
g3(2) = (1—a)fo(z)+ag(fe(z))

gn(2) = (I—a)fua(2)+ag(fui1(2)).

Clearly if f (z) and g (2) are functions in class II, then so also are f,, (z) and g, (2).
Note 1.1. The generalised iteration reduces to relative itaration if o = 1.

A point g is called a generalised fix point of f(z) of order n if f, (8) = 5 and a
generalised fix point of exact order n if f,, (8) = g but fi (5) # B,k =1,2,3,....,.n—
1. B is called a generalised fix point of f(z) of exact factor order n if f, (5) =
but fi (8) # B and gx () # B for all divisors k (< n) of n.

Theorem 1.5. [4] If f (z) and g (2) belong to class II, then f (z) has an infinity of
generalised fix points of exact order n for every positive integer n, provided ;E:fc:;
15 bounded.

Theorem 1.6. [4] If f (z) and g (2) belong to class II, then f (z) has an infinity of
generalised fix points of exact factor order n for every positive integer n, provided
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;E:?’;g is bounded.

Now we introduce the generalised iteration of three functions.
Let f(2),g(2)and h(z) be three entire functions and « € (0, 1] be any number.
Then the generalised iteration of f (z) with respect to g (z) is defined as follows.

filz) = (I1—a)z+af(z)

fo(z) = (1—a)gi(2)+af(gi(2))
f(2) = (1—-0a)g(z)+af(g(2))
fa(2) )9

= (1=0a)gs(2) +af(gs(2))

Similarly
g(z) = 1—a)z+ag(z)
92(2) = (1=a)hi(z)+ag(h(z))
95(2) = (1—a)h2(2) +ag(h(2))
9a(z) = (1—a)hs(z) + ag(hs(2))
g (2) = (1—a) fo1(2) + g (fo-1(2))
and
hi(z) = (1—a)z+ah(z)
he(2) = (1—a)fi(z)+ah(fi(2))

ho, (Z> = (1 - a) Jn-1 (Z) + ah (fn—l (Z>> :

Note 1.2. The generalised iteration reduces to relative iteration if o = 1. Clearly
if f(2), g(z) and h(z) are functions in class II, then so also are f, (2), g, (2) and

hn (2).

Now we introduce the following definition.

Definition 1.7. A point [ is called generalised fix point of f(z) of order n if
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fn (B) = B and a generalised fix point of f(z) of exact order n if f, (B) = 5 but
fe(B) # B, k=1,2,....,n—1. B is called a generalised fix point of f (z) with respect

to g (2) and h(2) of exact factor order n if f, (B) = B but fr (B) # B, 9x (B) # B
and hy (B) # B for all divisors k (k < n) of n.

Example 1.8. Let f(2) = 2242, g(2) =22—2,h(2) = 2z+1 and a € (0, 1]. Then
z = —% is generalised fix point of exact order 4 and also generalised
fix point of exact factor order 4 of f (z).

Let f(z) be meromorphic in 7y < |z] < 00,7y > 0.

From the first fundamental theorem we have

m (r,a, f) + N (r,a, f) =T (r, f) + O (logr), (1)

where 79 < |z] < 00, 19 > 0.
Suppose that f(z) is non-constant. Let ajas  a,q > 2 be distinct finite
complex numbers, 0 > 0 and suppose that |a, —a,| > 0 for 1 < <wv < gq. Then

m(r, f)+ Y m(r,a,, f) <27 (r, f) = Ni (r) + 5 (r), (2)

where

M) =N (rg ) 2N ) = N ),

f/

and

S (r) —m<7‘,f?/> —i—im(r,ff%) + O (logr).

v=1

Adding N (r, f) +>_1_, N (r,a,, f) to both sides of (2) and using (1), we obtain

(=T (r f) SN f)+ Y N (rau )+ 5 (r), (3)

v=1

where Sy (1) = O (log T (r, f)) and N corresponds to distinct roots.

Again if f,, has an essential singularity at oo, we have Tl(c;g; 7 — 0 as r — oo.

2. Lemmas

The following lemmas will be needed in the sequel.
Lemma 2.1. If f, g and h are functions in class II, then for any ro > 0 and M,
a positive constant T(T(f(gg))) > M, ;(T(h))) > M and ~ ))) > M for all large r,
except a set of r intervals of total finite length.
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This follows from the lemma of Lahiri and Banerjee [8].

Lemma 2.2. If n is any positive integer and f(z), g(z) and h(2) are functions
in class I, then for any ro > 0 and M, a positive constant

T (T7 fn+p) T (Tv gn—i—p) T (7“, hn+p>
T(r. f.) Tl fo) T g

according as p=3m or 3m — 1 or 3m — 2; m € N, for all large v except a set of r
intervals of total finite length.
Proof. For j =1,2,....,n and for all large r, by using Lemma 2.1, we get

> Ml, > M,

T<T7 fj-‘rl) < T(T’, (1 - a) gj) + T(Ta Oéf (gj)) + O (1)
< T(r,g;) +T(r, f(g;)+0O(1)

e T(rg) , 0@
= TCSON) " 70 70 T T )
— (1+0MW)T(r, f(g) - @

[0}

Again f (g;(2)) = L fj1 (2) — =29, (2) and so for large r
T(r, f(9;)) <T(r, fj1) + T (r,9;) + O (1)

Therefore

T(r, fix1) = T(r,f(g5) =T (rg;)+0(1)

o tan . L) o
= T L) Y= 5o T T o)

= (L+0)T(r f(95) - (5)

From (4) and (5) for all large 7, we have

T(r fix1) =(1+0@)T(r f(g)) - (6)
Similarly for large r, we have

T(r.giv1) =1+ 01) T (r,g(hy)) (7)

and
T (rohje) =1 +0@)T (r,h(f;) - (8)
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Case I. When p = 3m, m € N. For all large r except a set of r intervals of total
finite length, we have from (6), (7) and (8) by using Lemma 2.1

ie,

T (7", fn—l-p)

T(r, fn)

T (r, f (gn+p-1))

(1+0(1)) T )
100 T
(140 1) Ty e B O Sl
o)
Tr, f Gy ) T (729 (hap2)) T (1 hop2)
OO ) G ) Trihnepa) T f)
T, f Gt ) T (129 (ha-2)) T (1 (frps)
0+ 0 G g Tl T funs)
T(rh (1))
TG )

(1+0(1)) M?
M say, where M; = (14 O (1)) MP, a positive constant

T(T’, fn+p) > Ml

T (r, fn)

for all large r except a set of r intervals of total finite length.
Case II. When p =3m — 1, m € N. For all large r except a set of r intervals of
total finite length, we have from (6), (7) and (8) by using Lemma 2.1

T (T7 gner)

T(r, fn)

T <T7 9 (hn+p*1))
T(r, fa)
T (r,g (hnip-1)) T (r, hnip1)
T (Ta hn+p*1) T (1”, fn)
T(r, g (hnip)) A+ O DT (r, h (frip-2))
T (r, hpp—1) T (r, fn)
T(r,g (hnyp-1)) T (r; 7 (frip—2))
T (T’ hn+p—1) T (T’ fn)

= (1+0()

(1+0(1))

= (1+0(1)

= (1+0(1)
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T (7’, g (thrpfl)) T (Tv h (fn+p72>) T (7“, fn+p72)

= (1+0(1)) T(r,hnip-1)  T(r, fuip2) T(r.Ju)

T(r.g hn+p—1 T (r,h fn+p—2 T(r, f Gn+p-3
= (1+0) ;(73 Eanrpl))) ;(r, .(fnerZ))) ;<r>én+p3))>
T (r,h(fn))
T fa)
> (1+0(1)) M?
= M, say, where M; = (1+ O (1)) M?, a positive constant

i.e,
T (T) gn+p)
—=>M
T (Tv fn) !

for all large r except a set of r intervals of total finite length.
Case III. When p = 3m — 2,m € N. For all large except a set of r interval of
total finite length, we have from (6), (7) and (8) by using Lemma 2.1

T (7'7 thrp) T (7“, h (fnerfl))
gy O TG
T (r,h (foip—1)) T (1, frip—1)
T (7, faip-1) T (r, fn)
T (r,h (fasp-1)) L+ O (W))T (r, f (gn+p-2))
T (7, frip-1) T (r, fn)
T (T? h (fn-l—p—l)) T (’l”, .f (gn+p—2))
= Oy T )
T (roh (fosp-1) T (1, f (Gnip—2)) T (7, Gnp—2)
T (r, fn-l—p—l) T (r, gn+p—2) T (7“, fn)

= (1+0(1)

= (1+0()

= (1+0(1)

T (T? h (fnerfl)) T (ra f (gn+p72)) T <T7 9 (hn+p73)>
B (1 - © (1)) T (’I", fn-‘rp—l) T <T7 gn-‘:—p—?) T (7’, hn+P—3)
T (r h(fn))
- T fo)
(1+0(1)) M?
= M, say, where M; = (1+ O (1)) M?, a positive constant

V
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i.e,
T(rahn-i-p)
—— > M
T fa)

for all large r except a set of r intervals of total finite length.

Lemma 2.3. If n is any positive integer and f(z), g(z) and h(2) are functions
in class II, then for any ro > 0 and My, a positive constant

T (7‘, gn+P) T (Tv hn+P) T (T7 fn+P)
T (r, gn) voT (7, gn) T(r, gn)

according as p =3m or 3m — 1 or 3m — 2;m € N, for all large r except a set of r
intervals of total finite length.

> M, and > M,

Lemma 2.4. If n is any positive integer and f(z), g(z) and h(2) are functions
in class I, then for any ro > 0 and M, a positive constant

T (Ta hn+p) T (7": fn+p>
T (r, hy) T (r, hy)

T (Ta gn+p)

M
> M T (r, hy,)

> M; and > M,

according as p = 3m or 3m — 1 or 3m — 2;m € N, for all large r except a set of r
intervals of total finite length.

3. Theorem
Theorem 3.1. If f (2), g(z) and h(z) belong to class II, then f (z) has infinity of

generalised fix points of exact order n for every positive integer n, provided ;E:iﬂ:;
and :TF(:—]}:; are bounded.

Proof. We consider the function

gb(z):fnT(z),ro<|z|<oo.
Then
T(r,¢) =T (r, fn) + O (logr). 9)

We assume that f(z) has only a finite number of generalised fix points of exact
order n. From (3) by taking ¢ = 2, a; = 0, as = 1, we obtain

where S; (r,¢) = O (log T (r, ¢)) outside a set of r intervals of finite length [7].

Now we have o0
N o) = [ m0.0)

To
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where 7 (¢, 0, ¢) is the number of roots of ¢ (z) = 0 in ry < |z| < t, each multiple
root taken once at a time. The distinct roots of ¢ (z) = 0 in 79 < |z| < ¢ are the
roots of f,, (2) = 0inrg < |z| < t. Now f, (2) has a singularity at z = 0, an essential
singularity at z = oo, and f, (z) # 0,00. So 7 (¢,0,6) = 0. So N (r,0,¢) = 0. By
similar argument N (r, 00, ¢) = 0. So

T(T7¢> SN(T>17¢) +Sl (Ta ¢)

We now calculate N (r,1,¢) . If ¢ (2) =1, then £, (z) = z.
S0

=

N(r,1,¢) = (r,0, fr — 2)

n—1

< N(T,O,fj—z)—i-O(logr),

1

<.
I

the term O (logr) arises due to the assumption that f (z) has only a finite number
of generalised fix points of exact order n.

Now from (10), we have

T(r,¢) < ZN(T,O,fj—z)+O(logr)+O(logT(r,¢))

< YT £)+0(0sT (r,6) + O (logr)
_ r T(Ta fj3) T(T’, fj6) T(T7fjss>
= T EEy T e T T £
T(T, fj1) T(T7 fj4) T(T’, fj3p72) T(T, gn)
g " Tlrg T Tg) T L)
T(r, fi,) | T(r, f;) T (7, fisgs) T (r, hy)
HAren T e Tt T T
+O <log{T (7, fn) (1 + ?80%)))}) N O (logr)]7

T (r, fa) T (r, fn)
Where j17j47 "'7j3p72; j27j57 "'7j3q71;

73, J6, -+, J3s are divisors of n and are strictly less than n and are



On the Ezistence of Generalised Fix Points of Functions of Class I1 53

of the forms 3p —2,3¢ — 1 and 3s (p,q,s € N)

1 -1 n-1
< T(r, fn) [n6n + n6n + n6n |, for all large r by Lemma 2.2
and since T(r,g.) , T(r,hn) are bounded
T (r, fn) T (7, fn)

< %T (ry fu) -

Therefore T (r,¢) < 3T (r, f»), for all large r. This contradicts (9).
Hence f (z) has infinitely many generalised fix points of exact order n.
This proves the theorem.

Theorem 3.2. If f (z), g (2) and h(z) belong to class II, then f (z) has an infinity
of generalised fix points of exact factor order n, for any positive integer n, provided

;E:?z; and 5%:?:; are bounded.

Proof. As in Theorem 3.1, we assume that f(z) has only a finite number of
generalised fix points of exact factor order n.

Considering the function

w(z):fnT(Z) , To < |2] < o0
We have
T (r,w)=T(r, ) + O (logr) . (11)

Now N (r,0,w) = 0 and N (r, 00, w) = 0. B
We consider following three cases to calculate N (7,1, w).
Case I. When n = 3m,m € N.

N(% 17 w):N(r,O,fn—z)

< [N (r,0, f; —2) + N (r,0,9; — 2) + N (r,0,h; — 2) + O (log )]
j/n,j=1
n—2
< D> T f)+ T (r,g;) + T (r,hy)] + O (logr)
J/m.j=1
_ T(T, fjs) T(Ta ij) T(’l“, fj3s) T(T, gjl)
= TSIy YT T T f) T A

(
T (7”, gj4) T (7“, ngp—Z) + T (Tv hjz) + T (Tv hjs)
T )

Tofy T T ) (o fa) T fa
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+T (T hJ3q 1)] + T(T, gn) [T (T, sz) + T(T, fjs) + T (7“, ijq—l)

+ ...
T (r, fn) T(r,gn) T(r,9n) T (r, gn)
+T (T’ gjg) + T (T, gja) T (T’ g3s) T (ra hj1> T (T7 hj4)
T(r.g,) T(r gn) T(r,gn)  T(r,gn) T (r gn)
T (Tv hj3p—2) T (T, fjl) T (7‘, fj4) T (T’ fj3p—2)
Tt g T Gy YTy T T )
+T <T7 gjz) T (Tv gj5> + o+ T (Tv gj3q71) T (Tv hjs) T (T‘, hja)
T (r, hy) (ryhy) T (r, hy) (r,hy,) T (r,hy)
T(T’,hn) ogr), where J1y J4y -y J3p—25 J25 755 --+5 J3¢—1;

J35 J6, ---, J3s are divisors of n and are strictly less than n and are
of the forms 3p — 2,3¢ — 1 and 3s (p,q,s € N)

n—1 n—1 n—1
T —T —T 1 fi

all large r, by Lemma 2.2, Lemma 2.3 and Lemma 2.4.

Case II. Whenn =3m +1,m € N.

N

(r,

1, w)=N(r0,f,—2)
n—1
< Z [N (r,0,f; —2) + N (r,0,g; — 2) + N (r,0,h; — 2)] + O (log 1)
j/m.j=1
n—2

[T (r, ) + T (r,9;) + T (r,h;)] + O (log )

i/n,j=1

- TR T T T
T T
P ;T(’SZZ)Q) N ((T gn)) ((7;7/;3) LT ;r,r’zi)l)]
) A R+ T T
+%+ +%] + O (logr), where ji, js, ..., jap_o
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and jo, Js, ..., j3g—1 are divisors of n and are strictly less than n
and are of the forms 3p — 2 and 3¢ — 1 (p,q, € N)

n—1 n—1

T(r, fn
o L fa) + =5

-1
T(r,gu) + =5 =T (r ha) + O (logr)
Case III. When n =3m + 2, m € N, we have

N(r,l,w) = N

n

707fn_z)

[N (r,0, f; —2) + N (r,0,g9; — 2) + N (r,0,h; — 2)] + O (log 1)

‘ —
o 3

(]

j/n.j=1

< /n22 [T (r, f5) + T (r, 95) + T (r, h;)] + O (log 7)
J/m,g=1

- TR T T T
TR T T (e T
et R T T
T T+ T 4 T T
+% —T}Té:ﬁz)l)]—i-O(logr), where ji, ja, ..., j3p_2

and ja, Js, ..., J3q—1 are divisors of n and are strictly less than n
and are of the form 3p — 2 and 3¢ — 1, (p,q € N)

n—1
6n

n

—1 —1
T(Ta fn) + %T (Ta gn) + n T(7”> hn) + O(lOgT)

Therefore in any case

n—1
N (r,1 < —7T n

n—1

n—1
o T(Tagn)JrG—RT(Tahn)JFO(lOgT)‘
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T(r,gn) and T(r,hn)

T(r fn) T are bounded, we have

Since

T(r,w) < N(r,1,w)+S;(r)

< n6;l1T<7’,fn)+n6;l1T<7’,gn)+n6_an(T7h’")+O(logr)
+0 (log T (1, w))
_ n—1 n—lT(ragn) n—lT(’f‘,hn) O(logr)
B T(T’fn>[ 6n + 6n T(T,fn)+ 6n T(Tafn)—i_T(r’fn)
O (log T (r, w))]
T(T7fn)
n—1 n—1 n—-1 0O(logr)
s T b g 5 o0 T T )

O (log (T'(r, fn) + O (log T‘)))]

T (T7 fn)
= T(r,f) [(n;nl) + ?80%(:)) Lo (tox (7 (T’Tf T(L: gi)+ 723)))

1
< §T (r, fn), for all large r.

Therefore, T' (r,w) < 3T (r, f,) for all large r. This contradicts (11).
Hence f (z) has infinitely many generalised fix points of exact factor order n.
This proves the theorem.
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