Fractional q-Derivative of Generalized Miller-Ross Function

Manoj Sharma, Mohd. Farman Ali* \& Renu Jain*,
Department of Mathematics,
RJIT, BSF Academy, Tekanpur

* School of Mathematics and Allied Sciences, Jiwaji University, Gwalior

Received July 18, 2014
Abstract: This paper is devoted to fractional q-derivative of special functions. To begin with the theorem on term by term q-fractional differentiation has been derived. The result is an extension of an earlier result due to Yadav and Purohit [8] As a special case, of fractional q-differentiation of Generalized Miller-Ross function has been obtained.
Keywords and phrases: Fractional integral and derivative operators, Fractional q-derivative, Generalized Miller-Ross function and Special functions.
A.M.S. subject classification: Primary33A30, Secondary 33A25, 83C99. Definition

1.1. q-Analogue of Differential Operator

Al-Salam [3], has given the q-analogue of differential operator as

$$
\begin{equation*}
D_{q} f(x)=\frac{f(x q)-f(x)}{x(q-1)} \tag{1.1}
\end{equation*}
$$

This is an inverse of the q-integral operator defined as

$$
\begin{equation*}
\int_{x}^{\infty} f(t) d(t ; q)=x(1-q) \sum_{k=1}^{\infty} q^{-k} f\left(x q^{-k}\right) \tag{1.2}
\end{equation*}
$$

where $0<|q|<1$.

1.2. Fractional q-Derivative of Order α

The fractional q-derivative of order α is defined as

$$
\begin{equation*}
D_{x, q}^{\alpha} f(x)=\frac{1}{\Gamma_{q}(-\alpha)} \int_{0}^{x}(x-y q)_{-\alpha-1} f(y) d(y ; q) \tag{1.2.1}
\end{equation*}
$$

where $\operatorname{Re}(\alpha)<0$
As a particular case of (1.2.1), we have

$$
\begin{equation*}
D_{x, q}^{\alpha} x^{\mu-1}=\frac{\Gamma_{q}(\mu)}{\Gamma_{q}(\mu-\alpha)} x^{\mu-\alpha-1} \tag{1.2.2}
\end{equation*}
$$

2. Main Results

In this section we drive the results on term by term q-fractional differentiation of a power series. As particular case we will the fractional q-differentiation of the Generalized M-Series and exponential series.
Theorem 1: If the Generalized Miller-Ross function ${ }^{\alpha} N_{p, q}^{\alpha, \beta}(z)$ converges absolutely for $|q|<\rho$ then

$$
\begin{align*}
& D_{z, q}^{\mu}\left\{z^{\lambda-1} \sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{a^{k} z^{k+\beta}}{\Gamma(\alpha k+\beta+1)}\right\} \\
= & \sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{a^{k}}{\Gamma(\alpha k+\beta+1)} D_{z, q}^{\mu} z^{k+\lambda+\beta-1} \tag{2.1}
\end{align*}
$$

where $\operatorname{Re}(\lambda)>0, \operatorname{Re}(\mu)<0,0<|q|<1$
Proof: Starting from the left side and using equation (1.2.1), we have

$$
\begin{gather*}
D_{z, q}^{\mu}\left\{z^{\lambda-1} \sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{a^{k} z^{k+\beta}}{\Gamma(\alpha k+\beta+1)}\right\} \\
=\frac{1}{\Gamma_{q}(-\mu)} \int_{0}^{z}(z-y q)_{-\mu-1} y^{\lambda-1} \sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{a^{k} y^{k+\beta}}{\Gamma(\alpha k+\beta+1)} d(y ; q) \\
=\frac{z^{\lambda-\mu-1}}{\Gamma_{q}(-\mu)} \int_{0}^{1}(1-t q)_{-\mu-1} t^{\lambda-1} \sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{a^{k} t^{k+\beta} z^{k+\beta}}{\Gamma(\alpha k+\beta+1)} d(t ; q) \tag{2.2}
\end{gather*}
$$

Now the following observation are made
(i) $\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{a^{k} t^{k+\beta} z^{k+\beta}}{\Gamma(\alpha k+\beta+1)}$ converges absolutely and therefore uniformly on domain of x over the region of integration.
(ii) $\int_{0}^{1}\left|(1-t q)_{-\mu-1} t^{\lambda-1}\right| d(t ; q)$ is convergent provided $\operatorname{Re}(\lambda)>0, \operatorname{Re}(\mu)<0,0<|q|<1$

Therefore the order of integration and summation can be interchanged in (2.2) to obtain.

$$
\begin{gathered}
=\frac{z^{\lambda-\mu-1}}{\Gamma_{q}(-\mu)} \sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{a^{k} z^{k+\beta}}{\Gamma(\alpha k+\beta+1)} \int_{0}^{1}(1-t q)_{-\mu-1} t^{\lambda+k+\beta-1} d(t ; q) \\
=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{a^{k}}{\Gamma(\alpha k+\beta+1)} D_{z, q}^{\mu} z^{k+\lambda+\beta-1}
\end{gathered}
$$

Hence the statement (2.1) is proved.

3. Some Special Cases

(i) If we take $\alpha=0, \beta=0$ in equation (2.1) it becomes the fractional q-derivative of power series.

$$
\begin{equation*}
D_{z, q}^{\mu}\left\{z^{\lambda-1} \sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} a^{k} z^{k}\right\}=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} a^{k} D_{z, q}^{\mu} z^{k+\lambda-1} \tag{3.1}
\end{equation*}
$$

This equation (3.1) is known result given by Yadav and Purohit [8].
(ii) When $\alpha=1, \beta=0, a=1$ and no upper or lower parameter in(2.1), we have

$$
\begin{equation*}
D_{z, q}^{\mu}\left\{z^{\lambda-1} \sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(k+1)}\right\}=\sum_{k=0}^{\infty} \frac{1}{k!} D_{z, q}^{\mu}\left\{z^{k+\lambda-1}\right\} \tag{3.2}
\end{equation*}
$$

equivalently,

$$
\begin{equation*}
D_{z, q}^{\mu}\left\{z^{\lambda-1} e^{z}\right\}=\sum_{k=0}^{\infty} \frac{1}{k!} D_{z, q}^{\mu}\left\{z^{k+\lambda-1}\right\} \tag{3.3}
\end{equation*}
$$

Thus the equation reduces to fractional q-derivative of exponential function.
(iii) If no upper or lower parameter, we have

$$
\begin{equation*}
D_{z, q}^{\mu}\left\{z^{\lambda-1} \sum_{k=0}^{\infty} \frac{a^{k} z^{k+\beta}}{\Gamma(\alpha k+\beta+1)}\right\}=\sum_{k=0}^{\infty} \frac{1}{\Gamma(\alpha k+\beta+1)} D_{z, q}^{\mu} z^{k+\lambda+\beta-1} \tag{3.3}
\end{equation*}
$$

Hence the series convert in fractional q-derivative of Miller-Ross function. Thus it is the complete analysis of the statement (2.1).

References

[1] Agarwal, R.P.: Fractional q-derivatives and q-integrals and certain hypergeometric transformations, Ganita 27 (1976), 25-32.
[2] Agarwal, R.P.: "Resonance of Ramanujan's Mathematics, 1", New Age International Pvt. Ltd. (1996), New Delhi.
[3] Al-Salam, W.A.: Some fractional q-integral and q-derivatives, Proc. Edin. Math. Soc. 15 (1966), 135-140.
[4] Exton, H.: q-hypergeometric functions and applications, Ellis Horwood Ltd. Halsted Press, John Wiley and Sons, (1990), New York.
[5] Gasper, G. and Rahman, M.: Basic Hypergeometric Series, Cambridge University Press, (1990), Cambridge.
[6] Manocha, H.L. and Sharma, B. L.: Fractional derivatives and summation, J. Indian Math. Soc. 38 (1974), 371-382.
[7] Rainville, E.D.: Special Functions, Chelsea Publishing Company, Bronx, (1960), New York.
[8] Yadav, R. K. and Purohit, S. D.: Fractional q-derivatives and certain basic hypergeometric transformations. South East Asian, J. Math.and Math. Sc. Vol. 2 No. 2 (2004), 37-46.
[9] Sharma, M. and Jain, R.: A note on a generalized M-Series as a special function of fractional calculus. J. Fract. Calc. and Appl. Anal. Vol. 12, No. 4 (2009), 449-452.

