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Abstract: In this paper, we study homogeneous Einstein Kropina metric. First,
we characterize the sufficient and necessary condition for a homogeneous Kropina
metric to be Einstein and with vanishing S-curvature.Further, we study the con-

formal deformation of the metric F (α, β) = K(α, β) + ε(x)β, where K(α, β) =
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β
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1. Introduction
It is important to study the Einstein manifolds in Riemannian -Finsler geome-

try. A Finsler metric F (x, y) on an n-dimensional manifold M is called an Einstein
metric [28], if there exists a scalar function λ(x) on M such that

Ric = λ(x)F 2.

Recentlty, some progress has been made on Einstein Finsler metrics of (α, β) type.
In [3], the authors D. Bao and C. Robles have shown that every Randers metric of
dimension (n ≥ 3) is necessarily Ricci constant. A 3-dimensional Randers metric
is Einstein iff it is constant flag curvature, see more in ([2], [5], [7], [13], [21],
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[23]). The invariant Einstein Finsler metrics on homogeneous manifolds are very
interesting in Finsler geometry; see [10] for some results on homogeneous Einstein
Randers metrics. In 2012, the author S. Deng studied the homogeneous Finsler
spaces. The (α, β)-metric form an important class of Finsler metrics, which is of
the form F = αφ(β/α) is a positive definite with ||β||α < b0 if and only if φ = φ(s)
is a positive C∞ function on (−b0, b0) satisfying the following condition [17]:

φ(s)− sφ′(s) + (b2 − s2)φ
′′
> 0, |s| ≤ b < b0. (1.1)

In this paper we consider the homogeneous (α, β)-metrics, i.e., F =
α2

β
Kropina

metric. The Kropina metric is just the special (α, β)-metric with φ(s) =
1

s
. There-

fore, φ(s) satisfies (1.1). It was considered by V.K. Kropina firstly [14]. Since, then
many authors have been investigated the geometric properties of Kropina metric
([20], [26]).

The Ricci curvature plays an important role in Finsler geometry and is defined
as the trace of the Riemannian curvature on each tangent space. In [27], L. Zhou
first gave the formula of Riemannian curvature and Ricci curvature for (α, β)-
metrics. Later, X. Cheng, Z. Shen and Y. Tian found some error of those formulas
[7]. They also proved that if φ(s) is a polynomial in s, then the (α, β)-metric is
Einstein if and only if it is Ricci flat and in [28], the authors, X. Zhang and Yi-Bing
Shen studied on Einstein Kropina metric.

The present paper is organized as following: Based on the formula of the Ricci
curvature for Kropina metric [28], we give a formula of Ricci curvature for homo-
geneous Kropina metric. Using this formula, we find a necessary condition related
φ for F to be Einstein. Then, we show that if φ is normal. Moreover, on the
compactness, we obtain a sufficient and necessary condition for a homogeneous
Kropina metric to be Einstein with vanishing S-curvature. Further, we will study
the conformal deformation of this metric. Under this, we prove that the conformal
deformation of Kropina metric is single colored.

2. Preliminaries
In this section, we present some fundamental definitions and facts of Finsler

geometry, see([1], [6], [7], [24]).

Definition 2.1. Let V be an n-dimensional real vector space. A Minkowski norm
on V is a real function F on V which is smooth on V \{0} and satisfies the following
conditions:

1. F (u) ≥ 0, ∀u ∈ V ,
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2. F (λu) = λF (u), ∀λ > 0,

3. Given any basis u1, u2, ..., un of V , write F (y) = F (y1, y2, ..., yn) for y =
y1u1 + y2u2 + ...+ ynun. Then the Hessian matrix

gij =

[
1

2
F 2

]
yiyj

is positive definite at any point of V \{0}.

For example, let <,> be an inner product on V . Define F (y) =
√
< y, y >.

Then F is a Minkowski norm. In this case it is called Euclidean.
A Finsler metric on a smooth manifold M is a function F : TM → [0,∞) which

is C∞ on the slit tangent bundle TM\{0} and whose restriction to any tangent
space TxM , x ∈M is a Minkowski norm.

Every Finsler metric F induces a spray G on M defined by [22]

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where

Gi(x, y) =
1

4
gil(x, y)

{
2
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)

}
yjyk.

G is globally defined vector field on TM . The notion of Riemannian curvature
for Riemann metrics can be extended to Finsler metrics. For a non zero vector
y ∈ TxM\{0} the Riemannian curvature Ry : TxM → TxM is linear map defined
by

Ry(u) = Ri
k(y)uk

∂

∂xi
, u = ui

∂

∂xi
,

where

Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

The trace of Riemann curvature Ry is scalar function Ric on TM defined by

Ric(y) = tr(Ry),

which is called the Ricci curvature of (M,F ).

Recall, the notion of S-curvature of a Finsler space. In [10], [24]), the author Z.
Shen introduced the notion of S-curvature of a Finsler spaces. It is a quantity
to measure the rate of change of the volume form of a Finsler space along the
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geodesics. S-curvature is a non-Riemannian quantity, i.e., any Riemannian mani-
fold has vanishing S-curvature. Let V be an n-dimensional real vector space and
F be a Minkowski norm on V . For a basis {ei} of V , let

σF =
V ol(Bn)

V ol{(yi) ∈ Rn : F (yiei) < 1}

where Vol means the volume of a subset in the standard Euclidean space Rn and
Bn is the open ball of radius 1. This quantity is generally dependent on the choice
of the basis {ei}. But it is easily seen that

τ(y) = ln

√
det(gij(y))

σF
, y ∈ V \{0}

is independent of the choice of the basis. τ = τ(y) is called the distortion of (V, F ).
Now, let (M,F ) be a Finsler space and τ(x, y) be the distortion of the Minkowski
norm Fx on TxM . For y ∈ Tx\{0}, let σ(t) be the geodesics with σ(0) = x and
σ̇(0) = y. Then, the quantity

S(x, y) =
d

dt
[τ(σ(t), σ̇(t))]|t=0,

is called the S-curvature of the Finsler space (M,F ).

Now, we use the notations as in [7] to give a formula of the Ricci curvature of the
given metric, let

rij =
1

2
(bi;j + bj;i), sij =

1

2
(bi;j − bj;i),

where ‘;’ denote the covariant derivative with respect to the Levi-Civita connection
of α. Let

rij = aimrmj, s
i
j = aimsmj,

rj = bmrmj = bir
i
j, sj = bmsmj = bis

i
j,

r = rijb
ibj = bjrj,

where (aij) = (aij)
−1 and bi = aijbj. Further, let ri = aijrj, s

i = aijsj. Denote
ri0 = rijy

j, si0 = sijy
j and r00 = rijy

iyj, s0 = siy
i. Then, the author X. Zhang and

Yi-Bing Shen proved the following;

Proposition 2.1.([28]), For the Kropina metric F = α2

β
, the Ricci curvature of

F is given by
Ric = Ric+ T, (2.1)
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where

T = − α2

b4β
s0 −

r

b4
r00 +

α2

b2β
bks0;k +

1

b2
bkr00;k +

n− 2

b2
s0;0 +

n− 1

b2α2
βr00;0

+
1

b2
(
α2

β
s0 + r00)rkk −

α2

β
sk0;k −

1

b2
r0;0 −

2(2n− 3)

b4
r0s0 −

n− 2

b4
s2

0

−4(n− 1)

b4α2
βr00r0 +

2(n− 1)

b4α2
βr00s0 +

3(n− 1)

b4α4
β2r2

00 +
2n

b2
sk0r0k +

1

b4
r2

0

− α2

b2β
sk0rk +

n− 1

b2β
α2sk0sk −

α4

2b2β2
sksk −

α2

b2β
skr0k −

α4

4β2
sjks

k
j .

Recall that the group of isometries of a Finsler space (M,F ) is a Lie transfor-
mation group of M [9]. A Finsler metric M is called Homogeneous, if its isometry
group acts transitivity on M . A homogeneous Finsler space can be expressed as
(G/H,F ), where G is a connected Lie group, H is a compact subgroup of G and
F is invariant under the action of G . Moreover, the action of G on G/H is almost
effective and the Lie algebra g of G has a reductive decomposition

g = h+m,

where h is the Lie algebra of H and m is a subspace of g satisfying ad(h)(m) ⊂ m,
∀h ∈ H. We identify m with the tangent space To(G/H) of G/H at the origin o

through the mapping X → d

dt
(exp(tX))|t=0. Under this identification, G invariant

Finsler metric on G/H is in one-to-one correspondence with H invariant Minkowski
norm onm, see [9] for more information on invariant metrics. However, under these,
that the Kropina metric is Homogeneous. Also, according to [12], Riemannian
metric α and 1-form β are invariant under action of G and induces a Minkowski
norm. In the following, we adopt some ideas from [11] to deal with invariant
Kropina metric.

Let u1, u2, ..., un be an orthonormal basis of m with respect to 〈, 〉. Then, there
exists a local co-ordinate system on a neighborhood of o = H which is defined by
the mapping

(exp(x1u1), exp(x2u2), ..., exp(xnun))H → (x1, x2, ..., xn).

Let Γkij be the christiffel symbols under the co-ordinate system, i.e., ∇ ∂

∂xi

∂
∂xj

=

Γkij
∂

∂xk
. To compute the value of Γkij at the origin o, we need the following notations.
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Let Ck
ij (1 ≤ i, j, k ≤ n) be the structure constants of g, i.e., Ck

ij = 〈[ui, uj]m, uk〉,
where [ui, uj]m denotes the projection of [ui, uj] to m and f(k, i) be defined by

f(k, i) =

{
1, k < i;
0, k ≥ i.

Given v ∈ g, let v̂ denote the fundamental Killing vector field generated by v, i.e.,

v̂gH =
d

dt
exp(tv)H|t=0, ∀g ∈ G. Then, we use the following quantities proved by

S. Deng and Z. Hu;

Γlij(o) = f(i, j)C l
ij+ < ∇ûiûj, ûl >,

∂Γl
ij

∂xk
|o = −Γsij(Γ

l
ks+ < ∇ûk ûl, ûs >) + f(k, j)Ca

kj < ∇ûiûa, ûl >
+f(k, i)Cs

ki < ∇ûsûj, ûl > +ûk < ∇ûiûj, ûl >, i ≥ j,

< ∇ûiûj, ûl > |o = −1
2
(C l

ij + Cj
il + Ci

jl),

ûk < ∇ûiûj, ûl > |o = 1
2
(C l

kaC
a
ij + Cj

kaC
a
il + Ci

kaC
a
jl + Cs

ijC
s
kl + Cs

ilC
s
kj + Cs

jlC
s
ki).


(2.2)

Here we have used simplified symbols, namely, when the upper index are repeated,
it automatically takes the summation of all the products in the range of the index,
i.e., Cs

ijC
s
kl =

∑n
s=1C

s
ijC

s
kl. In the following, we will still use these simplified

symbols.

Let (M = G/H,F =
α2

β
) be homogeneous Kropina space. According to [12],

Riemannian metric α and 1-form β are both invariant. Therefore, we suppose that
the invariant vector ũ generated by u = cun corresponds to the invariant 1-form β
(i.e., α(ũ, X) = β(X) for any vector field X on M). To find the quantities involved
in (2.1), we also need the following lemma, for further computations.

Lemma 2.1. [11] For ui, uj, uk, ul∈ m and the value at the origin, we have

bi = cδni, sij =
c

2
Cn
ij, sj =

c2

2
Cn
nj,

rij = − c
2

(Cj
ni + Ci

nj), si;j = csni;j +
c2

2
Cn
liΓ

l
nj,

sij;k =
c

4
Cn
lj(C

l
ki + Ck

il + Ci
kl) +

c

4
Cn
il(C

l
kj + Ck

jl + Cj
kl) +

c

2
C l
jiC

n
kl,

1

c
bi;j;k = −Γsnj〈∇ûk ûi, ûs〉 − Γins〈∇ûk ûj, ûs〉+ Cs

kn〈∇ûsûj, ûi〉+ ûk〈∇ûnûj, ûi〉.
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3. Ricci Curvature of Homogeneous Kropina metric

In this section, we compute the Ricci curvature of Homogeneous Kropina met-
ric.
Using the quantities in (2.2) and lemma 2.1, we obtain the values of the quanti-
ties involved in (2.1) at the origin and direct computations, we get the following
notations;

r00 = cC0
0n, s0 =

c2

2
Cn
n0, r0 = −c

2

2
Cn
n0, r = 0, r00;0 = −cC0

0s(C
0
ns + Cs

n0),

rmm = −cCm
nm, r0mr

m
0 = r0mrm0 =

c2

4
(Cm

n0 + C0
nm),

r00;mb
m = cb00;n = −c

2

2
(Cs

n0 + C0
ns)(−Cs

n0 + C0
ns + Cn

0s),

r0m;0b
m = cr0n;0 =

c2

2
[Cn

nsC
0
s0 +

1

2
(C0

ns + Cs
n0)(Cs

0n + Cn
s0 + C0

ns)],

r0ms
m
0 = r0msm0 = −c

2

2
Cn
m0(Cm

n0 + C0
nm),

s0;0 =
c2

2
Cn
nsC

0
0s, s0ms

m
0 = s0msm0 = −c

2

4
(Cn

m0)2,

sms
m
0 =

c3

4
Cn
nmC

n
m0, smr

m
0 = −c

3

4
Cn
nm(C0

nm + Cm
n0), rms

m
0 = −c

3

4
Cn
nmC

n
m0,

s0;mb
m =

c3

4
Cn
ns(C

s
n0 + Cn

0s + C0
ns), sm;0b

m =
c3

4
Cn
ns(C

s
n0 + C0

ns + Cn
0s),

sm0;m = sm0;m =
c

2
Cn
s0C

m
ms +

c

4
Cn
ms(C

0
ms + Cm

0s + Cs
0m),

sms
m =

c4

4
(Cn

nm)2, sims
m
i = simsmi = −c

2

4
(Cn

mi)
2,

here the superscript 0 on the C’s means to take the inner product with y, e.g.,
C0
nm = 〈[un, um]m, y〉. Summarize the above computations, we have the following;

Theorem 3.1. Let G/H, α, β, F = α2

β
, m, u, ui are given. Then the Ricci scalar

of homogeneous Kropina metric is given by
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Ric(y) = Ric+
α2c3

b2β4
[Cn

0s(C
s
0n + Cn

0s + C0
ns) + Cn

nm((n− 1)Cn
m0 − 2)]

− (n− 1)
βc

b2α2
C0

0s(C
0
0s + Cs

n0)− α2c

2β
Cn
s0C

m
ms +

α2c

4β
Cn
ms(C

0
ms + Cm

0s + Cs
nm)

+
c2

4b2
[2{(Cs

n0)2 − C0
nsC

n
0s + (n− 1)Cn

nsC
0
0s} − 2nCn

m0(Cm
n0 + Cs

nm)]

+
(3n− 4)c4

4b4
(Cn

n0)2 + (n− 1)
3βc3

b4α2
C0

0sC
n
ns + (n− 1)

3β2c2

b4α4
(C0

0n)2

+
c4

4b4
(Cn

n0)2 +
α2c3

4b2β2
(Cn

nm + C0
m0)− α4c4

8b2β2
(Cn

nm)2

+
α2c2

4b2β
Cn
m0(Cm

n0 + C0
nm) +

α4c2

16β2
(Cn

mi)
2. (3.1)

Let m = m0 +Run be the orthogonal space decomposition with respect to the inner
product <,>, then u1, u2, ..., un−1 form an orthonormal basis of m0 with respect
to <,>. Obviously, Ad(h)(m0) ⊂ m0, ∀h ∈ H, since the inner product <,> on m
is Ad H-invariant. In the following, we will use the symbol Cw

uv, C
m
uv to represent

〈[u, v]m, w〉 and 〈[u, v]m, um〉 respectively, where u, v, w ∈ m, 1 ≤ m ≤ n.

Definition 3.2. ([29]) We say that the smooth function φ(s) is normal if it
satisfies the following condition

n∑
i=1

kiφi(s) = const⇐⇒ ki = 0, ∀i = 1, 2, ....

Note that, if φ(s) satisfies (1.1), since by above definition, it is normal. It is easy
to check that φ(s) is normal or not. However, without using this definition for a
function φ, it is not easy to determine whether it is normal or not. As notice these
concepts, we prove the following;

Proposition 3.2. Let F = α2

β
be a homogeneous Kropina metric. If F is Einstein

then either φ is not normal or there exists µ ∈ R such that 〈[u, y]m, y〉 = 0 and
〈[u, y]m, y〉 = µ < y, y >, ∀y ∈ m0, where u is the AdH-invariant vector in m
corresponding to β.

Proof. Since in [28] F is Einstein. Let y = cos θw + sin θun, where w ∈ m0

and 〈w,w〉 = 1. Then, we have 〈y, y〉 = 1 and Cy
yn = cos2 θCw

wn + cos θ sin θCn
wn,

Cn
ny = cos θCn

nw. We compute the coefficients term of Ric(y) in (3.1). By direct
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computations, we get the following results;
The coefficient of α2c3

b2β4 is given by

cos2 θ(Cn
wsC

s
wn + (Cn

ws)
2 + Cw

nsC
n
ws) + cos θ sin θ

(Cn
nsC

s
wn + 3Cn

wsC
n
ns + Cn

nsC
w
ns) + (n− 1)

(cos θCn
mwC

n
nm + sin θ(Cn

mn)2)− 2Cn
nm.

The coefficient of −(n−1)βc
b2α2 is given by

cos3 θ(Cw
wsC

s
nw + cos θ(Cw

ws)
2 + 2 sin θCw

ws)

+ cos2 θ sin θ(sin θ(Cs
ws)

2 + Cs
wsC

s
nw).

The coefficient of −α
2c

2β
is given by

cos θCn
msC

m
ms + sin θCn

snC
m
ms.

The coefficient of −α
2c

4β
is given by

Cn
ms[cos θ(Cw

ms + Cm
ws + Cs

wm) + sin θ(Cn
ms + Cm

ns + Cs
nm)].

The coefficient of c2

2b2
is given by

cos2 θ(Cs
nw)2 − sin2 θ(Cn

ns)
2 − cos2 θCw

nsC
n
ws

− sin θ cos θ(Cw
nsC

n
ns + Cn

nsC
n
ws).

The coefficient of (n−1)c2

2b2
is given by

Cn
ns(cos2 θCw

ws + cos θ sin θCs
ws).

The coefficient of −nc
2

2b2
is given by

cos2 θCn
mw(Cm

nw + Cw
nw) + cos θ sin θ[Cn

mwC
n
nm

+Cn
mn(Cm

nw + Cw
nw)] sin2 θCn

mnC
n
nm.

The coefficient of (3n−4)c4

4b4
is given by

cos2 θ(Cn
nw)2.

The coefficient of (n−1)3βc3

α2b4
is given by

Cn
ns(cos2 θCw

ws + cos θ sin θCs
ws).
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The coefficient of 3(n−1)β2c2

α4b4
is given by

cos4 θ(Cw
wn)2 + cos2 θ sin2 θ(Cn

wn)2 + 2 cos3 θ sin θCw
wnC

n
wn.

The coefficient of c4

4b4
is given by

cos2 θ(Cn
nw)2.

The coefficient of α2c3

4β2b2
is given by

Cn
nm − cos2 θCw

wm − cos θ sin θCm
wm.

The coefficient of α2c2

4βb2
is given by

cos2 θCn
mw(Cm

nw + Cw
nm) + cos θ sin θ[Cn

mwC
n
nm

+Cn
mn(Cm

nw + Cw
nm)] + sin2 θ(Cn

nm)2.

Replacing y by ȳ = − cos θw + sin θun in (3.1), we get

Ric(y) +Ric(ȳ) = Ric(y) +Ric(ȳ) + 2 cos4 θ((Cw
ws)

2 + (Cw
wn)2)

+ cos2 θφ1(c sin θ) + 2 cos2 θCn
mwφ2(c sin θ)

+ cos θφ3(c sin θ) + 2Cn
nm + ϕ(θ), (3.2)

where ϕ(θ) is a function of θ and s = c sin θ.
From the result of [5], the Ricci curvature of the homogeneos Riemannian manifold
(G/H,α) is given by

αRic(y) = −1

2

n∑
l=1

〈[y, ul]m, [y, ul]m〉+
1

4

n∑
k,l=1

〈[uk, ul]m, y〉2

− 1

2
K(y, y)− 〈[Z, y]m, y〉, (3.3)

where Z is the unique vector in m defined by 〈Z,X〉 = tr(adX), ∀X ∈ m and K
is the Killing form of g. Therefore, it follows that

Ric(y) +Ric(ȳ) = cos2 θ[−(Cs
wm)2 +

1

2
(Cw

ms)
2]

−K(w,w)− 2〈[Z,w]m, w〉+ ψ(θ), (3.4)
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where ψ(θ) is function of θ.
Since F is Einstein, i.e., Ric(X) = λF 2(X), ∀X ∈ m, for some real number λ ∈ R.
Then, we have

Ric(y) = Ric(ȳ) = λφ2(c sin θ). (3.5)

Substitute (3.4) and (3.5) in (3.1), we obtain

2λφ2(c sin θ)− ϕ(θ)− ψ(θ) = cos2 θ[−(Cs
wm)2 +

1

2
(Cw

ms)
2]

−K(w,w)− 2〈[Z,w]m, w〉+ cos2 θφ1(c sin θ)

+ 2 cos2 θCn
mwφ2(c sin θ) + cos θφ3(c sin θ). (3.6)

Since equation (3.6) valid for any unit vector w in m0, we choose another vector
w′ in (3.6). Then, we have

T (w)− T (w′) + ((Cn
mw)2 − (Cn

mw′)
2)φ2(s) = 0, (3.7)

where T (w) = −(Cs
ws)

2 + 1/2(Cw
ms)

2 − cos θK(w,w)− 2〈[Z,w]m, w〉.
Suppose φ is normal. Then, mention above different vectors w, w′ in the unit ball
m0, we have

(Cn
mw)2 − (Cn

mw′)
2 = 0.

Which implies that Cn
mw = 0 for any w ∈ m. Hence, there is a number λ ∈ R such

that (Cn
mw)2 = λ2. Since Cn

mw is a continuous function on m0. Then, there exists
a real number µ ∈ R such that Cn

mw = µ. According to properties of topology
such µ does not exists, then the result has reverse and so µ must be exists and real
number. This completes the proof.

4. Einstein Kropina metric with S-curvature
In this section, we find the formula of Ricci scalar of homogeneous Kropina

metric with vanishing S-curvatute and we will give a sufficient and necessary con-
dition on φ such that F is Einstein.
Note that, the authors Bao and Roble have proved in that a connected compact
Einstein Randers space with negative Ricci scalar must be Riemannaian [9].

Here, we study the compact case: Suppose M = G/H is compact and con-
nected. Then G is compact. In particular, G is Unimodular, i.e.,tr(Adx) = 0,
∀x ∈ g, g = Lie(G), on this we have the following

Proposition 4.3. Let F = α2

β
is an invariant Kropina metric on the com-

pact connected coset space G/H. Then, F has vanishing S-curvature if and only if
〈[u, x]m, x〉 = 0, ∀x = 0.
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Further, if F is Einstein, then either φ is not normal or F has vanishing S-
curvature.

Proof. Since, F = αφ(β/α) has vanishing S-curvature if and only if rij = 0 and
sj = 0 in the local co-ordinate system.
Using the formula of S-curvature from theorem (2.1) in [10]. By direct computa-
tion, we obtain the S-curvature of homogeneous Kropina metric at the origin is
given by

S(0, y) =
(n− 1)c

F (y)b2
{〈[un, y]m, y〉 − α2〈[un, y], y〉}, y ∈ m. (4.1)

Letting x = 0 and y = u in (4.1), we get c(o) = 0. Hence, S(0, y) = 0, ∀y ∈ m.
Now, lemma 2.1, since c(o) = 0, which implies that rij and sj = 0. Therefore,
which asserts that F has vanishing S-curvature iff 〈[u, x]m, x〉 = 0,∀x ∈ m.

Further, suppose F is Einstein and φ is normal, then proposition 3.5 shows that
the invariant vector u satisfies 〈[u, y]m, y〉 = 0, 〈[u, y]m, y〉 = µ < y, y >, ∀y ∈ m for
some µ ∈ R. Since G is unimodular tr(Adu) = 0. Thus, Cn

mw = 0. From section-3,
we know that Cn

mw = µ = 0, it implies µ = 0. Therefore, admu is skew-symmetric
with respect to <,>, that is 〈[u, x]m, x〉 = 0, ∀x ∈ m. Hence, F has vanishing
S-curvature.
The main result of this section is the following:

Assume that F has vanishing S-curvature, 〈[u, x]m, x〉 = 0, ∀x ∈ m. Then, the
formula of the Ricci scalar of homogeneous Kropina metric (3.1) can be simplied
as the following

Theorem 4.2. Let G/H, α, β, F = α2

β
, m, u, ui are given. Assume that F has

vanishing S-curvature. Then the Ricci scalar of the homogeneous Kropina metric
is given by

αRic(y) = −1

2

n∑
l=1

〈[y, ul]m, [y, ul]m〉+
1

4

n∑
k,l=1

〈[uk, ul]m, y〉2 −
1

2
K(y, y)− 〈[Z, y]m, y〉

+
α2c2

4b2β
{〈[um, un]m, un〉(〈[un, un]m, um〉+ 〈[un, um]m, un〉)}, (4.2)

where Z is the unique vector in m defined by < Z,X >= tr(adX), ∀X ∈ m, K is
the Killing vector field of g and y 6= 0 ∈ m, where m is subspace of group g

Proof. Assume that F has vanishing S-curvature, by lemma 3.2 we have, Cn
nj = 0,

Cj
ni + Ci

nj = 0, ∀i ≤ i, j ≤ n. From these conditions, the coefficients of (3.1) all
Ci’s are zeros. Then, the result follows from theorem 3.1 and the formula of Ricci
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curvature of homogeneous Riemannian manifold (G/H,α) [5].

5. Fundamental Applications:Ricci quadratic homogeneous Kropina met-
ric

In this section, we characterize the Ricci quadratic homogeneous Kropina met-
ric. We glance that a Finsler space is called R-quadratic if the Riemannian curva-
ture Ry is quadratic in y. It is obvious that a Riemannian manifold or a Berwald
space must be R-quadratic. However, there exist many examples of non-Berwaldian
spaces which are R-quadratic. A Finsler space is called Ricci quadratic if its Ricci
scalar is quadratic in y.

In 2009, the authors Li and Z. Shen were studied Ricci-quadratic Randers space
and they got a characterization of such spaces, using local co-ordinate system. In
([9], [12]), the authors S.Deng and Z. Hu proved that a homogeneous Randers space
is Ricci-quadratic if and only if it is Berwald space. In the following above and by
using the formula of Ricci scalar of homogeneous Kropina metric (3.1), we prove
main result

Theorem 5.3. A homogeneous Kropina metric is Ricci-quadratic if and only if it
is Berwaldian.
We prove this theorem, first we prove the following lemma:

Lemma 5.2. Fix x ∈ M and α, β, F as function of y ∈ TxM . If f ∗, g∗ and h∗

are polynomial of y such that f∗

F 2 + g∗

F
+ Fh∗ is a polynomial, then (α4/β2)/f ∗.

Proof. The polynomial Fh∗ can be written as,

Fh∗ =
(α2 − β2)h∗

β
+ βh∗.

Here, we see that if f∗

F 2 + g∗

F
+Fh∗ is a polynomial of y, then there is a polynomial

g∗1 of y such that

h∗1 =
f ∗

F 2
+
g∗1
F
,

is a polynomial of y, which implies that,

(
α2

β
)2h∗1 − f ∗ = g∗1(

α2

β
).

Since g∗1 is polynomial of y and α is the square root of the positive definite quadratic
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form, both sides of above equation must be vanishing, we have

g∗1(
α2

β
) = 0,

(
α2

β
)2h∗1 − f ∗ = 0.

Thus, f ∗ = (α
2

β
)2h∗1(y). Hence, (α4/β2)/f ∗.

Proof the theorem 5.3: Since a Berwald metric is Ricci quadratic. We need
only prove the ‘only if ’ part.
By equation (3.1), we deduce from above lemma that, if the Ricci scalar is quadratic,
then

(α2/β)2/(r00)2.

Since α2/β is an irreducible polynomial of y, there exists a constant c′ such that

r00β = c′α2.

Then, from lemma 2.1 and proposition 4.3. Equivalently,

Cj
ni + Ci

nj = 0. (5.1)

In particular, considering the value at y = u and taking into account the fact that
< u, u >= 1, we get

Cn
ij = 0. (5.2)

Equation (5.1) and (5.2), we have for any i, j

〈[u, ui]m, uj〉+ 〈[u, uj]m, ui〉 = 0,

〈[ui, uj]m, u〉 = 0.

By the conditions in [9], we conclude that F is a Berwald metric. This complete
the proof of the theorem.

6. Conformal Deformation of the Kropina metric K(α, β)
Consider the Kropina metric K(α, β) = α2

β
. Now, first we will study the Per-

turbation theory of this metric:
The Perturbation of Kropina metric is given by,

F (α, β) = K(α, β) + ε(x)β,

where ε : M → R∗ is differentiable function, we remark that the particular case
ε(x) = ±1 was studied by R. Miron, H. Shimada and V.s. Sabau in [19].
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First we checked that F to be positive on TM\{0}, through the following propo-
sition;

Proposition 6.4. If F is positive on TM\{0} if and only if it satisfies ||b|| < 1√
|ε|

and β > 0.

Proof. Let F is positive on TM\{0}, which implies that,

K(α, β) + ε(x)β > 0, ∀y 6= 0.

It follows that,
α2 + εβ2

β
> 0, ∀y 6= 0.

Suppose positivity holds. Substitute yi = −bi = −aijbj in above inequality, we
obtain the relation ||b|| < 1√

|ε|
and as β > 0.

Conversely, suppose that the conditions holds and using the Cauchy-Buniakowski
Schwarza inequality, we have

|aijbibj| ≤
√
apqbpbq

√
arsyrys.

Thus, we obtain the positivity of F .
Now, using the formula for the fundamental tensor in [19], we have the fundamental
tensor gij of the Kropina metric (M,F ) is given by

gij = 2
α2

β2
aij + 4(

α

β
)2 − 4(

α

β
)3(bilj + bjli)

+

(
ε2 + 3(

α

β
)4

)
bibj,

where li = 1
α
aijy

j.
The contravariant tensor gij is expressed in the following form,

gij =
β2

2α2
aij −Θ

[
α4bibj − 2α3β(bilj + bjli)

−2α2(b2(α2 − εβ2)− 2β2)lilj
]
,

where b2 = aijbibj and Θ = b2(A + B), where A = 2(α3 + εαβ2)(3α4 + ε2β4) and
B = 2(α4 − εα2β2).
The covariant and contravariant metric tensor of Conformal Kropina metric F̄ are
given as;

ḡij = eσ(x)gij and ḡij = e−σ(x)gij.
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Therefore, the covariant ḡij and contravariant ḡij metric tensor of F̄ = eσ(x)F are
given by,

ḡij = eσ(x)

{
2
α2

β2
aij + 4(

α

β
)2 − 4(

α

β
)3(bilj + bjli)

+

(
ε2 + 3(

α

β
)4

)
bibj

}
,

and

ḡij = e−σ(x)

{
β2

2α2
aij −Θ[α4bibj − 2α3β(bilj + bjli).

. −2α2(b2(α2 − εβ2)− 2β2)lilj]
}
.

Now, taking into accounts the invariants [19] related to F̄ are,

ρ̄ = eσ(2(
α

β
)2 + 2ε), ρ̄0 = −eσ(3(

α

β
)4 + ε2),

ρ̄−1 = −eσ(4
α2

β3
), ρ̄−2 = eσ(

4

β2
)

By direct computation we get,

Proposition 6.5. If kij is the fundamental tensor of the Kropina Space (M,K),
then the fundamental tensor field ḡij of the conformal deformation space (M, F̄ ) is
expressed by

ḡij = k̄ij + 2εāij + ε2b̄ib̄j.

7. Single Colored Kropina metric
In this section, we characterize the single colored Kropina metric.
The Finslerian L. Berwald studied [4] a class of Finsler metrics F = F (x, y) on

a manifold M , whose geodesics are determined by second order ODEs similar to
the Riemannian case. More precisely the geodesics in local co-ordinates satisfy

d2xi

dt2
+ 2Gi(x,

dx

dt
) = 0,

where Gi(x, y) = 1
2
Γijk(x)yjyk are called quadratic in y = yi ∂

∂xi
|x ∈ TxM . Finsler

metric with this property are called Berwald metrics. It can be shown that Berwald
manifolds are modeled on a single norm space, i.e., all the tangent spaces TxM with
induced norm Fx are linearly isometric to each other. Intuitively speaking, if one
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assigns a single color to each tangent norm space (TxM,Fx) depending on the
geometric shape of the unit tangent sphere SxM then the Berwald manifolds has
uniform color.

Definition 7.3. (29) On the manifold M , a Finsler metric F is called single
colored, if for every point x, there is a neihborhood U and a local frame field {ei}
defined on U such that F (yiei) = F (y1, y2, ...., ym) is a function of yi’s.

Remark: As we know, Finsler metric is single colored if and only if the tangent
spaces are linearly isometric to each other (as Minkowski spaces). The author,
Z. Shen has said, in many occasions, that a Finsler manifold is usually colorful,
because if we assign a color to each kind of Minkowski space, then a Finsler manifold
can admit many colors and also author M. Matsumoto [18] suggested to consider
1-form metrics, whose definition is similar to our single colored ones, but with
additional requirement that the underlying manifold being parallelizable, that is
exactly in [15], Libing Huang has proved the following lemma;

Lemma 7.3. If F is a single colored Finsler metric on M , then any conformal
deformation eρ(x)F is also single colored. Combining theorem 5.3 , proposition 6.5
and lemma 7.3, we state

Theorem 7.4. Let F = α2

β
be single colored Kropina metric on M , then the

conformal deformation F̄ is also single colored.

Proof. Since α is Riemannian metric and β is 1-form, which has a non zero
constant [4] and proposition 5.3, F be single colored. Then by proposition 6.5,
implies that the conformal deformation of F . Hence, from lemma 7.4, we conclude
that F̄ is single colored.

Example: Suppose that F = α2

β
be homogeneous Kropina metric, which is single

colored. Now, consider the orthogonal invariance of this metric, which is of the
form

F̄ (x, y) = |x|σ
(
|y|2|x|
< x, y >

)
,

where |, | and <,> denote the usual norm and inner product on a Euclidean space
respectively. By elementary properties of linear algebra in particularly, Grams-
Schmidt orthogonalization process, which would conclude that F is the conformal
deformation of the single colored Kropina metric with α = |y| and β =< x, y > /|y|.
5. Conclusion

The Kropina metric is an (α, β)- metric, which was considered by V. K. Kropina.
This metric is of physical interest in the sense that it describes the general dynam-
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ical system represented by a Lagrangian function. On Einstein Kropina metric has
been investigated by X. Zhang and Yi-Bing Shen.

The theory of homogeneous/symmetric Riemannian manifolds has become the
basis of many branches of mathematics, including group, geometry analysis and
representation theory. That, theory was called Lie theory to study the Finsler
geometry, which has developed by the theory of homogeneous/symmetric Finsler
spaces.

There are several interesting curvatures in Finsler geometry, among them the
Ricci curvature and flag curvature are most important. The flag curvature is the
natural generalization of sectional curvature. The notion of S-curvature of Finsler
spaces, comes under the Riemannian-Finsler geometry.

As we know, Finsler manifold is usually colorful because if we assign a color to
each kind of Minkowski space then the Finsler manifold can admit many colors. It
is an very interesting to study those Finsler manifolds with a single color.

In this paper, we consider the homogeneous Kropina metric, first we found the
formula of Ricci curvature for homogeneous Kropina metric. Using this formula,
we proved a necessary condition related φ for F to be Einstein. Then, we shown
that if φ is normal. Moreover, on the compactness, we obtained the sufficient and
necessary condition for a homogeneous Kropina metric to be Einstein with van-
ishing S-curvature. Further, we studied the conformal deformation of this metric.
Under this, we proved that the conformal deformation of Kropina metric is single
colored.
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