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Abstract: Graph-token Petri net (GTPN), an extension of Tree-token Petri net
(TTPN), is introduced by labelling the tokens with graphs. A study is done on
the languages generated by GTPN . Some subclasses of graphs are generated by
this Petri net model.
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1. Introduction
Petri net is a particular kind of directed bi-partite graph consisting of two types

of nodes called places and transitions connected by directed arcs [4]. Tree-token
Petri net (TTPN) was introduced with tokens as trees and evolution rules at
transitions [5]. Tree- token Petri net languages were studied and it was proved
that the sets of derivation trees of regular, linear and context free grammars of
Chomsky hierarchy are accepted by TTPNs [2], [6]. Subclasses of trees, namely
caterpillars and lobsters are generated by these Petri nets [7].

Motivated by the generating capacity of Petri net models, Graph-token Petri
net (GTPN), an extension of TTPN is defined. New evolution rules at transitions
are introduced to perform the extended operations on graph tokens. In a GTPN ,
an enabled transition removes the tokens labelled by graphs from the input places
and deposits it in the output places performing the evolution rule indicated at the
transition. For the study of languages generated by GTPN , the net is reduced to
a standard form. It is proved that the GTPN languages are closed under finite
union. Some subclasses of graphs namely, cycles, complete graphs and complete
bi-partite graphs are generated by these Petri nets.
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In this section, the definitions of the well-known types of graphs [1], [3] that
are needed for our study are presented. Graph-token Petri net, a new type of Petri
net, by labelling tokens with graphs is defined. The set of evolution rules at the
transitions of a TTPN [7], are revised by introducing new rules.

Definition 1.1. A graph is called simple if it has no loops and no parallel edges.

Definition 1.2. A simple graph with n- vertices (n ≥ 3) and n edges is called a
cycle graph if all its edges form a cycle of length n, denoted by Cn.

Definition 1.3. A simple graph G is said to be complete if every pair of distinct
vertices of G are adjacent in G. A complete graph each on a set of n vertices is
denoted by Kn.

Definition 1.4. A graph G is bi-partite if its vertex set can be partitioned into
two empty non- empty subsets X and Y such that each edge of G has one end in
X and the other in Y . The partition V = X ∪ Y is called a partition of G.

Definition 1.5. A complete bi-partite graph is a simple bi-partite graph with bi-
partition V = X ∪ Y in which every vertex in X is joined to every vertex of Y . If
X has m vertices and Y has n vertices such a graph is denoted by Km,n.

Definition 1.6. A multi-set over a non-empty set S, is a function b: S → N ,
where N is the set of all non-negative integers. A multi-set is a set which contains
multiple occurrences of the same element. We deal only with finite multi-set, and
each multi-set b over set is represented as a formal sum b =

∑
b(s)s, where the

non-negative integer b(s) denotes the number of occurrences of the element s in the
multi-set b. The set of all multi-sets over S is denoted by [S]MS or Bag(S).

Definition 1.7. A graph-token Petri net (GTPN) is a 7-tuple N = (P, T, C,A,
R(t),W (a),M0), where P is a set of places; T is a set of transitions; C is a set of
colours and CGR is the set of all graphs associated with the colour set C (That is
graphs with vertices labelled with colours from the set C); A ⊆ (P ×T )∪ (T ×P ) is
a set of arcs; R(t) is a set of evolution rules associated with each transition t of T ;
W (a) is the weight associated with arc a ∈ A; M0 the initial marking, is a function
defined on P such that, for p ∈ P , M0(p) ∈ [CGR]MS. If no weight is mentioned
it is assumed that the weight is 1. It is further assumed that there are no isolated
places/transitions.

Definition 1.8. Let C = {a, x, y, z, x1, x2, x3, ...}. A graph evolution rule over
CGR, where C is a colour set, is one of the following:
1. Identity, which keeps the graph unaltered.
2. a → l(x1, x2, x3, ..., xn) replaces the vertex labelled ‘a′ by a tree with vertices
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labelled a, x1, x2, x3,· · · , xn and edges ax1, ax2, ax3,· · · , axn as shown in Fig.1.

Figure 1: Evolution rule 2

3. (x, y) introduces edge between the vertices labelled x and y.
4. x→ y replaces the label of the vertex x by y.
5. x → λ deletes the label of the vertex labelled x, where x, y, λ ∈ C and λ is an
empty colour.

Example 1.1. The evolution rules x → l(y), x → z, y → l(x, y), l(x) → l(x, x)
generates trees as shown in Fig.2.

Figure 2: Trees generated using evolution rules

Example 1.2. The evolution rules x → l(y), l(y) → l(y) and the new simple
evolution rule (x, l(y)) generates graphs as shown in Fig.3.

Figure 3: A cycle generated using evolution rules

2. Graph-token Petri net languages
The language generated by a graph-token Petri net is the set of graphs obtained

as reachable markings in a selected set of places in the net. In this section we
construct standard form for GTPN generating a language. We use this result to
prove that the set of GTPN languages is closed under finite union.
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Definition 2.1. A L-type GTPN language L is defined as L = {CGR/CGR ∈
M(p) ∈ M is a reachable marking of N , p ∈ PF}, if there exists a graph-token
Petri net N = (P, T, C,A,R(t),W (a),M0), and PF is a set of final places.

In other words, L-type GTPN language is defined in terms of graphs corre-
sponding to some reachable markings in a specified set of final places PF of a net
N . The set of such reachable markings is called the language generated by N ,
denoted by L(N).

Definition 2.2. If L is a language generated by the GTPN N = (P, T, C,A,R(t),W (a),M0)
such that it has exactly one final place, then N is said to be in standard form.

Definition 2.3. If L1 and L2 are languages generated by GTPNN1 and N2 re-
spectively then the union of two languages is defined by L1 ∪ L2 = {x/x ∈ L1 or
x ∈ L2}
Theorem 2.1. Every GTPN can be reduced to a standard form.

Proof. Let L be a language generated byGTPN , N = (P, T, C,A,R(t),W (a),M0),
and PF be set of final places.
If PF has exactly one place then N is in standard form, and there is nothing to
prove. Suppose PF has more than one place, let PF = {pfi : i = 1, 2, , k}. Con-
struct GTPN N1 as shown in Fig.4. In addition to the places in net N , introduce
a new place pf . Introduce new transitions tfi for pfi ∈ PF , i = 1, 2, , k as the input
place respectively and pf as outplace, labelled with identity rules.

Figure 4: GTPNN1 standard form of N

Considering the final place as pf in the GTPN N1, L(N1) = L(N). Hence the
theorem.

Theorem 2.2. If L1 and L2 are GTPN languages then L1 ∪ L2 is also a GTPN
language.

Proof. Let N1 and N2 be GTPNs in standard form generating the language L1
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and L2 respectively.
LetN1 = (P1, T1, C1, A1, R1(t),W1(a),M01) andN2 = (P2, T2, C2, A2, R2(t),W2(a),M02).
Combining N1 and N2, construct a GTPN N ′ by introducing a new final place p′f
and new transitions t′f1, t

′
f2 with identity rules having pf1 , pf2 as the input place

respectively and p′f as output place, as in Fig 5.
GTPN N ′ = (P1∪P2∪{p′f}, T1∪T2 ∪ {t′f1, t′f2},C1∪C2 , A1∪A2∪{(pf1, t′f1),(pf2, t′f2),
(t′f1, p

′
f ), (t′f2, p

′
f )}, R1(t)∪R2(t), M

′
0). The initial marking M ′

0 has tokens as in N1

and N2 and p′f is empty.

Figure 5: GTPNN ′ generates L1 ∪ L2

It is seen that the set of all reachable markings pf1 in N1 and pf2 in N2 are same as
the reachable markings of p′f in N ′ so that L(N ′) = L1 ∪ L2. Hence the theorem.

Corollary. The family of GTPN languages is closed under finite union.

Proof. Let N1, N2,· · · , Nn be the GTPNs in standard forms generating L1,
L2,· · · , Ln respectively. Let pi , i = 1, 2, · · · , n be the final places of N1, N2,· · · ,
Nn respectively. As in the case of the theorem, construct N by introducing a single
final place p and transitions ti with identity rules having pi as input place and p
as output place. The GTPN N generates ∪ni=1Li. Hence the family of GTPN
languages is closed under union.

3. Subclasses of graphs generated by GTPNs
In this section, we apply graph-token Petri nets to generate some types of

graphs. We show that the subclasses of graphs, the cycle graphs Cn, the complete
graphs Kn and the complete bi-partite graphs Km,n for arbitrary m, n are obtained
as languages accepted by GTPNs.

Theorem 3.1. Let G1 be the set of all cycle graphs. Then there exists a graph-
token Petri net N1 such that the language generated by N1, L(N1) = G1.
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Proof. G1 = {Cn : Cn is the cycle of length n, n ≥ 3}. Construct a GTPN
N1 = (P, T, C,A,R(t),W (a),M0) as follows:
P = {p1, p2, p3, p4}is the set of places;
C = {x, y, λ}is the colour set;
M0 = (•x, 0, 0, 0) is the initial marking with a vertex labelled x as token in the
place p1 and all other places are empty. The set of transitions T and set of arcs A
and the evolution rules R(t), are as shown in Fig.6. Let PF = {p4}.

Figure 6: GTPNN1 generates cycles

On firing the enabled transition t1 the token •x is removed from p1 and the edge
shown in Fig.6 is deposited in p2. By firing t2 n times a path of length n + 1 is
obtained as a reachable marking in p2, for n = 1, 2, 3, · · · as shown in Fig.7.

Figure 7: Markings at place p2

Then firing t3, a cycle of length n+2 is obtained as a marking in p3, n = 1, 2, 3, · · · .
When the transition t4 is fired unlabelled cycle graph Cn is deposited in the final
state p4 for n = 3, 4, · · · as shown in Fig.8.

Figure 8: Markings at final place p4

Hence L(N1) = G1.

Theorem 3.2. If G2 is the set of all complete graphs, then there exists a GTPN
N2 such that the language generated by N2, L(N2) = G2.
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Proof. Construct a GTPN N2 = (P, T, C,A,R(t),W (a),M0) as follows:
P = {p1, p2, p3, p4, p5, p6}the set of places;
M0 = (•x, 0, 0, •y, 0, 0) a node labelled x in the place p1 and another labelled y at
p4. T , A, R(t) and W (a) are as shown in Fig.9. PF = {p6}.

Figure 9: GTPNN2 generates complete graphs

Initially t1 and t2 are enabled. Firing t1, the graph K1 is obtained as a marking
at p6. Instead if t2 is fired, a path of length 1 is deposited in p2. Then t3 and t4
are enabled. By firing t3 the path of length 1 without labels is deposited at the
final place p6. When t4 fires the same path with labels is deposited in p3. Since the
tokens are present in both places p3 and p4, transition t6 can be fired and an edge
is introduced between x and y. Fire t5 before t6 each time so that the sequence of
firings can continue. On firing t6, the vertex labelled y is joined to every vertex x
in the graph token at the place p3. On firing t7 the vertex labelled y is replaced by
the label x.
Hence the markings at p3 are all complete graphs with vertices labelled x and
the markings at p5 are complete graphs with one vertex labelled y and all others
labelled x. After firing t8, the markings at the final place p6 are unlabelled complete
graphs. Hence L(N2) = G2.

Example 3.1. The complete graphs K1, K2, K3 and K4 are obtained as reachable
markings in N2 as shown in Fig.10.

Figure 10: Markings at final place p6
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Theorem 3.3. If G3 is the set of all complete bi-partite graphs then there exists a
GTPN N3 such that the language generated by N3, L(N3) = G3.

Proof. Construct a TTPN N3 = (P, T, C,A,R(t),W (a),M0) as follows:
P = {p1, p2, p3, p4, p5, p6, p7, p8, p9}, the set of places;
C = {x, y, a, b, λ}, the colour set;
M0 = (•a, 0, 0, •b, 0, 0, •y, 0, 0), vertices labelled a, b and y is placed in the places
p1, p4 and p7. T , A, R(t) and W (a) are constructed as shown in Fig.11. PF = {p9}.

Figure 11: GTPNN3 generates complete bi-partite graphs

On firing the sequence t2t3, K1,1 is obtained as the marking at p9. Instead if t1 is
fired, a tree with vertex a and two leaves with label x is deposited in place p2. The
transitions t3 and t4 are enabled. If t3 fires then the marking M(p9) is K1,2. If not,
on firing t4 the graph token at p2 is deposited in p3. The transitions t6 and t9 are
enabled only if there are tokens in pair of places (p3, p4)and(p6, p7) respectively.
Firing t5 and t8 repeatedly multi-sets of vertices with labels •b, •y are obtained as
markings in p4 and p7 respectively. Since b is replaced by a and y is replaced by
x, at t7 and t10 respectively, any arbitrary number of vertices in the bi-partition is
obtained. The transitions t6 and t9 ensure the join of any two pairs of vertices in
the bi-partition.

Thus we obtain all isomorphic complete bi-partite graphs with labels at p6 and
p8.The graphs Km,n without labels are obtained as markings in the final state p9
on firing t11 and t12. Hence L(N3) = G3

Example 3.2. The complete bi-partite graphs K1,2, K1,1, K2,2, K3,2, K2,3 are
obtained as markings in p9 as shown in Fig.12.
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Figure 12: Markings at final place p9

3. Conclusion
Graph-token Petri net (GTPN), a new class of Petri nets, is introduced. Some

closure properties of the GTPN languages are explored. It is found that this model
is useful to generate some subclasses of graphs. This is illustrated by examples. It
is of interest to note that these graphs are generated by applying simple evolution
rules at the transitions of the GTPN . The properties of GTPN languages and
generation of other classes of graphs is considered for future study.
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