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Abstract: The linear node arrangement of a graph GG on n nodes is the embedding
of the nodes of the graph onto the line topology L in such a way that the sum of the
distance between adjacent nodes in G is optimized. The cyclic node arrangement is
the embedding of the nodes of GG onto a cycle C' in such a way that the optimization
is preserved. In this paper we obtain general results to compute the cyclic and
linear node arrangement of a class of Cartesian product graphs with Cy and Py
respectively, where C, k > 2, is a cycle on k£ nodes and P is a path on £ nodes
and their conditional edge faulty graphs.
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1. Introduction

Let G = (Vg,Eg) be an undirected arbitrary graph with node set Vg =
{1,2,...,n}. The linear arrangement of GG is a bijective mapping A from Vg to
V. The cost of a linear arrangement \ is given by

LANG) = Y M) = A(v)]

(u,v)EEG

The linear node arrangement problem is to nd a A such that LAy(G) is mini-
mized. The minimum thus obtained is called linear node arrangement of GG and is
denoted by LA(G) [1]. The cyclic arrangement of G is a bijective mapping A from
Vi to V. The cost of a cyclic arrangement A is given by

CANG) = 3 IAw) = AW)l

(u,v)€Eqg
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Figure 1: Cyclic node arrangement of cylinder G with A\(z) = z and CA(G) = 30.

The cyclic node arrangement problem is to find miny C'A,(G) and is denoted by
C'A(G) [3]. Fig 1 illustrates the cyclic node arrangement of a cylinder graph. This
problem is also known in the literature as the cyclic bandwidth problem [7]. Tt has
applications in electronic design automation, minimizing communication conges-
tions and smooth signal processing in computer networks and parallel computing
[3,5]. The problem has been investigated in the literature for graphs including hy-
percubes [4], arrangement graphs [3], trees and hypergraphs [5].

Optimal Ordering: For any k(1 < k < n), an ordering Oy, of the set V(G) is said
to be an optimal ordering if the subgraph of G induced by the first k£ nodes in this
order is maximal among any other induced subgraph of the same node cardinality.
Then CAp, (G) = CA(G) and LAy, (G) = LA(G). If G is an r-regular graph, then

n

CA(G) = LA(G) = Yok — 2| E(GlO)] [26].

In a large interconnection network, nodes or edges often develop faults. The
fault can either be conditional or random. Fault tolerance is an extensively re-
searched feature of interconnection networks which determines the ability of a
system to maintain its functionality, even in the presence of faults. It is very
important to take fault tolerance into account when developing embedding algo-
rithms and hardware modules. The graph embedding where all faulty nodes and
edges have been removed is called fault-tolerant embedding [8].

2. Main Results

Definition 2.1. Let H be a graph of size n with optimal order O = {vy,vs,...,v,}.
Suppose for the Cartesian product H x Cy, (or) H X Py, where Cy, and Py, k > 2,
is a cycle and path on k nodes, with the node set of the i'" copy as V(H;) =
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{vin, vig, ... vin}, Oij = (Vit,, ..., Vin, Vj1, - . ., Vjn) 1S an optimal order in H; U H;,
1 <i <y <k, then H is called a sequentially optimal order graph denoted as
SO-graph.

Notation. For any two non-empty subsets A and B of Vg, Eanp = {(x,y) € Eg :
x € Aye€ B}

The node arrangement problem of SO-graphs nds application in the implemen-
tation of parallel algorithms in parallel processors wherein the processors in the
network are homogenous multi-core processors like Intel, IBM, Sun and AMD.

Theorem 2.2. Let H be a SO-graph and G = H x Cy, k > 2. Then CA(G) =
kK[CA(H x Py) — CA(H)].

Proof. We first prove that O = (v11, V12, ..., V1, V21,022, « -+, U2y« oy Ukly « + + 5 Uk )
is an optimal ordering of V(G). Let B be any ordering of V(G). Let B;;41y be
an order taken from F corresponding to H; U H;yq,1 <4 < k — 1. Since Q1) =
<vi1, Vig, - -+ s Vins V(1) 15 V(it1)25 - - - ,v(@-+1)n> is the optimal ordering of V/(H; U H;. 1),
we have

CAo,y (Hi UHiy) < CAsg, ) (Hi U Hiya).

Since O1; = (V11, V12, - - -, V1, U1, Uk2, - - - , Upn) 18 the optimal ordering of V/(H{UH}),
CAp,, (HyUH,) <CAsg, (H, U Hy).
Then

k—1 k—
> CAo,,,,, (HiUH1)+C Ao, (H1UHy) < Z Buser, (HiUH 1) +C Az, (HIUH)

=1

k—1
= CAo(G +ZCAO i) < CAg(G +ch193 i) = CAo(G) < CA3(G).

We have

k k
=1 i=

= k[OAo(H X PQ) — CAo(H)]

Therefore,
CA(G) = k[CA(H x P,) — CA(H)).

When C} is replaced by P, £ > 2 and the same proof technique as in 2.2 is
employed, we get the following result.
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Theorem 2.3. Let H be a SO-graph and G = H X Py, k > 2. Then LA(G) =
(k—1)LA(H x Py) — (k—2)LA(H)].

Let {H;}*_, be a set of finite pairwise disjoint subgraphs of the Cartesian prod-
uct graph with node set V(H;) = {vi1,vi2, - - -, Vi, }, 1 <0 < k.

Definition 2.4. A bridge-path graph BP(Hy, Hs, ..., Hy) is a conditional edge
faulty graph obtained by deleting the first n — 1 edges in each EH; N Hi1q), 1 <
i <k—1of HX P,. A bridge-cycle graph BC(Hy, Hs, ..., Hy) is a conditional
edge faulty graph obtained by deleting the first n — 1 edges in each EH; N Hitq),
1 <i<k—1and E(H, N Hy) of H x Cy. Fig. 2 illustrates the bridge-path and
bridge-cycle graph.

Figure 2: (a) A bridge-path graph (b) A bridge-cycle graph

Theorem 2.5. Let G = BC(G1,Ga,...,Gy) be a bridge-cycle graph. If each
G;,1 <1<k, has an optimal order, then

k
=Y CAG
=1

Proof. Let R be any ordering of V(G). Let R; be an order taken from R corre-
sponding to G;,1 < i < k. Let O; = (v;1, V0, ..., Vi) be the optimal order for
V(Gl) We prove that O = < V11,0125 -+ - 3 Ulng s V21, V22, - o« 3 V2pgy o o+, U1, Vg2, - - - 7vknk >
is an optimal order of V(G). Since O; is the optimal order of V(G;), we have

CAo,(G:) < CAg,(Gy), 1< i<k

Hence

> (6 £ Y-
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and as a result,

CAo(G) < CAR(G).

Therefore, O is the optimal ordering of G.
We have

k
CAo(G) =) CAy(Gy) + k.
=1

Therefore,

k
CA(G) =) CA(G;) +k

Proceeding in the same way, we get the linear node arrangement of the bridge-path
graph as follows.

Theorem 2.6. Let G = BP(G1,Gs,...,Gy) be a bridge-path graph. If each
G, 1 <i <k, has an optimal order, then

3. Conclusion

In this paper we have obtained general results to compute the cyclic and linear
node arrangement of the Cartesian product of a sequentially optimal order graph
with cycle C and path Py respectively and their conditional edge faulty graphs.
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