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Abstract: The linear node arrangement of a graph G on n nodes is the embedding
of the nodes of the graph onto the line topology L in such a way that the sum of the
distance between adjacent nodes in G is optimized. The cyclic node arrangement is
the embedding of the nodes of G onto a cycle C in such a way that the optimization
is preserved. In this paper we obtain general results to compute the cyclic and
linear node arrangement of a class of Cartesian product graphs with Ck and Pk
respectively, where Ck, k ≥ 2, is a cycle on k nodes and Pk is a path on k nodes
and their conditional edge faulty graphs.
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1. Introduction
Let G = (VG, EG) be an undirected arbitrary graph with node set VG =

{1, 2, . . . , n}. The linear arrangement of G is a bijective mapping λ from VG to
VL. The cost of a linear arrangement λ is given by

LAλ(G) =
∑

(u,v)∈EG

|λ(u)− λ(v)|

The linear node arrangement problem is to nd a λ such that LAλ(G) is mini-
mized. The minimum thus obtained is called linear node arrangement of G and is
denoted by LA(G) [1]. The cyclic arrangement of G is a bijective mapping λ from
VG to VC . The cost of a cyclic arrangement λ is given by

CAλ(G) =
∑

(u,v)∈EG

|λ(u)− λ(v)|.
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Figure 1: Cyclic node arrangement of cylinder G with λ(x) = x and CA(G) = 30.

The cyclic node arrangement problem is to find minλCAλ(G) and is denoted by
CA(G) [3]. Fig 1 illustrates the cyclic node arrangement of a cylinder graph. This
problem is also known in the literature as the cyclic bandwidth problem [7]. It has
applications in electronic design automation, minimizing communication conges-
tions and smooth signal processing in computer networks and parallel computing
[3,5]. The problem has been investigated in the literature for graphs including hy-
percubes [4], arrangement graphs [3], trees and hypergraphs [5].
Optimal Ordering: For any k(1 ≤ k ≤ n), an ordering Ok of the set V (G) is said
to be an optimal ordering if the subgraph of G induced by the first k nodes in this
order is maximal among any other induced subgraph of the same node cardinality.
Then CAOk

(G) = CA(G) and LAOk
(G) = LA(G). If G is an r-regular graph, then

CA(G) = LA(G) =
n∑
k=1

rk − 2|E(G[Ok])| [2,6].

In a large interconnection network, nodes or edges often develop faults. The
fault can either be conditional or random. Fault tolerance is an extensively re-
searched feature of interconnection networks which determines the ability of a
system to maintain its functionality, even in the presence of faults. It is very
important to take fault tolerance into account when developing embedding algo-
rithms and hardware modules. The graph embedding where all faulty nodes and
edges have been removed is called fault-tolerant embedding [8].

2. Main Results

Definition 2.1. Let H be a graph of size n with optimal order O = {v1, v2, . . . , vn}.
Suppose for the Cartesian product H × Ck (or) H × Pk, where Ck and Pk, k ≥ 2,
is a cycle and path on k nodes, with the node set of the ith copy as V (Hi) =
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{vi1, vi2, . . . , vin}, Oij = 〈vi1, , . . . , vin, vj1, . . . , vjn〉 is an optimal order in Hi ∪Hj,
1 ≤ i < j ≤ k, then H is called a sequentially optimal order graph denoted as
SO-graph.

Notation. For any two non-empty subsets A and B of VG, EA∧B = {(x, y) ∈ EG :
x ∈ A, y ∈ B}.

The node arrangement problem of SO-graphs nds application in the implemen-
tation of parallel algorithms in parallel processors wherein the processors in the
network are homogenous multi-core processors like Intel, IBM, Sun and AMD.

Theorem 2.2. Let H be a SO-graph and G = H × Ck, k ≥ 2. Then CA(G) =
k[CA(H × P2)− CA(H)].

Proof. We first prove that O = 〈v11, v12, . . . , v1n, v21, v22, . . . , v2n, . . . , vk1, . . . , vkn〉
is an optimal ordering of V (G). Let B be any ordering of V (G). Let Bi(i+1) be
an order taken from F corresponding to Hi ∪Hi+1, 1 ≤ i ≤ k − 1. Since Oi(i+1) =〈
vi1, vi2, . . . , vin, v(i+1)1, v(i+1)2, . . . , v(i+1)n

〉
is the optimal ordering of V (Hi∪Hi+1),

we have
CAOi(i+1)

(Hi ∪Hi+1) ≤ CABi(i+1)
(Hi ∪Hi+1).

Since O1k = 〈v11, v12, . . . , v1n, vk1, vk2, . . . , vkn〉 is the optimal ordering of V (H1∪Hk),

CAO1k
(H1 ∪Hk) ≤ CAB1k

(H1 ∪Hk).

Then

k−1∑
i=1

CAOi(i+1)
(Hi∪Hi+1)+CAO1k

(H1∪Hk) ≤
k−1∑
i=1

CABi(i+1)
(Hi∪Hi+1)+CAB1k

(H1∪Hk)

⇒ CAO(G) +
k−1∑
i=1

CAOi
(Hi) ≤ CAB(G) +

k−1∑
i=1

CABi
(Hi)⇒ CAO(G) ≤ CAB(G).

We have

CAO(G) =
k∑
i=1

CAOi
(Hi ∪Hi+1)−

k∑
i=1

CAOi
(Hi)

= k[CAO(H × P2)− CAO(H)].

Therefore,
CA(G) = k[CA(H × P2)− CA(H)].

When Ck is replaced by Pk, k ≥ 2 and the same proof technique as in 2.2 is
employed, we get the following result.
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Theorem 2.3. Let H be a SO-graph and G = H × Pk, k ≥ 2. Then LA(G) =
(k − 1)LA(H × P2)− (k − 2)LA(H)].

Let {Hi}ki=1 be a set of finite pairwise disjoint subgraphs of the Cartesian prod-
uct graph with node set V (Hi) = {vi1, vi2, . . . , vimi

}, 1 ≤ i ≤ k.

Definition 2.4. A bridge-path graph BP (H1, H2, . . . , Hk) is a conditional edge
faulty graph obtained by deleting the first n − 1 edges in each E(Hi ∧ Hi+1), 1 ≤
i ≤ k − 1 of H × Pk. A bridge-cycle graph BC(H1, H2, . . . , Hk) is a conditional
edge faulty graph obtained by deleting the first n − 1 edges in each E(Hi ∧ Hi+1),
1 ≤ i ≤ k − 1 and E(Hk ∧ H1) of H × Ck. Fig. 2 illustrates the bridge-path and
bridge-cycle graph.
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Figure 2: (a) A bridge-path graph (b) A bridge-cycle graph

Theorem 2.5. Let G = BC(G1, G2, . . . , Gk) be a bridge-cycle graph. If each
Gi, 1 ≤ i ≤ k, has an optimal order, then

CA(G) =
k∑
i=1

CA(Gi) + k.

Proof. Let R be any ordering of V (G). Let Ri be an order taken from R corre-
sponding to Gi, 1 ≤ i ≤ k. Let Oi = 〈vi1, vi2, . . . , vini

〉 be the optimal order for
V (Gi). We prove that O = 〈 v11, v12, . . . , v1n1 , v21, v22, . . . , v2n2 , . . . , vk1, vk2, . . . , vknk

〉
is an optimal order of V (G). Since Oi is the optimal order of V (Gi), we have

CAOi
(Gi) ≤ CARi

(Gi), 1 ≤ i ≤ k.

Hence
k∑
i=1

CAOi
(Gi) ≤

k∑
i=1

CARi
(Gi)
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and as a result,
CAO(G) ≤ CAR(G).

Therefore, O is the optimal ordering of G.
We have

CAO(G) =
k∑
i=1

CAOi
(Gi) + k.

Therefore,

CA(G) =
k∑
i=1

CA(Gi) + k.

Proceeding in the same way, we get the linear node arrangement of the bridge-path
graph as follows.

Theorem 2.6. Let G = BP (G1, G2, . . . , Gk) be a bridge-path graph. If each
Gi, 1 ≤ i ≤ k, has an optimal order, then

LA(G) =
k∑
i=1

LA(Gi) + k − 1.

3. Conclusion
In this paper we have obtained general results to compute the cyclic and linear

node arrangement of the Cartesian product of a sequentially optimal order graph
with cycle Ck and path Pk respectively and their conditional edge faulty graphs.
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